Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigat...Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigated due to their implications in mammalian development. Although a subset of genes has been identified as imprinted, in-depth comparative approach needs to be developed for identification of species-specific imprinted genes. Here, we examined DNA methylation status and allelic expression at the KBTBD6 locus across species and tissues and explored potential mechanisms of imprinting.Results Using whole-genome bisulfite sequencing and RNA-sequencing on parthenogenetic and normal porcine embryos, we identified a maternally hypermethylated DMR between the embryos at the KBTBD6 promoter Cp G island and paternal monoallelic expression of KBTBD6. Also, in analyzed domesticated mammals but not in humans, non-human primates and mice, the KBTBD6 promoter Cp G islands were methylated in oocytes and/or allelically methyl-ated in tissues, and monoallelic KBTBD6 expression was observed, indicating livestock-specific imprinting. Further analysis revealed that these Cp G islands were embedded within transcripts in porcine and bovine oocytes which coexisted with an active transcription mark and DNA methylation, implying the presence of transcription-dependent imprinting.Conclusions In this study, our comparative approach revealed an imprinted expression of the KBTBD6 gene in domesticated mammals, but not in humans, non-human primates, and mice which implicates species-specific evolution of genomic imprinting.展开更多
Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and na...Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.展开更多
The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and ge...The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and gene expression,and the enzyme involved,DNA methyltransferase,executes the methylation process within the plant genome.By regulating crucial biological pathways,epigenetic changes actively contribute to the creation of the phenotype.Therefore,epigenome editing may assist in overcoming some of the drawbacks of genome editing,which can have minor off-target consequences and merely facilitate the loss of a gene’s function.These drawbacks include gene knockout,which can have such off-target effects.This review provides examples of several molecular characteristics of DNA methylation,as well as some plant physiological processes that are impacted by these epigenetic changes in the plants.We also discuss how DNA alterations might be used to improve crops and meet the demands of sustainable and environmentally-friendly farming.展开更多
Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affec...Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affecting locomotion ability and life quality.Consequently,good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA.Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging.Herein,we review the fluorescent probes developed for the detection and imaging of RA biomarkers,namely reactive oxygen/nitrogen species(hypochlorous acid,peroxynitrite,hydroxyl radical,nitroxyl),pH,and cysteine,and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies.展开更多
Bioterrorism has received a lot of attention in the first decade of this century. Biological agents are considered attractive weapons for bioterrorism as these are easy to obtain, comparatively inexpensive to produce ...Bioterrorism has received a lot of attention in the first decade of this century. Biological agents are considered attractive weapons for bioterrorism as these are easy to obtain, comparatively inexpensive to produce and exhibit widespread fear and panic than the actual potential of physical damage. Bacillus anthracis(B. anthracis), the etiologic agent of anthrax is a Gram positive, spore forming, non-motile bacterium. This is supposed to be one of the most potent BW agents because its spores are extremely resistant to natural conditions and can survive for several decades in the environment. B.anthracis spores enter the body through skin lesion(cutaneous anthrax), lungs(pulmonary anthrax), or gastrointestinal route(gastrointestinal anthrax) and germinate, giving rise to the vegetative form. Anthrax is a concern of public health also in many countries where agriculture is the main source of income including India. Anthrax has been associated with human history for a very long time and regained its popularity after Sept 2001 incidence in United States. The present review article describes the history, biology, life cycle, pathogenicity, virulence, epidemiology and potential of B. anthracis as biological weapon.展开更多
Objective:To investigate the antibacterial aclivily of marine actinobacteria against multidrug resistance Staphylococcus aureus(MDRSA).Methods:Fifty one actinobacterial strains were isolated from salt pans soil,costal...Objective:To investigate the antibacterial aclivily of marine actinobacteria against multidrug resistance Staphylococcus aureus(MDRSA).Methods:Fifty one actinobacterial strains were isolated from salt pans soil,costal area in Kothapattanam,Ongole,Andhra Pradesh.Primary screening was done using cross-streak method against MDRSA.The bioaclive compounds are extracted from efficient actinobacteria using solvent extraction.The antimicrobial activity of crude and solvent extracts was perfomied using Kirby-Bauer method.MIC for ethyl acetate extract was determined by modified agar well diffusion method.The potent actinobacteria are identified using Nonomura key,Shirling and Gottlieb 1966 with Bergey's manual of determinative bacteriology.Results:Among the fifty one isolates screened for antibacterial activity,SRB25were found efficient against MDRSA.The ethyl acetate extracts showed high inhibition against test organism.MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000μg/mL.The isolaled actinobacteria are identified as Streptomyces sp with the help of Nonomura key.Conclusions:The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.展开更多
