Pelletization of hematite ore requires high fineness and very high induration temperature(~1325 ℃) owing to its poor diffusion bonding unlike magnetite ore. Further, high-alumina hematite pellets show very high red...Pelletization of hematite ore requires high fineness and very high induration temperature(~1325 ℃) owing to its poor diffusion bonding unlike magnetite ore. Further, high-alumina hematite pellets show very high reduction degradation index(RDI) during low temperature(500-650 ℃) reduction due to their volume expansion and lattice distortion. Noamundi(India) hematite ore contains very high Al2O3(2.3%) with adverse ratio of alumina to silica(~2) for which, it shows very high RDI. In this work, the acid pellets prepared from Noamundi ore fines of optimum Blaine fineness show good cold crushing strength(CCS). However, it shows very high RDI(77%). In order to reduce RDI, Mg O in form of two different gangue-containing fluxes, such as pyroxenite and olivine in varying quantities has been added. The optimum requirement and performance of these fluxes has been examined and compared. Both pyroxenite and olivine fluxed pellets show significant lowering of RDI(26% and 23%, respectively) and improvement of other properties, viz CCS, swelling indices etc with good reducibility(70%-77%). Finally, a good quality acidic hematite pellet was developed from high-alumina ore without using any lime which is very important charge material in combination of basic sinter in blast furnace.展开更多
Low grade dumped limestone sample having high silica of 8.1%, 36.8% CaO, and 3% Al2O3 has been studied with the aim to reduce the silica level to below 3% for its utilization in iron making. Beneficiation study of the...Low grade dumped limestone sample having high silica of 8.1%, 36.8% CaO, and 3% Al2O3 has been studied with the aim to reduce the silica level to below 3% for its utilization in iron making. Beneficiation study of the sample was initiated with desliming of the feed sample of -100 μm to remove the siliceous ultrafine particles and to improve the feed quality. Flotation study was carried out by column flotation technique varying the collector dosage, superficial air flow velocity and froth depth to assess their effect on silica reduction and CaO recovery. It was observed that increased collector dosage and superficial air velocity increases the recovery of CaO, and increase in the froth depth reduces the mass flow and silica content in the concentrate. The best result was found at 1.25 cm/sec superficial air velocity, 25 cm froth depth, 1.25 kgpt collector dosage and concentrate assayed 47.3% CaO, 2.8% silica with 72% CaO recovery.展开更多
Lump lime as a fiux material in a basic oxygen furnace (BOF) often creates problems in operation due to its high melting point, poor dissolution property, hygroscopic nature, and fines generation tendency. To allevi...Lump lime as a fiux material in a basic oxygen furnace (BOF) often creates problems in operation due to its high melting point, poor dissolution property, hygroscopic nature, and fines generation tendency. To alleviate these problems, fluxed lime iron oxide pellets (FLIP) containing 30% CaO were developed in this study using waste iron oxide fines and lime. The suitable handling strengths of the pellet (crushing strength: 300 N; drop strength: 130 times) of FLIP were developed by treating with CO2 or industrial waste gas at room temperature, while no separate binders were used. When the pellet was added into hot metal bath (carbon-containing molten iron), it was decomposed, melted, and transformed to produce low melting oxidizing slag, because it is a combination of main CaO and Fe2O3. This slag is suitable for facilitating P and C removal in refining. Furthermore, the pellet enhances waste utilization and use of CO2 in waste gas. In this article, emphasis is given on studying the behavior of these pellets in hot metal bath during melting and refining along with thermodynamics and kinetics analysis. The observed behaviors of the pellet in hot metal bath confirm that it is suitable and beneficial for use in BOF and replaces lump lime.展开更多
Beneficiation of non-coking coal is gaining ground in India. It not only reduces the volume of inert content to be transported to the power plant and also lowers the wear in the boiler houses. For special applications...Beneficiation of non-coking coal is gaining ground in India. It not only reduces the volume of inert content to be transported to the power plant and also lowers the wear in the boiler houses. For special applications such as the fuel for integrated gasification combined cycle plant (IGCC), the ash content in the coal should preferably be below 15 %. Indian coals are characterized by high inter-grown ash content mainly due to 'drift origin' of Gondwana formation in Permian age. This warrants fine grinding of non-coking coal in order to liberate the ash forming minerals from coal macerals. A non- coking coal sample of vitrinite type from India was ground to 44 ~tm (dso) and subjected to column flotation to improve its quality. The non-coking coal analyzing 34.6 % ash, 26.2 % volatile matter, 1.3 % moisture and 37.9 % fixed carbon could be upgraded to a concentrate/froth of 14.83 % ash at 72.18 % yield by optimizing collector and frother dosages and flotation column operating parameters, namely, froth depth, superficial feed velocity and superficial air velocity. The concentrate produced by this process is suitable as fuel for IGCC in coal-to-electricity route.展开更多
The present study confers to the fabrication and its characterization of magnesium alloy(AZ91E)based nano composites with nano Al_(2)O_(3) particulate reinforcements.A novel Semi Solid stir casting technique was adopt...The present study confers to the fabrication and its characterization of magnesium alloy(AZ91E)based nano composites with nano Al_(2)O_(3) particulate reinforcements.A novel Semi Solid stir casting technique was adopted for the fabrication of the composite.An average particle size of 50 nm was used as reinforcement to disperse in matrix.The effects of change in weight fraction of reinforcements on the distribution of particles,particle–matrix interfacial reactions,physical as well as mechanical properties were reported.The SEM and EDS analysis has shown the uniform distribution of particles in the composite along with the presence of elements.The mechanical properties of reinforced and unreinforced composite were evaluated and presented.Fractography of tensile specimens was also discussed.展开更多
