期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
COMTIS:Customizable touchless interaction system for large screen visualization 被引量:1
1
作者 Jiaxin LIU Hongxin ZHANG Chuankang LI 《Virtual Reality & Intelligent Hardware》 2020年第2期162-174,共13页
Background Large screen visualization sys tems have been widely utilized in many industries.Such systems can help illustrate the working states of different production systems.However,efficient interaction with such s... Background Large screen visualization sys tems have been widely utilized in many industries.Such systems can help illustrate the working states of different production systems.However,efficient interaction with such systems is still a focus of related research.Methods In this paper,we propose a touchless interaction system based on RGB-D camera using a novel bone-length constraining method.The proposed method optimizes the joint data collected from RGB-D cameras with more accurate and more stable results on very noisy data.The user can customize the system by modifying the finite-state machine in the system and reuse the gestures in multiple scenarios,reducing the number of gestures that need to be designed and memorized.Results/Conclusions The authors tested the system in two cases.In the first case,we illustrated a process in which we improved the gesture designs on our system and tested the system through user study.In the second case,we utilized the system in the mining industry and conducted a user study,where users say that they think the system is easy to use. 展开更多
关键词 Human computer interaction RGB-D camera Touchless interaction Gesture recognition
下载PDF
End-to-end spatial transform face detection and recognition
2
作者 Hongxin ZHANG Liying CHI 《Virtual Reality & Intelligent Hardware》 2020年第2期119-131,共13页
Background Several face detection and recogni tion methods have been proposed in the past decades that have excellent performance.The conventional face recognition pipeline comprises the following:(1)face detection,(2... Background Several face detection and recogni tion methods have been proposed in the past decades that have excellent performance.The conventional face recognition pipeline comprises the following:(1)face detection,(2)face alignment,(3)feature extraction,and(4)similarity,which are independent of each other.The separate facial analysis stages lead to redundant model calculations,and are difficult for use in end-to-end training.Methods In this paper,we propose a novel end-to-end trainable convolutional network framework for face detection and recognition,in which a geometric transformation matrix is directly learned to align the faces rather than predicting the facial landmarks.In the training stage,our single CNN model is supervised only by face bounding boxes and personal identities,which are publicly available from WIDER FACE and CASIA-WebFace datasets.Our model is tested on Face Detection Dataset and Benchmark(FDDB)and Labeled Face in the Wild(LFW)datasets.Results The results show 89.24%recall for face detection tasks and 98.63%accura cy for face recognition tasks. 展开更多
关键词 Face detection Face recognition Spatial transform Feature fusion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部