The process of carcinogenesis is tightly regulated by antioxidant enzymes and matrix degrading enzymes, namely, matrix metalloproteinases(MMPs). Degradation of extracellular matrix(ECM) proteins like collagen, proteog...The process of carcinogenesis is tightly regulated by antioxidant enzymes and matrix degrading enzymes, namely, matrix metalloproteinases(MMPs). Degradation of extracellular matrix(ECM) proteins like collagen, proteoglycan, laminin, elastin and fibronectin is considered to be the prerequisite for tumor invasion and metastasis. MMPs can degrade essentially all of the ECM components and, most MMPs also substantially contribute to angiogenesis, differentiation, proliferation and apoptosis. Hence, MMPs are important regulators of tumor growth both at the primary site and in distant metastases; thus the enzymes are considered as important targets for cancer therapy. The implications of MMPs in cancers are no longer mysterious; however, the mechanism of action is yet to be explained. Herein, our major interest is to clarify how MMPs are tied up with gastrointestinal cancers. Gastrointestinal cancer is a variety of cancer types, including the cancers of gastrointestinal tract and organs, i.e., esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus. The activity of MMPs is regulated by its endogenous inhibitor tissue inhibitor of metallopro-teinase(TIMP) which bind MMPs with a 1:1 stoichiometry. In addition, RECK(reversion including cysteinerich protein with kazal motifs) is a membrane bound glycoprotein that inhibits MMP-2,-9 and-14. Moreover, α2-macroglobulin mediates the uptake of several MMPs thereby inhibit their activity. Cancerous conditions increase intrinsic reactive oxygen species(ROS) through mitochondrial dysfunction leading to altered protease/anti-protease balance. ROS, an index of oxidative stress is also involved in tumorigenesis by activation of different MAP kinase pathways including MMP induction. Oxidative stress is involved in cancer by changing the activity and expression of regulatory proteins especially MMPs. Epidemiological studies have shown that high intake of fruits that rich in antioxidants is associated with a lower cancer incidence. Evidence indicates that some antioxidants inhibit the growth of malignant cells by inducing apoptosis and inhibiting the activity of MMPs. This review is discussed in six subchapters, as follows.展开更多
Objective:To evaluate the antioxidant activities and total phenolic contents of brown seaweeds belonging to Turbinaria spp.[Turbinaria conoides(T.conoides)and Turbinaria ornata(T.ornata)collected from Gulf of Mannar o...Objective:To evaluate the antioxidant activities and total phenolic contents of brown seaweeds belonging to Turbinaria spp.[Turbinaria conoides(T.conoides)and Turbinaria ornata(T.ornata)collected from Gulf of Mannar of southeastern coast of India in various in vitro systems.Methods:The antioxidant activity was evaluated using different in vitro systems,viz.,I,I-diphenyl-2-picrylhydrazyl(DPPH),2,2'-azino-bis-3 ethylbenzothiozoline-6-sulfonic acid diammonium salt(ABTS),H_20_2/H0 radical scavenging,Fe^(2+)ion chelating ability,and reducing potential.Folin-Ciocalteu method was used to determine the total phenolic content of the extracts,and the results were expressed as mg of gallic acid equivalents(GE)/g of the seaweed extracts.Thiobarbituric acid-reactive substances assay was employed to assess the ability of the seaweed extracts to inhibit lipid oxidation.Results:Ethyl acetate(EtOAc)fraction of T.conoides registered significantly higher phenolic content(105.97 mg GE/g)than that of T.ornata(69.63 mg GE/g).Significantly higher antioxidant potential as determined by DPPH(64.14%)radical scavenging activity was registered in EtOAc fraction of T.ornata.A higher ABTS(?)radical scavenging(IC_(50)3.16μg/mL),Fe^(2+)chelating(IC_(50)0.46 mg/mL),H_2O_2 scavenging(IC_(50)4.25 mg/mL),lipid peroxidation inhibitory(TBARS,IC_(50)0.21 mg/mL),and reducing abilities(IC_(50)52.67 mg/mL)(P<0.05)were realized in EtOAc fraction of T.ornata than other fractions.Conclusions:This study indicated the potential use of T.conoides and T.ornata as candidate species to be used as food supplements/functional foods to increase shelf-life of food items for human consumption,and nutraceuticals to deter deleterious free radical-induced life-threatening diseases.展开更多
AIM: To examine the effect of doxycycline on the activity of matrix metalloproteinases (MMPs) and oxidative stress in gastric tissues of rats following gastric injury.METHODS: Gastric ulcers were generated in rats by ...AIM: To examine the effect of doxycycline on the activity of matrix metalloproteinases (MMPs) and oxidative stress in gastric tissues of rats following gastric injury.METHODS: Gastric ulcers were generated in rats by administration of 70% ethanol,and activity of doxycycline was tested by administration 30 min prior to ethanol.Similarly,the effect of doxycycline was tested in an indomethacin-induced gastric ulcer model.The activities and expression of MMPs were examined by zymography and Western blot analysis.RESULTS: Gastric injury in rats as judged by elevated ulcer indices following exposure to ulcerogen,either indomethacin or ethanol,was reversed significantly by doxycycline.Indomethacin-induced ulcerated gastric tissues exhibited about 12-fold higher proMMP-9 activity and about 5-fold higher proMMP-3 activity as compared to control tissues.Similarly,ethanol induced about 22-fold and about 6-fold higher proMMP-9 and proMMP-3 activities,respectively,in rat gastric tissues.Both proMMP-9 and MMP-3 activities were markedly decreased by doxycycline in ulcerogen treated rat gastric tissues.In contrast,the reduced MMP-2 activity in ulcerated tissues was increased by doxycycline during ulcer prevention.On the other hand,doxycycline inhibited significantly proMMP-9,-2 and -3 activities in vitro.In addition,doxycycline reduced oxidative load in gastric tissues and scavenged H2O2 in vitro.Our results suggest a novel regulatory role of doxycycline on MMP-2 activity in addition to inhibitory action on MMP-9 and MMP-3 during prevention of gastric ulcers.CONCLUSION: This is the first demonstration of dual action of doxycycline,that is,regulation of MMP activity and reduction of oxidative stress in arresting gastric injury.展开更多
