Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very lim...Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very limited compared to nontransient counterparts.Here,we introduce a bioresorbable elastomer,poly(glycolide-co-ε-caprolactone)(PGCL),that contains excellent material properties including high elongation-at-break(<1300%),resilience and toughness,and tunable dissolution behaviors.Exploitation of PGCLs as polymer matrices,in combination with conducing polymers,yields stretchable,conductive composites for degradable interconnects,sensors,and actuators,which can reliably function under external strains.Integration of device components with wireless modules demonstrates elastic,transient electronic suture system with on-demand drug delivery for rapid recovery of postsurgical wounds in soft,time-dynamic tissues.展开更多
Due to typesetting mistake,Hanul Min was missed to be denoted as a corresponding author in the article.The type-setter apologizes for this.The original article has been corrected.Open Access This article is licensed u...Due to typesetting mistake,Hanul Min was missed to be denoted as a corresponding author in the article.The type-setter apologizes for this.The original article has been corrected.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.展开更多
The rapid development of messenger RNA(mRNA)vaccines formulated with lipid nanoparticles(LNPs)has contributed to control of the COVID-19 pandemic.However,mRNA vaccines have raised concerns about their potential toxici...The rapid development of messenger RNA(mRNA)vaccines formulated with lipid nanoparticles(LNPs)has contributed to control of the COVID-19 pandemic.However,mRNA vaccines have raised concerns about their potential toxicity and clinical safety,including side effects,such as myocarditis,anaphylaxis,and pericarditis.In this study,we investigated the potential of trehalose glycolipids-containing LNP(LNP S050L)to reduce the risks associated with ionizable lipids.Trehalose glycolipids can form hydrogen bonds with polar biomolecules,allowing the formation of a stable LNP structure by replacing half of the ionizable lipids.The efficacy and safety of LNP S050L were evaluated by encapsulating the mRNA encoding the luciferase reporter gene and measuring gene expression and organ toxicity,respectively.Furthermore,mice immunized with an LNP S050L-formulated mRNA vaccine expressing influenza hemagglutinin exhibited a significant reduction in organ toxicity,including in the heart,spleen,and liver,while sustaining gene expression and immune efficiency,compared to conventional LNPs(Con-LNPs).Our findings suggest that LNP S050L,a trehalose glycolipid-based LNP,could facilitate the development of safe mRNA vaccines with improved clinical safety.展开更多
Recently,an investigation into preventive measures for coronavirus disease 2019(COVID-19)has garnered considerable attention.Consequently,strategies for the proactive prevention of viral pathogens have also attracted ...Recently,an investigation into preventive measures for coronavirus disease 2019(COVID-19)has garnered considerable attention.Consequently,strategies for the proactive prevention of viral pathogens have also attracted significant interest in the field of wearable devices and electronic textiles research,particularly due to their potential applications in personal protective equipment.In this study,we introduce smart textiles designed with optimized piezoelectric devices that exhibit antifouling performance against microorganisms and actively inactivate viruses.These active-type smart textiles,which incorporate advanced lead zirconate titanate(PZT)ceramics,a stretchable interconnector array,and polymeric fabric,demonstrate effective antifouling capabilities,detaching approximately90%of Escherichia coli and75%of SARS-CoV-2.Furthermore,they inactivate viruses,releasing~26.8 ng of N protein from ruptured SARS-CoV-2,using ultrasonic waves within the wearable platform.Experimental results show that piezoelectric smart textiles significantly reduce the spread of COVID-19 by leveraging the electrical and acoustic properties of PZT ceramics.展开更多
基金supported by the KIST Institutional Program (Project No.2E32501-23-106)the KU-KIST Graduate School of Converging Science and Technology Program+3 种基金the National Research Foundation of Korea (NRF) grant funded by the Korean government (the Ministry of Science, ICT, MSIT) (RS-2022-00165524)the development of technologies for electroceuticals of the National Research Foundataion (NRF) funded by the Korean government (MSIT) (RS-2023-00220534)the Ministry of Science and ICT (MSIT), Korea, under the ICT Creative Consilience program (IITP-2023-2020-0-01819) supervised by the IITP (Institute for Information and Communications Technology Planning and Evaluation)Start up Pioneering in Research and Innovation(SPRINT) through the Commercialization Promotion Agency for R&D Outcomes(COMPA) grant funded by the Korea government(Ministry of Science and ICT) (1711198921)
文摘Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very limited compared to nontransient counterparts.Here,we introduce a bioresorbable elastomer,poly(glycolide-co-ε-caprolactone)(PGCL),that contains excellent material properties including high elongation-at-break(<1300%),resilience and toughness,and tunable dissolution behaviors.Exploitation of PGCLs as polymer matrices,in combination with conducing polymers,yields stretchable,conductive composites for degradable interconnects,sensors,and actuators,which can reliably function under external strains.Integration of device components with wireless modules demonstrates elastic,transient electronic suture system with on-demand drug delivery for rapid recovery of postsurgical wounds in soft,time-dynamic tissues.