A low grade graphite ore from eastern India was beneficiated by flotation to improve its quality. The ore was composed of 87.80%ash and 8.59%fixed carbon. Primary coarse wet grinding (d80:186 μm) followed by rough...A low grade graphite ore from eastern India was beneficiated by flotation to improve its quality. The ore was composed of 87.80%ash and 8.59%fixed carbon. Primary coarse wet grinding (d80:186 μm) followed by rougher flotation in Denver flotation cell using diesel as collector and pine oil as frother yielded a rougher concentrate. Regrinding (d80:144 μm) of this rougher concentrate was opted for further libera-tion of graphite. It was followed by cleaning in laboratory flotation column. This combined process of relatively coarse primary grinding followed by regrinding and cleaning in flotation column resulted in final concentrate of 7.44% yield with 89.65% fixed carbon and 6.00% ash. This approach of two-stage grinding to recover the flake graphite at the coarsest possible grind can help to minimize grinding energy costs. A conceptual flow sheet which is cost effective was developed based on this methodology.展开更多
The aim of this investigation is to establish a structure-property correlation of Mg-8%Sn alloys aged at different time interval.The alloy under the present investigation was aged at elevated(200℃)temperature for var...The aim of this investigation is to establish a structure-property correlation of Mg-8%Sn alloys aged at different time interval.The alloy under the present investigation was aged at elevated(200℃)temperature for various holding period.Differently aged alloys show retention of intermetallic phases after ageing,but in different area fraction of the same with ageing time.Mechanical properties evaluation and corresponding microstructural characterizations were performed to correlate their strength and ductility properties with their microstructural features(i.e.,grain size,grain connectivity and the area fraction of intermetallic phases).展开更多
A low-grade ore containing ~0.3% Cu, remains unutilized for want of a viable process at Malanjkhand Copper Project (MCP), India in which copper is present as chalcopyrite associated with pyrite in quartz veins and gra...A low-grade ore containing ~0.3% Cu, remains unutilized for want of a viable process at Malanjkhand Copper Project (MCP), India in which copper is present as chalcopyrite associated with pyrite in quartz veins and granitic rocks. In order to extract copper from this material, bioleaching has been attempted on bench scale using Acidithiobacillus fer-rooxidans (A. ferrooxidans) isolated from the native mine water. The enriched culture containing A. ferrooxidans when adapted to the ore and employed for the bioleaching at 5% (w/v) pulp density, pH 2.0 and 25°C with three particle sizes viz.150 -76 μm, 76 - 50 μm and SCE) from 530 to 654 mV in 35 days. Under similar conditions, the unadapted strains gave a recovery of 44.0% for SCE from 525 to 650 mV. On using unadapted bacte-rial culture directly in shake flask at pH 2.0 and 35°C temperature and 5% (w/v) pulp density (PD) for 9 cells/mL in 35 days. The higher bio-recovery of copper with the adapted bacterial culture may be attributed to the improved iron oxidation (Fe2+ to Fe3+) exhibiting higher ESCE as compared to that of unadapted strains.展开更多
Nano-sized reinforcements improved the mechanical characteristics efficiently by promoting more implicit particle hardening mechanisms compared to micron-sized reinforcements.Nano-sized particles lessen the critical p...Nano-sized reinforcements improved the mechanical characteristics efficiently by promoting more implicit particle hardening mechanisms compared to micron-sized reinforcements.Nano-sized particles lessen the critical particle solidification velocity for swamp and thus offers better dispersal.In the present investigation,the friction stir processing(FSP)is utilized to produce AZ31/Al_(2)O_(3)nanocomposites at various tool rotation speeds(i.e.,900,1200,and 1500 rpm)with an optimized 1.5%volume alumina(Al_(2)O_(3))reinforcement ratio.The mechanical and corrosion behavior of AZ31/Al_(2)O_(3)-developed nanocomposites was investigated and compared with that of the AZ31 base alloy.The AZ31 alloy experienced a comprehensive dynamic recrystallization during FSP,causing substantial grain refinement.Grain-size strengthening is the primary factor contributed to the enhancement in the strength of the fabricated nanocomposite.Tensile strength and yield strength values were lower than those for the base metal matrix,although an upward trend in both values has been observed with an increase in tool rotation speed.An 19.72%increase in hardness along with superior corrosion resistance was achieved compared to the base alloy at a tool rotational speed of 1500 rpm.The corrosion currents(Jcorr)of all samples dropped with increase in the rotational speed,in contrast to the corrosion potentials(Ecorr),which increased.The values of Jcorr of AZ31/Al_(2)O_(3)were 42.3%,56.8%,and 65.5%lower than those of AZ31 alloy at the chosen rotating speeds of 900,1200,and 1500 rpm,respectively.The corrosion behavior of friction stir processed nanocomposites have been addressed in this manuscript which has not been given sufficient attention in the existing literature.Further,this work offers an effective choice for the quality assurance of the FSP process of AZ31/Al_(2)O_(3)nanocomposites.The obtained results are relevant to the development of lightweight automobile and aerospace structures and components.展开更多