Further improvement of rice productivity remains a challenge. Breeding is perceived as an important option to increase rice yield. However, the genetic progress of grain yield in most rice breeding programs was slow i...Further improvement of rice productivity remains a challenge. Breeding is perceived as an important option to increase rice yield. However, the genetic progress of grain yield in most rice breeding programs was slow in the last decades. Although great progress in rice genomics and molecular biology has been achieved, the effect of such technological innovations on rice breeding is far small. Marker-assisted selection (MAS) for a few target quantitative trait loci (QTLs) has significant effects in improving qualitative traits, such as disease resistance. The success of MAS has therefore motivated breeders to identify and use major QTLs for yield and yield component traits. In this review, we summarized the recent methods in QTL identification, including novel statistical methods for linkage and association mapping, special population types, and whole-genome sequencing. We reviewed the successful application of marker-assisted gene introgression and gene pyramiding to improve grain yield and discussed the design of efficient MAS schemes to further increase the success rate of breeding programs. The use of well-characterized major QTLs through introgression and gene pyramiding is proven effective in improving grain yield, particularly yield under abiotic stress. Major QTLs that are stable across genetic background and growing environments are often found in less adapted germplasms, such as landraces and wild relatives. Advanced backcross QTL analysis and introgression lines, which integrate QTL discovery and utilization, are important methods for exploiting major QTLs contained in such germplasms. Next-generation sequencing substantially increases mapping resolution and accelerates the identification of casual genes underlying major QTLs. Practical guidelines derived from theoretical and empirical studies are given to guide the design of efficient marker-assisted gene introgression and pyramiding schemes.展开更多
Chronic hepatitis C virus(HCV) infection is a public health issue that often progresses to life-threatening complications, including liver cirrhosis, fibrosis, and hepatocellular carcinoma. Impaired immune responses t...Chronic hepatitis C virus(HCV) infection is a public health issue that often progresses to life-threatening complications, including liver cirrhosis, fibrosis, and hepatocellular carcinoma. Impaired immune responses to HCV are key features of chronic HCV infection. Therefore, intervention strategies usually involve enhancing the immune responses against HCV. Cytotoxic CD8+ T lymphocytes(CTLs) play a critical role in the control of HCV infection. However, their cytolytic function can be impaired by the expression of co-inhibitory molecules. Programmed death-1(PD-1) receptor and its ligand PD-L1 function in a T cell co-inhibitory pathway, which either blocks the function of CTLs or the differentiation of CD8+ T cells. During chronic HCV infection, the immune inhibitory receptor PD-1 is upregulated on dysfunctional HCV-specific CD8+ T cells. As such, blockade of the PD-1/PD-L1 pathway in these CD8+ T cells might restore their functional capabilities. Indeed, clinical trials using therapies to block this pathway have shown promise in the fostering of anti-HCV immunity. Understanding how chronic HCV infection induces upregulation of PD-1 on HCV specific T cells and how the PD-1/PD-L1 interaction develops HCV specific T cell dysfunction will accelerate the development of an efficacious prophylactic and therapeutic vaccination against chronic HCV infections, which will significantly improve HCV treatments and patient survival. In this review, we discuss the relationship between PD-1 expression and clinical responses and the potential use of PD-1 blockade for anti-HCV therapy.展开更多
Hepatitis C virus(HCV) is endemic in Pakistan and its burden is expected to increase in coming decades owing mainly to widespread use of unsafe medical procedures. The prevalence of HCV in Pakistan has previously been...Hepatitis C virus(HCV) is endemic in Pakistan and its burden is expected to increase in coming decades owing mainly to widespread use of unsafe medical procedures. The prevalence of HCV in Pakistan has previously been reviewed. However, the literature search conducted here revealed that at least 86 relevant studies have been produced since the publication of these systematic reviews. A revised updated analysis was therefore needed in order to integrate the fresh data. A systematic review of data published between 2010 and 2015 showed that HCV seroprevalence among the general adult Pakistani population is 6.8%, while active HCV infection was found in approximately 6% of the population. Studies included in this review have also shown extremely high HCV prevalence in rural and underdeveloped peri-urban areas(up to 25%), highlighting the need for an increased focus on this previously neglected socioeconomic stratum of the population. While a 2.45% seroprevalence among blood donors demands immediate measures to curtail the risk of transfusion transmitted HCV, a very high prevalence in patients attending hospitals with various non-liver disease related complaints(up to 30%) suggests a rise in the incidence of nosocomial HCV spread. HCV genotype 3a continues to be the most prevalent subtype infecting people in Pakistan(61.3%). However, recent years have witnessed an increase in the frequency of subtype 2a in certain geographical sub-regions within Pakistan. In Khyber Pakhtunkhwa and Sindh provinces, 2a was the second most prevalent genotype(17.3% and 11.3% respectively). While the changing frequency distribution of various genotypes demands an increased emphasis on research for novel therapeutic regimens, evidence of high nosocomial transmission calls for immediate measures aimed at ensuring safe medical practices.展开更多