文摘Due to typesetting mistake,Hanul Min was missed to be denoted as a corresponding author in the article.The type-setter apologizes for this.The original article has been corrected.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.
基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.NRF-2021M3E5E3080563,RS-2023-00229101)the Ministry of Food and Drug Safety(No.22213MFDS421)+4 种基金the Korea Institute of Science and Technology(KIST)Institutional Program(No.2E32852)H.Kim was supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.RS-2023-00209955)the Korea Institute of Science and Technology(KIST)Institutional Program(No.2E33111)J.H.Nam was supported by grants from the Ministry of Food and Drug Safety(grant number 22213MFDS421)partially supported by the Brain Korea 21 Four Program.H.Youn was supported by a grant from the Ministry of Food and Drug Safety(RS-2023-00217026).
文摘The rapid development of messenger RNA(mRNA)vaccines formulated with lipid nanoparticles(LNPs)has contributed to control of the COVID-19 pandemic.However,mRNA vaccines have raised concerns about their potential toxicity and clinical safety,including side effects,such as myocarditis,anaphylaxis,and pericarditis.In this study,we investigated the potential of trehalose glycolipids-containing LNP(LNP S050L)to reduce the risks associated with ionizable lipids.Trehalose glycolipids can form hydrogen bonds with polar biomolecules,allowing the formation of a stable LNP structure by replacing half of the ionizable lipids.The efficacy and safety of LNP S050L were evaluated by encapsulating the mRNA encoding the luciferase reporter gene and measuring gene expression and organ toxicity,respectively.Furthermore,mice immunized with an LNP S050L-formulated mRNA vaccine expressing influenza hemagglutinin exhibited a significant reduction in organ toxicity,including in the heart,spleen,and liver,while sustaining gene expression and immune efficiency,compared to conventional LNPs(Con-LNPs).Our findings suggest that LNP S050L,a trehalose glycolipid-based LNP,could facilitate the development of safe mRNA vaccines with improved clinical safety.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(No.RS-2024-00347619,No.RS-2024-00407155,2022M3H4A1A02046445,RS-2023-00209955,RS-2024-00406240)supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(RS-2024-00452380)supported by Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET)through High-Risk Animal infectious Disease Control Technology Development Program,funded by Ministry of Agriculture,Food and Rural Affairs(MAFRA)(RS-2024-00396818).
文摘Recently,an investigation into preventive measures for coronavirus disease 2019(COVID-19)has garnered considerable attention.Consequently,strategies for the proactive prevention of viral pathogens have also attracted significant interest in the field of wearable devices and electronic textiles research,particularly due to their potential applications in personal protective equipment.In this study,we introduce smart textiles designed with optimized piezoelectric devices that exhibit antifouling performance against microorganisms and actively inactivate viruses.These active-type smart textiles,which incorporate advanced lead zirconate titanate(PZT)ceramics,a stretchable interconnector array,and polymeric fabric,demonstrate effective antifouling capabilities,detaching approximately90%of Escherichia coli and75%of SARS-CoV-2.Furthermore,they inactivate viruses,releasing~26.8 ng of N protein from ruptured SARS-CoV-2,using ultrasonic waves within the wearable platform.Experimental results show that piezoelectric smart textiles significantly reduce the spread of COVID-19 by leveraging the electrical and acoustic properties of PZT ceramics.