High ash thermal coal from India was used to conduct the dry processing of fine coal using a pneumatic table to evolve a techno-economically novel technique. The fine as-received sample having 55.2g ash was subjected ...High ash thermal coal from India was used to conduct the dry processing of fine coal using a pneumatic table to evolve a techno-economically novel technique. The fine as-received sample having 55.2g ash was subjected to washability studies at variant densities from 1.4 to 2.2 to assess the amenability to separa- tion. The experiments were conducted using a central composite design for assessing the interactive effects of the variable parameters of a pneumatic table on the product yield and ash content. The performance of the pneumatic table was analyzed in terms of clean coal yield, recovery of combustibles, separation efficiency (Esp) and useful heat value of clean coal. The combustibles of clean coal obtained through a single stage operation at 35% and 38.7% ash were 40% and 63% respectively. However, the two stage processing was more effective in reducing the ash content in the clean coal. The rougher concentrate generated at higher ash level was subsequently processed in different conditions at 35% ash level, and 58g combustibles could be recovered. Hence, two stage processing increases the combustibles by 18 units and the useful heat value of clean coal increases from 1190 kcal/kg to 3750 kcal/kg.展开更多
A large volume of overburden and mine wastes is generated during the extraction and beneficiation of the low grade ores. The waste low grade manganiferous iron ore fine from southern part of India was studied for reco...A large volume of overburden and mine wastes is generated during the extraction and beneficiation of the low grade ores. The waste low grade manganiferous iron ore fine from southern part of India was studied for recovery of iron values. The chemical assay of the sample is 52.36% Fe, 4.75% Mn, 8.5% SiO2 and 2.82% Al2O3. The characterization study of the sample indicates the presence of microplaty hematite, goethite, pyrolusite, cryptomelane with minor amount of quartz and kaolinite. The beneficiation study of the sample does not respond to the conventional route of desliming the ground feed followed by gravity separation and magnetic separation. Therefore, an alternative technique of reduction roasting using a producer gas was attempted at different conditions. The characterization of roasted product reveals the phase transformation to magnetite and microplaty magnetite. The low intensity magnetic separation conducted with the roasted products generated at optimal condition shows that 70% concentrate having 64.5% Fe and 1.87% Mn could be produced. The high manganese in the concentrate works as an additive for making pellet with enhancement in pellet strength and drop in reducibility. Utilization of mines waste has significant impact on mineral resources and environmental hazard.展开更多
This kinetic study focuses on determining the thermal gravimetric profile of a particular grade of Indian sub-bituminous coal. A thermogravimetric analyzer (TGA-1000) was employed to investigate the thermal behavior a...This kinetic study focuses on determining the thermal gravimetric profile of a particular grade of Indian sub-bituminous coal. A thermogravimetric analyzer (TGA-1000) was employed to investigate the thermal behavior and extract the kinetic parameters of Jamadoba coal and its corresponding density sepa<span style="font-family:Verdana;color:#000000;">rated macerals. The weight loss was measured in air atmosphere. The coal </span><span style="font-family:Verdana;color:#000000;">samples used in this study were obtained from Jamadoba mines, Jharkhand. Sam</span><span style="font-family:Verdana;color:#000000;">ples of 35 mg and 200 μm mean size were subjected to synthetic air atmos</span><span style="font-family:Verdana;color:#000000;">pheres (21% O</span><sub><span style="font-family:Verdana;color:#000000;">2</span></sub><span style="font-family:Verdana;color:#000000;">). Heating rates of 2, 5 and 7</span><span style="font-family:;" "=""><span style="color:#000000;font-family:Verdana;">°</span><span style="font-family:Verdana;color:#000000;"></span><span><span style="font-family:Verdana;color:#000000;">C/min were applied until the tempera</span><span style="font-family:Verdana;color:#000000;">ture reached 1400</span></span><span><span style="color:#000000;font-family:Verdana;">°</span><span style="font-family:Verdana;color:#000000;">C, which was kept constant until burnout. Low heating</span></span><span><span style="font-family:Verdana;color:#000000;"> rate was preferred so that devolatilization occurs prior to ignition and </span><span style="font-family:Verdana;color:#000000;">combust</span><span style="font-family:Verdana;color:#000000;">ion. Derivative thermogravimetry (DTG) analysis method was applied to </span><span style="font-family:Verdana;color:#000000;">measure the weight changes and rates of weight loss used for calculating the kinetic parameters. The activation energy (</span><i><span style="font-family:Verdana;color:#000000;">E</span><sub><span style="font-family:Verdana;color:#000000;">a</span></sub></i><span style="font-family:Verdana;color:#000000;">) and pre-exponential factor were obtained </span><span style="font-family:Verdana;color:#000000;">from model-free methods by applying non-isothermal thermogravimetry</span><span style="font-family:Verdana;color:#000000;"> analysis.</span></span></span>展开更多
The effect of mineralogy and texture on the beneficiation of goethitic ores from two different origins is highlighted. Sample A having 54.47% Fe with 8.57% loss of ignition (LOl) indicates the presence of vitreous a...The effect of mineralogy and texture on the beneficiation of goethitic ores from two different origins is highlighted. Sample A having 54.47% Fe with 8.57% loss of ignition (LOl) indicates the presence of vitreous and ochreous goethite, martite and microplaty hematite as the major minerals. Sample B contains 56.90% Fe with 14.4% LOI. There is a pisolithic laterite containing vitreous and ochreous goethite, quartz, kaolinitic clay and there is no hematite mineral. The liberated minerals in -150 + 100 μm size class are 74% for Sample A and 37% only for Sample B which shows that the Sample A appears to be more amenable to beneficiate. A concentrate of 46.7% with 63.22% Fe could be recovered from Sample A while subjected to gravity separation followed by wet magnetic separation. The Sample B does not respond to gravity and magnetic separation due to its complex mineralogy. However, calcination of the Sample B followed by magnetic separation gives the encouraging results. Thus, anomalous behaviour of the goethite dominated ores in beneficiation is attributed to the different textural and liberation characteristic.展开更多