Objective Many studies have been conducted in order to evaluate the genotoxicity of chemicals and waste materials, which utilized in vivo test protocols. The use of animals for routine toxicity testing is now question...Objective Many studies have been conducted in order to evaluate the genotoxicity of chemicals and waste materials, which utilized in vivo test protocols. The use of animals for routine toxicity testing is now questioned by a growing segment of society. Methods Keeping the above fact in mind, we have conducted in the present study the genotoxicity evaluation of oily sludge samples generated from a petroleum refinery and petrochemical industry and ETP sludge from petroleum refinery using DNA damage, chromosomal aberration, p53 protein induction and apoptosis in short term in vitro mammalian Chinese Hamster Ovary cell cultures. Results It is evident from the results that the oily sludge compounds derived from petroleum refinery and petrochemical industry could cause DNA damage, chromosomal aberration, p53 protein accumulation and apoptotic cell death on exposure to oily sludge extracts in the presence of metabolic activation system (S-9 mix), however, ETP sludge extract could not cause significant genotoxicity in comparison to oily sludge extract and negative control. Conclusion The effect may be attributed to polycyclic aromatic hydrocarbons present in the samples as evidenced from GC-MS.展开更多
Radiation induced mutagenesis followed by in vitro selection was employed for salt tolerance in popular Indian sugarcane (Saccharum officinarum L.) cv. CoC-671. Embryogenic calli were gamma irradiated and exposed to...Radiation induced mutagenesis followed by in vitro selection was employed for salt tolerance in popular Indian sugarcane (Saccharum officinarum L.) cv. CoC-671. Embryogenic calli were gamma irradiated and exposed to different levels of NaCl (42.8, 85.6, 128.3, 171.1,213.9, 256.7, 299.5, or 342.2 mM). The relative growth rate (RGR) decreased progressively with increasing salt stress and was the least with a salt stress of 256.7 mM (0.25±0.009), almost 10 fold lesser than the control. The RGR was significantly lower in 85.6 mM and higher salt stressed calli than the control. The survival percent also decreased, with an increase in NaCl concentration. In case of 10 and 20 Gy irradiated calli, regeneration was observed up to 85.6 mM NaCl selection, medium, whereas, higher treatments (128.3 mM and beyond) exhibited browning initially. However, in the subsequent subcultures, regeneration was obtained in the case of 10 and 20 Gy irradiated calli on 128.3 and 171.1 mM NaCl selections. Higher dose of gamma irradiation (40 Gy) also showed regeneration, but only with 85.6 mM NaCI selection. The unirradiated calli regenerated the highest number of plantlets followed by 10 and 20 Gy irradiated calli on salt selection. A total of 147 plantlets were selected from different salt levels. The salt selected plants are being tested for their field performance.展开更多
Objective:To study callus induction from different explants(internode,leaf,root)and in vitro plantlets propagation from medicinally important plant Achyranthes aspera L.Methods:Sterilized explants were prepared by uni...Objective:To study callus induction from different explants(internode,leaf,root)and in vitro plantlets propagation from medicinally important plant Achyranthes aspera L.Methods:Sterilized explants were prepared by uning 0.1%HgCl_2 and 0.5%Bavistin and callus was obtained when cultured onto Murashige Skoog's(MS)medium by using different concentrations and combination of 2,4-D.NAA.BAP,IAA,IBA with 3%sucrose and 0.8%agar.Induced callus was immediately transferred to MS medium containing at different concentrations of phytohormones for shootlets and rootlets induction respectively.Results:Sterilization treatment of 0.1%HgCl_2.for 2-3 min and Bavistin 0.5%for 10-12 min showed the highest percentage of asepsis and survival rate.Maximum induction of callus was obtained from a combination of 2.0 mg/L 2,4-D and 0.5 mg/L NAA from leaf.Highest shootlets number(4.83±0.l7)and length(3.8±0.16)cm were observed on full strength MS medium when fortified with BAP 4.0 mg/L and KIN 0.5 mg/L.Concerted efforts of BAP 10 mg/L and NAA 0.5 mg/L on full strength MS medium showed highest leaf number(6.77±0.94).In vitro raised shoots were allowed to root on different strengths of MS medium fortified with IAA and IBA at different concentrations.Experimentally,3.0 mg/L IBA was enabled to induce maximum rootlets number(10.0±9.82)on full strength MS medium.Afterwards,regenerated shoots with well developed roots were successfully subjected to hardening process and were acclimatized.The survived plantlets showed 66.67%survival frequency without any morphological abnormality.Conclusions:The results demonstrated that different explants were good source of callus induction,morphology analysis as well as indirect plantlets regeneration.展开更多
基金partially supported by the United States Department of Agriculture National Institute of Food and Agriculture Hatch Grant (Project No.OHO01304)。
文摘Background The primary differentially methylated regions(DMRs) which are maternally hypermethylated serve as imprinting control regions(ICRs) that drive monoallelic gene expression, and these ICRs have been investigated due to their implications in mammalian development. Although a subset of genes has been identified as imprinted, in-depth comparative approach needs to be developed for identification of species-specific imprinted genes. Here, we examined DNA methylation status and allelic expression at the KBTBD6 locus across species and tissues and explored potential mechanisms of imprinting.Results Using whole-genome bisulfite sequencing and RNA-sequencing on parthenogenetic and normal porcine embryos, we identified a maternally hypermethylated DMR between the embryos at the KBTBD6 promoter Cp G island and paternal monoallelic expression of KBTBD6. Also, in analyzed domesticated mammals but not in humans, non-human primates and mice, the KBTBD6 promoter Cp G islands were methylated in oocytes and/or allelically methyl-ated in tissues, and monoallelic KBTBD6 expression was observed, indicating livestock-specific imprinting. Further analysis revealed that these Cp G islands were embedded within transcripts in porcine and bovine oocytes which coexisted with an active transcription mark and DNA methylation, implying the presence of transcription-dependent imprinting.Conclusions In this study, our comparative approach revealed an imprinted expression of the KBTBD6 gene in domesticated mammals, but not in humans, non-human primates, and mice which implicates species-specific evolution of genomic imprinting.
