期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
An approach for determination of lateral limit angle in kinematic planar sliding analysis for rock slopes
1
作者 Xiaojuan Yang Jie Hu +1 位作者 Honglei Sun Jun Zheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1305-1314,共10页
Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar slid... Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one. 展开更多
关键词 Kinematic analysis Block theory Planar sliding Lateral limit angle Rock slope
下载PDF
A simple atomization approach enables monolayer dispersion of nano graphenes in cementitious composites with excellent strength gains
2
作者 Nanxi Dang Rijiao Yang +4 位作者 Chengji Xu Yu Peng Qiang Zeng Weijian Zhao Zhidong Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期211-222,共12页
Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple... Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple atomization approach was successfully developed to promote the dispersion efficiency of graphene nanoplatelets(GNPs)in cement composites.This atomization approach can be integrated with the direct,indirect and combined ultrasonic stirrings in a homemade automatic stirring-atomization device.Mechanical and microstructure tests were performed on hardened cement pastes blended with GNPs in different stirring and mixing approaches.Results show that the direct ultrasonic stirrings enabled more homogeneous dispersions of GNP particles with a smaller size for a longer duration.The atomized droplets with the mean size of~100μm largely mitigated GNPs’agglomerations.Monolayer GNPs were observed in the cement matrix with the strength gain by up to 54%,and the total porosity decrease by 21%in 0.3 wt%GNPs dosage.The greatly enhanced dispersion efficiency of GNPs in cement also raised the cement hydration.This work provides an effective and manpower saving technique toward dispersing CNAs in engineering materials with great industrialization prospects. 展开更多
关键词 NANOMATERIALS DISPERSION ATOMIZATION STRENGTH Microstructure
下载PDF
Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites
3
作者 Chengkan Xu Xiaofei Wang +2 位作者 Yixuan Li Guannan Wang He Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期957-974,共18页
Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstru... Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial.Repeating unit cells(RUCs)are commonly used to represent microstructural details and homogenize the effective response of composites.This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs.The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters,including volume fraction,fiber/matrix property ratio,fiber shapes,and loading direction.Subsequently,the conditional generative adversarial network(cGAN)is employed and constructed as a surrogate model to establish the statistical correlation between these parameters and the corresponding localized stresses.The stresses predicted by cGAN are validated against the remaining true data not used for training,showing good agreement.This work demonstrates that the cGAN-based micromechanics tool effectively captures the local responses of composite RUCs.It can be used for predicting potential crack initiations starting from microstructures and evaluating the effective behavior of periodic composites. 展开更多
关键词 Periodic composites localized stress recovery conditional generative adversarial network
下载PDF
Numerical investigation of airborne transmission of respiratory infections on the subway platform 被引量:3
4
作者 Jianjian Wei Sirui Zhu +6 位作者 Feiwu He Qianfang Guo Xinxin Huang Jianxiang Yu Lirong Zou Tao Jin Jie Wu 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第6期236-243,共8页
Underground subway platforms are among the world’s busiest public transportation systems,but the airborne transmission mechanism of respiratory infections on these platforms has been rarely studied.Here,computational... Underground subway platforms are among the world’s busiest public transportation systems,but the airborne transmission mechanism of respiratory infections on these platforms has been rarely studied.Here,computational fluid dynamics(CFD)modeling is used to investigate the airflow patterns and infection risks in an island platform under two common ventilation modes:Mode 1-both sides have air inlets and outlets;Mode 2-air inlets are present at the two sides and outlets are present in the middle.Under the investigated scenario,airflow structure is characterized by the ventilation jet and human thermal plumes.Their interaction with the infector’s breathing jet imposes the front passenger under the highest exposure risk by short-range airborne route,with intake fractions up to 2.57%(oral breathing)or 0.63%(nasal breathing)under Mode 1;oral breathing of the infector may impose higher risks for the front passenger compared with nasal breathing.Pathogen are efficiently diluted as they travel further,in particular to adjacent crowds.The maximum and median value of intake fractions of passengers in adjacent crowds are respectively 0.093%and 0.016%(oral breathing),and 0.073%and 0.014%(nasal breathing)under Mode 1.Compared with Mode 1,the 2nd mode minimizes the interaction of ventilation jet and breathing jet,where the maximum intake fraction is only 0.34%,and the median value in the same crowd and other crowds are reduced by 23–63%.Combining published quanta generation rate data of COVID-19 and influenza infectors,the predicted maximum and median infection risks for passengers in the same crowds are respectively 1.46%–40.23%and 0.038%–1.67%during the 3–10 min waiting period,which are more sensitive to ventilation rate and exposure time compared with return air.This study can provide practical guidance for the prevention of respiratory infections in subway platforms. 展开更多
关键词 Airborne transmission route Ventilation Thermal plume COVID-19 INFLUENZA
下载PDF
A GPU-Based Parallel Algorithm for 2D Large Deformation Contact Problems Using the Finite Particle Method 被引量:1
5
作者 Wei Wang Yanfeng Zheng +2 位作者 Jingzhe Tang Chao Yang Yaozhi Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期595-626,共32页