The extraction of chromium(III) from a model waste solution and also from a waste solution of an Indian tannery with Amberlite IR 120 resin is described, and the performance of this resin is compared with other simila...The extraction of chromium(III) from a model waste solution and also from a waste solution of an Indian tannery with Amberlite IR 120 resin is described, and the performance of this resin is compared with other similar resins. The parameters that were optimized include effect of mixing time, pH, loading and elution behaviours of chromium(III) for this resin. Sorption of chromium(III) on Amberlite IR 120 followed Freundlich isotherm and Langmuir isotherm model, and the maximum sorption capacity was determined to be 142.86 mg Cr(III)/g of the resin. Higher Freundlich constant (Kf) values (6.30 and 13.46 for aqueous feed of 500 and 1000 ppm Cr(III)) indicated strong chemical interaction through ion exchange mechanism of the metal ion with the resin. The kinetic data showed good fit to the Lagergren first order model for extraction of chromium(III). Desorption of chromium(III) from the loaded resin increased with the increase in concentration of eluent (5-20% H2SO4). With 20% (v/v) sulphuric acid solution 94% chromium(III) was eluted in three stages. Elution of the Cr(III) in the column experiments was however, found to be lower (82%) than that of the shake flask data. In case of Indian tannery’s waste solution, it was observed that almost total chromium was extracted in four stages with Amberlite IR 120.展开更多
The Linz-Donawitz(LD) steelmaking process produces LD slag at a rate of about 125 kg/t. After metallic scrap recovery, the non-metallic LD slag is rejected because its physical/chemical properties are unsuitable for...The Linz-Donawitz(LD) steelmaking process produces LD slag at a rate of about 125 kg/t. After metallic scrap recovery, the non-metallic LD slag is rejected because its physical/chemical properties are unsuitable for recycling. X-ray diffraction(XRD) studies have indicated that non-metallic LD slag contains a substantial quantity of mineral phases such as di- and tricalcium silicates. The availability of these mineral phases indicates that LD slag can be recycled by iron(Fe)-ore sintering. However, the presence of 1.2wt% phosphorus(P) in the slag renders the material unsuitable for sintering operations. Electron probe microscopic analysis(EPMA) studies indicated concentration of phosphorus in dicalcium silicate phase as calcium phosphate. The Fe-bearing phases(i.e., wustite and dicalcium ferrite) showed comparatively lower concentrations of P compared with other phases in the slag. Attempts were made to lower the P content of LD slag by adopting various beneficiation techniques. Dry high-intensity magnetic separation and jigging were performed on as-received samples with particle sizes of 6 and 3 mm. Spiral separation was conducted using samples ground to sizes of less than 1 and 0.5 mm. Among these studies, grinding to 0.5 mm followed by spiral concentration demonstrated the best results, yielding a concentrate with about 0.75wt% P and 45wt% Fe.展开更多
Synthesis of functional iron oxide nanoparticles, well dispersed in aqueous fluids still remains a challenge as its stability requires a delicate balance between electrostatic and magnetic interactions. Templated synt...Synthesis of functional iron oxide nanoparticles, well dispersed in aqueous fluids still remains a challenge as its stability requires a delicate balance between electrostatic and magnetic interactions. Templated synthesis using biomolecules is useful because the biomolecules have their unique arrangement in aqueous systems that enhance stability, commonly called “biomimetic synthesis”. We have developed a one-pot in-situ, low energy process for the synthesis of highly monodispersed, Collagen Functionalized Ferrofluids (CFF) as a templating agent in an aqueous medium. The nanoparticles so obtained were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR). The antibacterial activity in terms of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and growth inhibition has been assessed against gram positive, Staphylococcus aureus, ATCC 13709 (native strain) and in Escherichia coli, DH5α gram negative bacteria. The cytotoxicity of the CFFs on cancer cell lines human embryonic kidney (HEK), breast adenocarcinoma (MCF-7) and Ehrlich ascitic carcinoma (EAC) have also been investigated. CFFs indicated variable MIC and MBC values against S. aureus and E. coli being minimum for 1.5% CFF (MIC:23.43 μg/ml and 93.75 μg/ml and MBC: 46.87 μg/ml and 187.5 μg/ml). The observed cytotoxicity in mammalian cells indicated the susceptibility of MCF-7 breast cancer cells when compared to HEK cells.展开更多
This paper presents a method by which the maximum possible rate of pulverized coal injection (PCI) in </span><span style="font-family:Verdana;">blast</span> <span style="font-family...This paper presents a method by which the maximum possible rate of pulverized coal injection (PCI) in </span><span style="font-family:Verdana;">blast</span> <span style="font-family:Verdana;">furnace</span><span style="font-family:Verdana;"> can be predicted. The method is based on a two-step approach. First, a </span><span style="font-family:Verdana;">first principle</span><span style="font-family:Verdana;"> simulation model of the blast furnace is used to generate data sets for the development of a linear model of pulverized coal injection rate. The data has been generated randomly in MATLAB software within the range of operating parameters (constraints) of the blast furnace. After </span><span style="font-family:Verdana;">that</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the coefficients of the function have been determined. The inputs and the resulting outputs formed the data on which the linear optimization model was developed. Next, the linear model was used for maximizing the pulverized coal rate injection by optimizing the other variables. Two operating Indian Blast Furnaces have been chosen to validate the optimization model.展开更多