基金supported by the National Natural Science Foundation of China(32271413 and 32271408)the National Basic Research Program of China(2021YFA1201404)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20232023)the Science Program of Jiangsu Province Administration for Market Regulation(KJ2024010)the Jiangsu Provincial Key Medical Center Foundation,and the Jiangsu Provincial Medical Outstanding Talent Foundation.
文摘Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.
文摘The impact of epigenetic modifications like DNA methylation on plant phenotypes has expanded the possibilities for crop development.DNA methylation plays a part in the regulation of both the chromatin structure and gene expression,and the enzyme involved,DNA methyltransferase,executes the methylation process within the plant genome.By regulating crucial biological pathways,epigenetic changes actively contribute to the creation of the phenotype.Therefore,epigenome editing may assist in overcoming some of the drawbacks of genome editing,which can have minor off-target consequences and merely facilitate the loss of a gene’s function.These drawbacks include gene knockout,which can have such off-target effects.This review provides examples of several molecular characteristics of DNA methylation,as well as some plant physiological processes that are impacted by these epigenetic changes in the plants.We also discuss how DNA alterations might be used to improve crops and meet the demands of sustainable and environmentally-friendly farming.
基金supported by the National Natural Science Foundation of China(82072432)the China-Japan Friendship Hospital Horizontal Project/Spontaneous Research Funding(2022-HX-JC-7)+1 种基金the National High Level Hospital Clinical Research Funding(2022-NHLHCRF-PY-20)the Elite Medical Professionals project of China-Japan Friendship Hospital(ZRJY2021-GG12).
文摘Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affecting locomotion ability and life quality.Consequently,good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA.Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging.Herein,we review the fluorescent probes developed for the detection and imaging of RA biomarkers,namely reactive oxygen/nitrogen species(hypochlorous acid,peroxynitrite,hydroxyl radical,nitroxyl),pH,and cysteine,and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies.
基金Defence Research and Development Establishment,Defence Research and Development Organization,Ministry of Defence,Gwalior
文摘Bioterrorism has received a lot of attention in the first decade of this century. Biological agents are considered attractive weapons for bioterrorism as these are easy to obtain, comparatively inexpensive to produce and exhibit widespread fear and panic than the actual potential of physical damage. Bacillus anthracis(B. anthracis), the etiologic agent of anthrax is a Gram positive, spore forming, non-motile bacterium. This is supposed to be one of the most potent BW agents because its spores are extremely resistant to natural conditions and can survive for several decades in the environment. B.anthracis spores enter the body through skin lesion(cutaneous anthrax), lungs(pulmonary anthrax), or gastrointestinal route(gastrointestinal anthrax) and germinate, giving rise to the vegetative form. Anthrax is a concern of public health also in many countries where agriculture is the main source of income including India. Anthrax has been associated with human history for a very long time and regained its popularity after Sept 2001 incidence in United States. The present review article describes the history, biology, life cycle, pathogenicity, virulence, epidemiology and potential of B. anthracis as biological weapon.
基金financial support for the completion of this work
文摘Objective:To investigate the antibacterial aclivily of marine actinobacteria against multidrug resistance Staphylococcus aureus(MDRSA).Methods:Fifty one actinobacterial strains were isolated from salt pans soil,costal area in Kothapattanam,Ongole,Andhra Pradesh.Primary screening was done using cross-streak method against MDRSA.The bioaclive compounds are extracted from efficient actinobacteria using solvent extraction.The antimicrobial activity of crude and solvent extracts was perfomied using Kirby-Bauer method.MIC for ethyl acetate extract was determined by modified agar well diffusion method.The potent actinobacteria are identified using Nonomura key,Shirling and Gottlieb 1966 with Bergey's manual of determinative bacteriology.Results:Among the fifty one isolates screened for antibacterial activity,SRB25were found efficient against MDRSA.The ethyl acetate extracts showed high inhibition against test organism.MIC test was performed with the ethyl acetate extract against MDRSA and found to be 1 000μg/mL.The isolaled actinobacteria are identified as Streptomyces sp with the help of Nonomura key.Conclusions:The current investigation reveals that the marine actinobacteria from salt pan environment can be able to produce new drug molecules against drug resistant microorganisms.
