Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and ...Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration.展开更多
It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicti...It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.展开更多
The eastern main sub-sag(E-MSS)of the Baiyun Sag was the main zone for gas exploration in the deep-water area of the Zhujiang River(Pearl River)Mouth Basin at its early exploration stage,but the main goal of searching...The eastern main sub-sag(E-MSS)of the Baiyun Sag was the main zone for gas exploration in the deep-water area of the Zhujiang River(Pearl River)Mouth Basin at its early exploration stage,but the main goal of searching gas in this area was broken through by the successful exploration of the W3-2 and H34B volatile oil reservoirs,which provides a new insight for exploration of the Paleogene oil reservoirs in the E-MSS.Nevertheless,it is not clear on the distribution of“gas accumulated in the upper layer,oil accumulated in the lower layer”(Gas_(upper)-Oil_(lower))under the high heat flow,different source-rock beds,multi-stages of oil and gas charge,and multi-fluid phases,and not yet a definite understanding of the genetic relationship and formation mechanism among volatile oil,light oil and condensate gas reservoirs,and the migration and sequential charge model of oil and gas.These puzzles directly lead to the lack of a clear direction for oil exploration and drilling zone in this area.In this work,the PVT fluid phase,the origin of crude oil and condensate,the secondary alteration of oil and gas reservoirs,the evolution sequence of oil and gas formation,the phase state of oil and gas migration,and the configuration of fault activity were analyzed,which established the migration and accumulation model of Gas_(upper)-Oil_(lower)cocontrolled by source and heat,and fractionation controlled by facies in the E-MSS.Meanwhile,the fractionation evolution model among common black reservoirs,volatile reservoirs,condensate reservoirs and gas reservoirs is discussed,which proposed that the distribution pattern of Gas_(upper)-Oil_(lower)in the E-MSS is controlled by the generation attribute of oil and gas from source rocks,the difference of thermal evolution,and the fractionation controlled by phases after mixing the oil and gas.Overall,we suggest that residual oil reservoirs should be found in the lower strata of the discovered gas reservoirs in the oil-source fault and diapir-developed areas,while volatile oil reservoirs should be found in the deeper strata near the sag with no oil-source fault area.展开更多
基金Supported by the CNOOC Major Technology Project During the 14th FIVE-YEAR PLAN PERIOD(KJGG2022-0403)CNOOC Major Technology Project(KJZH-2021-0003-00).
文摘Based on the practice of oil and gas exploration in the Huizhou Sag of the Pearl River Mouth Basin,the geochemical indexes of source rocks were measured,the reservoir development morphology was restored,the rocks and minerals were characterized microscopically,the measured trap sealing indexes were compared,the biomarker compounds of crude oil were extracted,the genesis of condensate gas was identified,and the reservoir-forming conditions were examined.On this basis,the Paleogene Enping Formation in the Huizhou 26 subsag was systematically analyzed for the potential of oil and gas resources,the development characteristics of large-scale high-quality conglomerate reservoirs,the trapping effectiveness of faults,the hydrocarbon migration and accumulation model,and the formation conditions and exploration targets of large-and medium-sized glutenite-rich oil and gas fields.The research results were obtained in four aspects.First,the Paleogene Wenchang Formation in the Huizhou 26 subsag develops extensive and thick high-quality source rocks of semi-deep to deep lacustrine subfacies,which have typical hydrocarbon expulsion characteristics of"great oil generation in the early stage and huge gas expulsion in the late stage",providing a sufficient material basis for hydrocarbon accumulation in the Enping Formation.Second,under the joint control of the steep slope zone and transition zone of the fault within the sag,the large-scale near-source glutenite reservoirs are highly heterogeneous,with the development scale dominated hierarchically by three factors(favorable facies zone,particle component,and microfracture).The(subaqueous)distributary channels near the fault system,with equal grains,a low mud content(<5%),and a high content of feldspar composition,are conducive to the development of sweet spot reservoirs.Third,the strike-slip pressurization trap covered by stable lake flooding mudstone is a necessary condition for oil and gas preservation,and the NE and nearly EW faults obliquely to the principal stress have the best control on traps.Fourth,the spatiotemporal configuration of high-quality source rocks,fault transport/sealing,and glutenite reservoirs controls the degree of hydrocarbon enrichment.From top to bottom,three hydrocarbon accumulation units,i.e.low-fill zone,transition zone,and high-fill zone,are recognized.The main area of the channel in the nearly pressurized source-connecting fault zone is favorable for large-scale hydrocarbon enrichment.The research results suggest a new direction for the exploration of large-scale glutenite-rich reservoirs in the Enping Formation of the Pearl River Mouth Basin,and present a major breakthrough in oil and gas exploration.
文摘It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.
基金The Major Science and Technology Project of China National Offshore Oil Corporation during the“14th Five-Year Plan”under contact No.KJGG2022-0103-03。
文摘The eastern main sub-sag(E-MSS)of the Baiyun Sag was the main zone for gas exploration in the deep-water area of the Zhujiang River(Pearl River)Mouth Basin at its early exploration stage,but the main goal of searching gas in this area was broken through by the successful exploration of the W3-2 and H34B volatile oil reservoirs,which provides a new insight for exploration of the Paleogene oil reservoirs in the E-MSS.Nevertheless,it is not clear on the distribution of“gas accumulated in the upper layer,oil accumulated in the lower layer”(Gas_(upper)-Oil_(lower))under the high heat flow,different source-rock beds,multi-stages of oil and gas charge,and multi-fluid phases,and not yet a definite understanding of the genetic relationship and formation mechanism among volatile oil,light oil and condensate gas reservoirs,and the migration and sequential charge model of oil and gas.These puzzles directly lead to the lack of a clear direction for oil exploration and drilling zone in this area.In this work,the PVT fluid phase,the origin of crude oil and condensate,the secondary alteration of oil and gas reservoirs,the evolution sequence of oil and gas formation,the phase state of oil and gas migration,and the configuration of fault activity were analyzed,which established the migration and accumulation model of Gas_(upper)-Oil_(lower)cocontrolled by source and heat,and fractionation controlled by facies in the E-MSS.Meanwhile,the fractionation evolution model among common black reservoirs,volatile reservoirs,condensate reservoirs and gas reservoirs is discussed,which proposed that the distribution pattern of Gas_(upper)-Oil_(lower)in the E-MSS is controlled by the generation attribute of oil and gas from source rocks,the difference of thermal evolution,and the fractionation controlled by phases after mixing the oil and gas.Overall,we suggest that residual oil reservoirs should be found in the lower strata of the discovered gas reservoirs in the oil-source fault and diapir-developed areas,while volatile oil reservoirs should be found in the deeper strata near the sag with no oil-source fault area.