Lump lime as the most common flux and iron ore as a coolant are used in basic oxygen steel making. However, high melting point, poor dissolution property, fines generation tendency and hygroscopic nature of lump lime ...Lump lime as the most common flux and iron ore as a coolant are used in basic oxygen steel making. However, high melting point, poor dissolution property, fines generation tendency and hygroscopic nature of lump lime often create problems in operation. As the combination of both iron oxide (Fe2O3) and CaO shows eutectic at 1 230 ℃, a combined mass of iron oxide and lime melts at lower temperature and dissolves faster in a molten bath. A partially pre-fused synthetic flux (PSF) was prepared through an innovative way in combination of iron oxide fines viz. Linz Donawitz converter sludge and blast furnace flue dust and lime fines by micro-pelletization of the mix followed by coke breeze free sintering. The developed PSF shows good cold handling strength, low melting point (1 180 ℃), good thermal shock resistance, etc. As a low melting synthetic flux, its performance was assessed through dissolution/melting study in hot metal bath and refining of hot metal in a simulated bottom blown converter using (i) PSF, (ii) only lump lime and (iii) lump lime with iron ore when keeping other conditions identical. Very fast dissolution (27 80 s for 1-3 g lumps), enhanced removal of C and P (11-12 min), controlled slag foaming, and reduced oxygen consumption was obtained for using PSF.展开更多
文摘Pelletization of hematite ore requires high fineness and very high induration temperature(~1325 ℃) owing to its poor diffusion bonding unlike magnetite ore. Further, high-alumina hematite pellets show very high reduction degradation index(RDI) during low temperature(500-650 ℃) reduction due to their volume expansion and lattice distortion. Noamundi(India) hematite ore contains very high Al2O3(2.3%) with adverse ratio of alumina to silica(~2) for which, it shows very high RDI. In this work, the acid pellets prepared from Noamundi ore fines of optimum Blaine fineness show good cold crushing strength(CCS). However, it shows very high RDI(77%). In order to reduce RDI, Mg O in form of two different gangue-containing fluxes, such as pyroxenite and olivine in varying quantities has been added. The optimum requirement and performance of these fluxes has been examined and compared. Both pyroxenite and olivine fluxed pellets show significant lowering of RDI(26% and 23%, respectively) and improvement of other properties, viz CCS, swelling indices etc with good reducibility(70%-77%). Finally, a good quality acidic hematite pellet was developed from high-alumina ore without using any lime which is very important charge material in combination of basic sinter in blast furnace.
文摘Low grade dumped limestone sample having high silica of 8.1%, 36.8% CaO, and 3% Al2O3 has been studied with the aim to reduce the silica level to below 3% for its utilization in iron making. Beneficiation study of the sample was initiated with desliming of the feed sample of -100 μm to remove the siliceous ultrafine particles and to improve the feed quality. Flotation study was carried out by column flotation technique varying the collector dosage, superficial air flow velocity and froth depth to assess their effect on silica reduction and CaO recovery. It was observed that increased collector dosage and superficial air velocity increases the recovery of CaO, and increase in the froth depth reduces the mass flow and silica content in the concentrate. The best result was found at 1.25 cm/sec superficial air velocity, 25 cm froth depth, 1.25 kgpt collector dosage and concentrate assayed 47.3% CaO, 2.8% silica with 72% CaO recovery.
基金financial assistance received from the Department of Science and Technology (Government of India) for carrying out this investigation
文摘Lump lime as a fiux material in a basic oxygen furnace (BOF) often creates problems in operation due to its high melting point, poor dissolution property, hygroscopic nature, and fines generation tendency. To alleviate these problems, fluxed lime iron oxide pellets (FLIP) containing 30% CaO were developed in this study using waste iron oxide fines and lime. The suitable handling strengths of the pellet (crushing strength: 300 N; drop strength: 130 times) of FLIP were developed by treating with CO2 or industrial waste gas at room temperature, while no separate binders were used. When the pellet was added into hot metal bath (carbon-containing molten iron), it was decomposed, melted, and transformed to produce low melting oxidizing slag, because it is a combination of main CaO and Fe2O3. This slag is suitable for facilitating P and C removal in refining. Furthermore, the pellet enhances waste utilization and use of CO2 in waste gas. In this article, emphasis is given on studying the behavior of these pellets in hot metal bath during melting and refining along with thermodynamics and kinetics analysis. The observed behaviors of the pellet in hot metal bath confirm that it is suitable and beneficial for use in BOF and replaces lump lime.
文摘Beneficiation of non-coking coal is gaining ground in India. It not only reduces the volume of inert content to be transported to the power plant and also lowers the wear in the boiler houses. For special applications such as the fuel for integrated gasification combined cycle plant (IGCC), the ash content in the coal should preferably be below 15 %. Indian coals are characterized by high inter-grown ash content mainly due to 'drift origin' of Gondwana formation in Permian age. This warrants fine grinding of non-coking coal in order to liberate the ash forming minerals from coal macerals. A non- coking coal sample of vitrinite type from India was ground to 44 ~tm (dso) and subjected to column flotation to improve its quality. The non-coking coal analyzing 34.6 % ash, 26.2 % volatile matter, 1.3 % moisture and 37.9 % fixed carbon could be upgraded to a concentrate/froth of 14.83 % ash at 72.18 % yield by optimizing collector and frother dosages and flotation column operating parameters, namely, froth depth, superficial feed velocity and superficial air velocity. The concentrate produced by this process is suitable as fuel for IGCC in coal-to-electricity route.