基金Supported by Council of Scientific and Industrial Research,India(CSIR)-INDEPTH and HUM projects
文摘The process of carcinogenesis is tightly regulated by antioxidant enzymes and matrix degrading enzymes, namely, matrix metalloproteinases(MMPs). Degradation of extracellular matrix(ECM) proteins like collagen, proteoglycan, laminin, elastin and fibronectin is considered to be the prerequisite for tumor invasion and metastasis. MMPs can degrade essentially all of the ECM components and, most MMPs also substantially contribute to angiogenesis, differentiation, proliferation and apoptosis. Hence, MMPs are important regulators of tumor growth both at the primary site and in distant metastases; thus the enzymes are considered as important targets for cancer therapy. The implications of MMPs in cancers are no longer mysterious; however, the mechanism of action is yet to be explained. Herein, our major interest is to clarify how MMPs are tied up with gastrointestinal cancers. Gastrointestinal cancer is a variety of cancer types, including the cancers of gastrointestinal tract and organs, i.e., esophagus, stomach, biliary system, pancreas, small intestine, large intestine, rectum and anus. The activity of MMPs is regulated by its endogenous inhibitor tissue inhibitor of metallopro-teinase(TIMP) which bind MMPs with a 1:1 stoichiometry. In addition, RECK(reversion including cysteinerich protein with kazal motifs) is a membrane bound glycoprotein that inhibits MMP-2,-9 and-14. Moreover, α2-macroglobulin mediates the uptake of several MMPs thereby inhibit their activity. Cancerous conditions increase intrinsic reactive oxygen species(ROS) through mitochondrial dysfunction leading to altered protease/anti-protease balance. ROS, an index of oxidative stress is also involved in tumorigenesis by activation of different MAP kinase pathways including MMP induction. Oxidative stress is involved in cancer by changing the activity and expression of regulatory proteins especially MMPs. Epidemiological studies have shown that high intake of fruits that rich in antioxidants is associated with a lower cancer incidence. Evidence indicates that some antioxidants inhibit the growth of malignant cells by inducing apoptosis and inhibiting the activity of MMPs. This review is discussed in six subchapters, as follows.
基金Supported by the funding under the Science and Engineering Research Council(SERC)Scheme(SR/FTP/CS-63/2007)from Department of Science and Technology.New Delhi.India
文摘Objective:To evaluate the antioxidant activities and total phenolic contents of brown seaweeds belonging to Turbinaria spp.[Turbinaria conoides(T.conoides)and Turbinaria ornata(T.ornata)collected from Gulf of Mannar of southeastern coast of India in various in vitro systems.Methods:The antioxidant activity was evaluated using different in vitro systems,viz.,I,I-diphenyl-2-picrylhydrazyl(DPPH),2,2'-azino-bis-3 ethylbenzothiozoline-6-sulfonic acid diammonium salt(ABTS),H_20_2/H0 radical scavenging,Fe^(2+)ion chelating ability,and reducing potential.Folin-Ciocalteu method was used to determine the total phenolic content of the extracts,and the results were expressed as mg of gallic acid equivalents(GE)/g of the seaweed extracts.Thiobarbituric acid-reactive substances assay was employed to assess the ability of the seaweed extracts to inhibit lipid oxidation.Results:Ethyl acetate(EtOAc)fraction of T.conoides registered significantly higher phenolic content(105.97 mg GE/g)than that of T.ornata(69.63 mg GE/g).Significantly higher antioxidant potential as determined by DPPH(64.14%)radical scavenging activity was registered in EtOAc fraction of T.ornata.A higher ABTS(?)radical scavenging(IC_(50)3.16μg/mL),Fe^(2+)chelating(IC_(50)0.46 mg/mL),H_2O_2 scavenging(IC_(50)4.25 mg/mL),lipid peroxidation inhibitory(TBARS,IC_(50)0.21 mg/mL),and reducing abilities(IC_(50)52.67 mg/mL)(P<0.05)were realized in EtOAc fraction of T.ornata than other fractions.Conclusions:This study indicated the potential use of T.conoides and T.ornata as candidate species to be used as food supplements/functional foods to increase shelf-life of food items for human consumption,and nutraceuticals to deter deleterious free radical-induced life-threatening diseases.
基金Supported by Research Fellowship from Council of Scientific and Industrial Research,New Delhi,No.NBA2007 of DBT,IAP001 and CLP 261 of NTRF
文摘AIM: To examine the effect of doxycycline on the activity of matrix metalloproteinases (MMPs) and oxidative stress in gastric tissues of rats following gastric injury.METHODS: Gastric ulcers were generated in rats by administration of 70% ethanol,and activity of doxycycline was tested by administration 30 min prior to ethanol.Similarly,the effect of doxycycline was tested in an indomethacin-induced gastric ulcer model.The activities and expression of MMPs were examined by zymography and Western blot analysis.RESULTS: Gastric injury in rats as judged by elevated ulcer indices following exposure to ulcerogen,either indomethacin or ethanol,was reversed significantly by doxycycline.Indomethacin-induced ulcerated gastric tissues exhibited about 12-fold higher proMMP-9 activity and about 5-fold higher proMMP-3 activity as compared to control tissues.Similarly,ethanol induced about 22-fold and about 6-fold higher proMMP-9 and proMMP-3 activities,respectively,in rat gastric tissues.Both proMMP-9 and MMP-3 activities were markedly decreased by doxycycline in ulcerogen treated rat gastric tissues.In contrast,the reduced MMP-2 activity in ulcerated tissues was increased by doxycycline during ulcer prevention.On the other hand,doxycycline inhibited significantly proMMP-9,-2 and -3 activities in vitro.In addition,doxycycline reduced oxidative load in gastric tissues and scavenged H2O2 in vitro.Our results suggest a novel regulatory role of doxycycline on MMP-2 activity in addition to inhibitory action on MMP-9 and MMP-3 during prevention of gastric ulcers.CONCLUSION: This is the first demonstration of dual action of doxycycline,that is,regulation of MMP activity and reduction of oxidative stress in arresting gastric injury.
基金supported by the National Natural Science Foundation of China(Grant Nos.31221004 and 31271700)National Basic Research Program of China(Grant No.2013CBA01405)the Chinese 863 Program(Grant No.2012AA10A302)
文摘Further improvement of rice productivity remains a challenge. Breeding is perceived as an important option to increase rice yield. However, the genetic progress of grain yield in most rice breeding programs was slow in the last decades. Although great progress in rice genomics and molecular biology has been achieved, the effect of such technological innovations on rice breeding is far small. Marker-assisted selection (MAS) for a few target quantitative trait loci (QTLs) has significant effects in improving qualitative traits, such as disease resistance. The success of MAS has therefore motivated breeders to identify and use major QTLs for yield and yield component traits. In this review, we summarized the recent methods in QTL identification, including novel statistical methods for linkage and association mapping, special population types, and whole-genome sequencing. We reviewed the successful application of marker-assisted gene introgression and gene pyramiding to improve grain yield and discussed the design of efficient MAS schemes to further increase the success rate of breeding programs. The use of well-characterized major QTLs through introgression and gene pyramiding is proven effective in improving grain yield, particularly yield under abiotic stress. Major QTLs that are stable across genetic background and growing environments are often found in less adapted germplasms, such as landraces and wild relatives. Advanced backcross QTL analysis and introgression lines, which integrate QTL discovery and utilization, are important methods for exploiting major QTLs contained in such germplasms. Next-generation sequencing substantially increases mapping resolution and accelerates the identification of casual genes underlying major QTLs. Practical guidelines derived from theoretical and empirical studies are given to guide the design of efficient marker-assisted gene introgression and pyramiding schemes.
基金Supported by Science and Technology Development Fund(STDFgrants No.1469 and No.5245)Tanta University Fund,Egypt to Mohamed L Salem,the Principal investigator of these projects
文摘Chronic hepatitis C virus(HCV) infection is a public health issue that often progresses to life-threatening complications, including liver cirrhosis, fibrosis, and hepatocellular carcinoma. Impaired immune responses to HCV are key features of chronic HCV infection. Therefore, intervention strategies usually involve enhancing the immune responses against HCV. Cytotoxic CD8+ T lymphocytes(CTLs) play a critical role in the control of HCV infection. However, their cytolytic function can be impaired by the expression of co-inhibitory molecules. Programmed death-1(PD-1) receptor and its ligand PD-L1 function in a T cell co-inhibitory pathway, which either blocks the function of CTLs or the differentiation of CD8+ T cells. During chronic HCV infection, the immune inhibitory receptor PD-1 is upregulated on dysfunctional HCV-specific CD8+ T cells. As such, blockade of the PD-1/PD-L1 pathway in these CD8+ T cells might restore their functional capabilities. Indeed, clinical trials using therapies to block this pathway have shown promise in the fostering of anti-HCV immunity. Understanding how chronic HCV infection induces upregulation of PD-1 on HCV specific T cells and how the PD-1/PD-L1 interaction develops HCV specific T cell dysfunction will accelerate the development of an efficacious prophylactic and therapeutic vaccination against chronic HCV infections, which will significantly improve HCV treatments and patient survival. In this review, we discuss the relationship between PD-1 expression and clinical responses and the potential use of PD-1 blockade for anti-HCV therapy.