文摘The present study confers to the fabrication and its characterization of magnesium alloy(AZ91E)based nano composites with nano Al_(2)O_(3) particulate reinforcements.A novel Semi Solid stir casting technique was adopted for the fabrication of the composite.An average particle size of 50 nm was used as reinforcement to disperse in matrix.The effects of change in weight fraction of reinforcements on the distribution of particles,particle–matrix interfacial reactions,physical as well as mechanical properties were reported.The SEM and EDS analysis has shown the uniform distribution of particles in the composite along with the presence of elements.The mechanical properties of reinforced and unreinforced composite were evaluated and presented.Fractography of tensile specimens was also discussed.
文摘A low grade graphite ore from eastern India was beneficiated by flotation to improve its quality. The ore was composed of 87.80%ash and 8.59%fixed carbon. Primary coarse wet grinding (d80:186 μm) followed by rougher flotation in Denver flotation cell using diesel as collector and pine oil as frother yielded a rougher concentrate. Regrinding (d80:144 μm) of this rougher concentrate was opted for further libera-tion of graphite. It was followed by cleaning in laboratory flotation column. This combined process of relatively coarse primary grinding followed by regrinding and cleaning in flotation column resulted in final concentrate of 7.44% yield with 89.65% fixed carbon and 6.00% ash. This approach of two-stage grinding to recover the flake graphite at the coarsest possible grind can help to minimize grinding energy costs. A conceptual flow sheet which is cost effective was developed based on this methodology.
文摘The aim of this investigation is to establish a structure-property correlation of Mg-8%Sn alloys aged at different time interval.The alloy under the present investigation was aged at elevated(200℃)temperature for various holding period.Differently aged alloys show retention of intermetallic phases after ageing,but in different area fraction of the same with ageing time.Mechanical properties evaluation and corresponding microstructural characterizations were performed to correlate their strength and ductility properties with their microstructural features(i.e.,grain size,grain connectivity and the area fraction of intermetallic phases).
文摘A low-grade ore containing ~0.3% Cu, remains unutilized for want of a viable process at Malanjkhand Copper Project (MCP), India in which copper is present as chalcopyrite associated with pyrite in quartz veins and granitic rocks. In order to extract copper from this material, bioleaching has been attempted on bench scale using Acidithiobacillus fer-rooxidans (A. ferrooxidans) isolated from the native mine water. The enriched culture containing A. ferrooxidans when adapted to the ore and employed for the bioleaching at 5% (w/v) pulp density, pH 2.0 and 25°C with three particle sizes viz.150 -76 μm, 76 - 50 μm and SCE) from 530 to 654 mV in 35 days. Under similar conditions, the unadapted strains gave a recovery of 44.0% for SCE from 525 to 650 mV. On using unadapted bacte-rial culture directly in shake flask at pH 2.0 and 35°C temperature and 5% (w/v) pulp density (PD) for 9 cells/mL in 35 days. The higher bio-recovery of copper with the adapted bacterial culture may be attributed to the improved iron oxidation (Fe2+ to Fe3+) exhibiting higher ESCE as compared to that of unadapted strains.
文摘Nano-sized reinforcements improved the mechanical characteristics efficiently by promoting more implicit particle hardening mechanisms compared to micron-sized reinforcements.Nano-sized particles lessen the critical particle solidification velocity for swamp and thus offers better dispersal.In the present investigation,the friction stir processing(FSP)is utilized to produce AZ31/Al_(2)O_(3)nanocomposites at various tool rotation speeds(i.e.,900,1200,and 1500 rpm)with an optimized 1.5%volume alumina(Al_(2)O_(3))reinforcement ratio.The mechanical and corrosion behavior of AZ31/Al_(2)O_(3)-developed nanocomposites was investigated and compared with that of the AZ31 base alloy.The AZ31 alloy experienced a comprehensive dynamic recrystallization during FSP,causing substantial grain refinement.Grain-size strengthening is the primary factor contributed to the enhancement in the strength of the fabricated nanocomposite.Tensile strength and yield strength values were lower than those for the base metal matrix,although an upward trend in both values has been observed with an increase in tool rotation speed.An 19.72%increase in hardness along with superior corrosion resistance was achieved compared to the base alloy at a tool rotational speed of 1500 rpm.The corrosion currents(Jcorr)of all samples dropped with increase in the rotational speed,in contrast to the corrosion potentials(Ecorr),which increased.The values of Jcorr of AZ31/Al_(2)O_(3)were 42.3%,56.8%,and 65.5%lower than those of AZ31 alloy at the chosen rotating speeds of 900,1200,and 1500 rpm,respectively.The corrosion behavior of friction stir processed nanocomposites have been addressed in this manuscript which has not been given sufficient attention in the existing literature.Further,this work offers an effective choice for the quality assurance of the FSP process of AZ31/Al_(2)O_(3)nanocomposites.The obtained results are relevant to the development of lightweight automobile and aerospace structures and components.