基金Supported by Higher Education Commission of Pakistanthrough Grant No.20-2056 to Iqbal M
文摘Hepatitis C virus(HCV) is endemic in Pakistan and its burden is expected to increase in coming decades owing mainly to widespread use of unsafe medical procedures. The prevalence of HCV in Pakistan has previously been reviewed. However, the literature search conducted here revealed that at least 86 relevant studies have been produced since the publication of these systematic reviews. A revised updated analysis was therefore needed in order to integrate the fresh data. A systematic review of data published between 2010 and 2015 showed that HCV seroprevalence among the general adult Pakistani population is 6.8%, while active HCV infection was found in approximately 6% of the population. Studies included in this review have also shown extremely high HCV prevalence in rural and underdeveloped peri-urban areas(up to 25%), highlighting the need for an increased focus on this previously neglected socioeconomic stratum of the population. While a 2.45% seroprevalence among blood donors demands immediate measures to curtail the risk of transfusion transmitted HCV, a very high prevalence in patients attending hospitals with various non-liver disease related complaints(up to 30%) suggests a rise in the incidence of nosocomial HCV spread. HCV genotype 3a continues to be the most prevalent subtype infecting people in Pakistan(61.3%). However, recent years have witnessed an increase in the frequency of subtype 2a in certain geographical sub-regions within Pakistan. In Khyber Pakhtunkhwa and Sindh provinces, 2a was the second most prevalent genotype(17.3% and 11.3% respectively). While the changing frequency distribution of various genotypes demands an increased emphasis on research for novel therapeutic regimens, evidence of high nosocomial transmission calls for immediate measures aimed at ensuring safe medical practices.
文摘Objective Many studies have been conducted in order to evaluate the genotoxicity of chemicals and waste materials, which utilized in vivo test protocols. The use of animals for routine toxicity testing is now questioned by a growing segment of society. Methods Keeping the above fact in mind, we have conducted in the present study the genotoxicity evaluation of oily sludge samples generated from a petroleum refinery and petrochemical industry and ETP sludge from petroleum refinery using DNA damage, chromosomal aberration, p53 protein induction and apoptosis in short term in vitro mammalian Chinese Hamster Ovary cell cultures. Results It is evident from the results that the oily sludge compounds derived from petroleum refinery and petrochemical industry could cause DNA damage, chromosomal aberration, p53 protein accumulation and apoptotic cell death on exposure to oily sludge extracts in the presence of metabolic activation system (S-9 mix), however, ETP sludge extract could not cause significant genotoxicity in comparison to oily sludge extract and negative control. Conclusion The effect may be attributed to polycyclic aromatic hydrocarbons present in the samples as evidenced from GC-MS.
基金ASPEE Agricultural Research and Development Foundation,Malad,Mumbai,India,for research fellowship during the PG course
文摘Radiation induced mutagenesis followed by in vitro selection was employed for salt tolerance in popular Indian sugarcane (Saccharum officinarum L.) cv. CoC-671. Embryogenic calli were gamma irradiated and exposed to different levels of NaCl (42.8, 85.6, 128.3, 171.1,213.9, 256.7, 299.5, or 342.2 mM). The relative growth rate (RGR) decreased progressively with increasing salt stress and was the least with a salt stress of 256.7 mM (0.25±0.009), almost 10 fold lesser than the control. The RGR was significantly lower in 85.6 mM and higher salt stressed calli than the control. The survival percent also decreased, with an increase in NaCl concentration. In case of 10 and 20 Gy irradiated calli, regeneration was observed up to 85.6 mM NaCl selection, medium, whereas, higher treatments (128.3 mM and beyond) exhibited browning initially. However, in the subsequent subcultures, regeneration was obtained in the case of 10 and 20 Gy irradiated calli on 128.3 and 171.1 mM NaCl selections. Higher dose of gamma irradiation (40 Gy) also showed regeneration, but only with 85.6 mM NaCI selection. The unirradiated calli regenerated the highest number of plantlets followed by 10 and 20 Gy irradiated calli on salt selection. A total of 147 plantlets were selected from different salt levels. The salt selected plants are being tested for their field performance.
基金Supported by Islamic University.Kushtia-7003.Bangladesh(Grant No.IUBT-1108)
文摘Objective:To study callus induction from different explants(internode,leaf,root)and in vitro plantlets propagation from medicinally important plant Achyranthes aspera L.Methods:Sterilized explants were prepared by uning 0.1%HgCl_2 and 0.5%Bavistin and callus was obtained when cultured onto Murashige Skoog's(MS)medium by using different concentrations and combination of 2,4-D.NAA.BAP,IAA,IBA with 3%sucrose and 0.8%agar.Induced callus was immediately transferred to MS medium containing at different concentrations of phytohormones for shootlets and rootlets induction respectively.Results:Sterilization treatment of 0.1%HgCl_2.for 2-3 min and Bavistin 0.5%for 10-12 min showed the highest percentage of asepsis and survival rate.Maximum induction of callus was obtained from a combination of 2.0 mg/L 2,4-D and 0.5 mg/L NAA from leaf.Highest shootlets number(4.83±0.l7)and length(3.8±0.16)cm were observed on full strength MS medium when fortified with BAP 4.0 mg/L and KIN 0.5 mg/L.Concerted efforts of BAP 10 mg/L and NAA 0.5 mg/L on full strength MS medium showed highest leaf number(6.77±0.94).In vitro raised shoots were allowed to root on different strengths of MS medium fortified with IAA and IBA at different concentrations.Experimentally,3.0 mg/L IBA was enabled to induce maximum rootlets number(10.0±9.82)on full strength MS medium.Afterwards,regenerated shoots with well developed roots were successfully subjected to hardening process and were acclimatized.The survived plantlets showed 66.67%survival frequency without any morphological abnormality.Conclusions:The results demonstrated that different explants were good source of callus induction,morphology analysis as well as indirect plantlets regeneration.