基金the Council of Scientific and Industrial Research, India for supporting this work (Network Project: ESC 0109)
文摘High ash thermal coal from India was used to conduct the dry processing of fine coal using a pneumatic table to evolve a techno-economically novel technique. The fine as-received sample having 55.2g ash was subjected to washability studies at variant densities from 1.4 to 2.2 to assess the amenability to separa- tion. The experiments were conducted using a central composite design for assessing the interactive effects of the variable parameters of a pneumatic table on the product yield and ash content. The performance of the pneumatic table was analyzed in terms of clean coal yield, recovery of combustibles, separation efficiency (Esp) and useful heat value of clean coal. The combustibles of clean coal obtained through a single stage operation at 35% and 38.7% ash were 40% and 63% respectively. However, the two stage processing was more effective in reducing the ash content in the clean coal. The rougher concentrate generated at higher ash level was subsequently processed in different conditions at 35% ash level, and 58g combustibles could be recovered. Hence, two stage processing increases the combustibles by 18 units and the useful heat value of clean coal increases from 1190 kcal/kg to 3750 kcal/kg.
文摘A large volume of overburden and mine wastes is generated during the extraction and beneficiation of the low grade ores. The waste low grade manganiferous iron ore fine from southern part of India was studied for recovery of iron values. The chemical assay of the sample is 52.36% Fe, 4.75% Mn, 8.5% SiO2 and 2.82% Al2O3. The characterization study of the sample indicates the presence of microplaty hematite, goethite, pyrolusite, cryptomelane with minor amount of quartz and kaolinite. The beneficiation study of the sample does not respond to the conventional route of desliming the ground feed followed by gravity separation and magnetic separation. Therefore, an alternative technique of reduction roasting using a producer gas was attempted at different conditions. The characterization of roasted product reveals the phase transformation to magnetite and microplaty magnetite. The low intensity magnetic separation conducted with the roasted products generated at optimal condition shows that 70% concentrate having 64.5% Fe and 1.87% Mn could be produced. The high manganese in the concentrate works as an additive for making pellet with enhancement in pellet strength and drop in reducibility. Utilization of mines waste has significant impact on mineral resources and environmental hazard.
文摘This kinetic study focuses on determining the thermal gravimetric profile of a particular grade of Indian sub-bituminous coal. A thermogravimetric analyzer (TGA-1000) was employed to investigate the thermal behavior and extract the kinetic parameters of Jamadoba coal and its corresponding density sepa<span style="font-family:Verdana;color:#000000;">rated macerals. The weight loss was measured in air atmosphere. The coal </span><span style="font-family:Verdana;color:#000000;">samples used in this study were obtained from Jamadoba mines, Jharkhand. Sam</span><span style="font-family:Verdana;color:#000000;">ples of 35 mg and 200 μm mean size were subjected to synthetic air atmos</span><span style="font-family:Verdana;color:#000000;">pheres (21% O</span><sub><span style="font-family:Verdana;color:#000000;">2</span></sub><span style="font-family:Verdana;color:#000000;">). Heating rates of 2, 5 and 7</span><span style="font-family:;" "=""><span style="color:#000000;font-family:Verdana;">°</span><span style="font-family:Verdana;color:#000000;"></span><span><span style="font-family:Verdana;color:#000000;">C/min were applied until the tempera</span><span style="font-family:Verdana;color:#000000;">ture reached 1400</span></span><span><span style="color:#000000;font-family:Verdana;">°</span><span style="font-family:Verdana;color:#000000;">C, which was kept constant until burnout. Low heating</span></span><span><span style="font-family:Verdana;color:#000000;"> rate was preferred so that devolatilization occurs prior to ignition and </span><span style="font-family:Verdana;color:#000000;">combust</span><span style="font-family:Verdana;color:#000000;">ion. Derivative thermogravimetry (DTG) analysis method was applied to </span><span style="font-family:Verdana;color:#000000;">measure the weight changes and rates of weight loss used for calculating the kinetic parameters. The activation energy (</span><i><span style="font-family:Verdana;color:#000000;">E</span><sub><span style="font-family:Verdana;color:#000000;">a</span></sub></i><span style="font-family:Verdana;color:#000000;">) and pre-exponential factor were obtained </span><span style="font-family:Verdana;color:#000000;">from model-free methods by applying non-isothermal thermogravimetry</span><span style="font-family:Verdana;color:#000000;"> analysis.</span></span></span>
基金Ministry of Steel for funding the research work (GAP 0224)
文摘The effect of mineralogy and texture on the beneficiation of goethitic ores from two different origins is highlighted. Sample A having 54.47% Fe with 8.57% loss of ignition (LOl) indicates the presence of vitreous and ochreous goethite, martite and microplaty hematite as the major minerals. Sample B contains 56.90% Fe with 14.4% LOI. There is a pisolithic laterite containing vitreous and ochreous goethite, quartz, kaolinitic clay and there is no hematite mineral. The liberated minerals in -150 + 100 μm size class are 74% for Sample A and 37% only for Sample B which shows that the Sample A appears to be more amenable to beneficiate. A concentrate of 46.7% with 63.22% Fe could be recovered from Sample A while subjected to gravity separation followed by wet magnetic separation. The Sample B does not respond to gravity and magnetic separation due to its complex mineralogy. However, calcination of the Sample B followed by magnetic separation gives the encouraging results. Thus, anomalous behaviour of the goethite dominated ores in beneficiation is attributed to the different textural and liberation characteristic.
文摘The extraction of chromium(III) from a model waste solution and also from a waste solution of an Indian tannery with Amberlite IR 120 resin is described, and the performance of this resin is compared with other similar resins. The parameters that were optimized include effect of mixing time, pH, loading and elution behaviours of chromium(III) for this resin. Sorption of chromium(III) on Amberlite IR 120 followed Freundlich isotherm and Langmuir isotherm model, and the maximum sorption capacity was determined to be 142.86 mg Cr(III)/g of the resin. Higher Freundlich constant (Kf) values (6.30 and 13.46 for aqueous feed of 500 and 1000 ppm Cr(III)) indicated strong chemical interaction through ion exchange mechanism of the metal ion with the resin. The kinetic data showed good fit to the Lagergren first order model for extraction of chromium(III). Desorption of chromium(III) from the loaded resin increased with the increase in concentration of eluent (5-20% H2SO4). With 20% (v/v) sulphuric acid solution 94% chromium(III) was eluted in three stages. Elution of the Cr(III) in the column experiments was however, found to be lower (82%) than that of the shake flask data. In case of Indian tannery’s waste solution, it was observed that almost total chromium was extracted in four stages with Amberlite IR 120.
基金the Research&Development Division and Management of Tata Steel Ltd.for their support and permission to publish this work
文摘The Linz-Donawitz(LD) steelmaking process produces LD slag at a rate of about 125 kg/t. After metallic scrap recovery, the non-metallic LD slag is rejected because its physical/chemical properties are unsuitable for recycling. X-ray diffraction(XRD) studies have indicated that non-metallic LD slag contains a substantial quantity of mineral phases such as di- and tricalcium silicates. The availability of these mineral phases indicates that LD slag can be recycled by iron(Fe)-ore sintering. However, the presence of 1.2wt% phosphorus(P) in the slag renders the material unsuitable for sintering operations. Electron probe microscopic analysis(EPMA) studies indicated concentration of phosphorus in dicalcium silicate phase as calcium phosphate. The Fe-bearing phases(i.e., wustite and dicalcium ferrite) showed comparatively lower concentrations of P compared with other phases in the slag. Attempts were made to lower the P content of LD slag by adopting various beneficiation techniques. Dry high-intensity magnetic separation and jigging were performed on as-received samples with particle sizes of 6 and 3 mm. Spiral separation was conducted using samples ground to sizes of less than 1 and 0.5 mm. Among these studies, grinding to 0.5 mm followed by spiral concentration demonstrated the best results, yielding a concentrate with about 0.75wt% P and 45wt% Fe.
文摘Synthesis of functional iron oxide nanoparticles, well dispersed in aqueous fluids still remains a challenge as its stability requires a delicate balance between electrostatic and magnetic interactions. Templated synthesis using biomolecules is useful because the biomolecules have their unique arrangement in aqueous systems that enhance stability, commonly called “biomimetic synthesis”. We have developed a one-pot in-situ, low energy process for the synthesis of highly monodispersed, Collagen Functionalized Ferrofluids (CFF) as a templating agent in an aqueous medium. The nanoparticles so obtained were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR). The antibacterial activity in terms of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and growth inhibition has been assessed against gram positive, Staphylococcus aureus, ATCC 13709 (native strain) and in Escherichia coli, DH5α gram negative bacteria. The cytotoxicity of the CFFs on cancer cell lines human embryonic kidney (HEK), breast adenocarcinoma (MCF-7) and Ehrlich ascitic carcinoma (EAC) have also been investigated. CFFs indicated variable MIC and MBC values against S. aureus and E. coli being minimum for 1.5% CFF (MIC:23.43 μg/ml and 93.75 μg/ml and MBC: 46.87 μg/ml and 187.5 μg/ml). The observed cytotoxicity in mammalian cells indicated the susceptibility of MCF-7 breast cancer cells when compared to HEK cells.
文摘This paper presents a method by which the maximum possible rate of pulverized coal injection (PCI) in </span><span style="font-family:Verdana;">blast</span> <span style="font-family:Verdana;">furnace</span><span style="font-family:Verdana;"> can be predicted. The method is based on a two-step approach. First, a </span><span style="font-family:Verdana;">first principle</span><span style="font-family:Verdana;"> simulation model of the blast furnace is used to generate data sets for the development of a linear model of pulverized coal injection rate. The data has been generated randomly in MATLAB software within the range of operating parameters (constraints) of the blast furnace. After </span><span style="font-family:Verdana;">that</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the coefficients of the function have been determined. The inputs and the resulting outputs formed the data on which the linear optimization model was developed. Next, the linear model was used for maximizing the pulverized coal rate injection by optimizing the other variables. Two operating Indian Blast Furnaces have been chosen to validate the optimization model.
基金the financial assistance received from Ministry of Steel(Government of India) under Steel Development Fund to carry out this investigation
文摘Lump lime as the most common flux and iron ore as a coolant are used in basic oxygen steel making. However, high melting point, poor dissolution property, fines generation tendency and hygroscopic nature of lump lime often create problems in operation. As the combination of both iron oxide (Fe2O3) and CaO shows eutectic at 1 230 ℃, a combined mass of iron oxide and lime melts at lower temperature and dissolves faster in a molten bath. A partially pre-fused synthetic flux (PSF) was prepared through an innovative way in combination of iron oxide fines viz. Linz Donawitz converter sludge and blast furnace flue dust and lime fines by micro-pelletization of the mix followed by coke breeze free sintering. The developed PSF shows good cold handling strength, low melting point (1 180 ℃), good thermal shock resistance, etc. As a low melting synthetic flux, its performance was assessed through dissolution/melting study in hot metal bath and refining of hot metal in a simulated bottom blown converter using (i) PSF, (ii) only lump lime and (iii) lump lime with iron ore when keeping other conditions identical. Very fast dissolution (27 80 s for 1-3 g lumps), enhanced removal of C and P (11-12 min), controlled slag foaming, and reduced oxygen consumption was obtained for using PSF.