Large deformation contact problems generally involve highly nonlinear behaviors,which are very time-consuming and may lead to convergence issues.The finite particle method(FPM)effectively separates pure deformation fr... Large deformation contact problems generally involve highly nonlinear behaviors,which are very time-consuming and may lead to convergence issues.The finite particle method(FPM)effectively separates pure deformation from total motion in large deformation problems.In addition,the decoupled procedures of the FPM make it suitable for parallel computing,which may provide an approach to solve time-consuming issues.In this study,a graphics processing unit(GPU)-based parallel algorithm is proposed for two-dimensional large deformation contact problems.The fundamentals of the FPM for planar solids are first briefly introduced,including the equations of motion of particles and the internal forces of quadrilateral elements.Subsequently,a linked-list data structure suitable for parallel processing is built,and parallel global and local search algorithms are presented for contact detection.The contact forces are then derived and directly exerted on particles.The proposed method is implemented with main solution procedures executed in parallel on a GPU.Two verification problems comprising large deformation frictional contacts are presented,and the accuracy of the proposed algorithm is validated.Furthermore,the algorithm’s performance is investigated via a large-scale contact problem,and the maximum speedups of total computational time and contact calculation reach 28.5 and 77.4,respectively,relative to commercial finite element software Abaqus/Explicit running on a single-core central processing unit(CPU).The contact calculation time percentage of the total calculation time is only 18%with the FPM,much smaller than that(50%)with Abaqus/Explicit,demonstrating the efficiency of the proposed method. 展开更多
关键词 Finite particle method graphics processing unit(GPU) parallel computing contact algorithm LARGE
下载PDF
A new estimation method and an anisotropy index for the deformation modulus of jointed rock masses 被引量:1
6
作者 Bohu Zhang Junyan Mu +2 位作者 Jun Zheng Qing Lv Jianhui Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期153-168,共16页
The deformation modulus of a rock mass is an important parameter to describe its mechanical behavior.In this study,an analytical method is developed to determine the deformation modulus of jointed rock masses,which co... The deformation modulus of a rock mass is an important parameter to describe its mechanical behavior.In this study,an analytical method is developed to determine the deformation modulus of jointed rock masses,which considers the mechanical properties of intact rocks and joints based on the superposition principle.Due to incorporating the variations in the orientations and sizes of joint sets,the proposed method is applicable to the rock mass with persistent and parallel joints as well as that with nonpersistent and nonparallel joints.In addition,an anisotropy index AIdmfor the deformation modulus is defined to quantitatively describe the anisotropy of rock masses.The range of AIdmis from 0 to 1,and the more anisotropic the rock mass is,the larger the value of AIdmwill be.To evaluate the proposed method,20 groups of numerical experiments are conducted with the universal distinct element code(UDEC).For each experimental group,the deformation modulus in 24 directions are obtained by UDEC(numerical value)and the proposed method(predicted value),and then the mean error rates are calculated.Note that the mean error rate is the mean value of the error rates of the deformation modulus in 24 directions,where for each direction,the error rate is equal to the ratio of numerical value minus predicted value to the numerical value.The results show that(i)for different experimental groups,the mean error rates vary between 5.06%and 22.03%;(ii)the error rates for the discrete fracture networks(DFNs)with two sets of joints are at the same level as those with one set of joints;and(iii)therefore,the proposed method for estimating the deformation modulus of jointed rock masses is valid. 展开更多
关键词 Deformation modulus Analytical method Anisotropy index Jointed rock masses Mechanical behavior Discrete fracture network(DFN)
下载PDF
Non-uniform thermal behavior of single-layer spherical reticulated shell structures considering time-variant environmental factors: analysis and design 被引量:1
7
作者 Wucheng XU Xiaoqing ZHENG +2 位作者 Xuanhe ZHANG Zhejie LAI Yanbin SHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第3期223-237,共15页
Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temper... Contrary to conventional design methods that assume uniform and slow temperature changes tied to atmospheric conditions,single-layer spherical reticulated shells undergo significant non-uniform and time-variant temperature variations due to dynamic environmental coupling.These differences can affect structural performance and pose safety risks.Here,a systematic numerical method was developed and applied to simulate long-term temperature variations in such a structure under real environmental conditions,revealing its non-uniform distribution characteristics and time-variant regularity.A simplified design method for non-uniform thermal loads,accounting for time-variant environmental factors,was theoretically derived and validated through experiments and simulations.The maximum deviation and mean error rate between calculated and tested results were 6.1℃ and 3.7%,respectively.Calculated temperature fields aligned with simulated ones,with deviations under 6.0℃.Using the design method,non-uniform thermal effects of the structure are analyzed.Maximum member stress and nodal displacement under non-uniform thermal loads reached 119.3 MPa and 19.7 mm,representing increases of 167.5%and 169.9%,respectively,compared to uniform thermal loads.The impacts of healing construction time on non-uniform thermal effects were evaluated,resulting in construction recommendations.The methodologies and conclusions presented here can serve as valuable references for the thermal design,construction,and control of single-layer spherical reticulated shells or similar structures. 展开更多
关键词 Non-uniform temperature field Non-uniform thermal load Non-uniform thermal effect Single-layer spherical reticulated shell Time-variant environmental factor
原文传递
A Method for Evaluating the Maximum Bending Degree of Flexural Toppling Rock Masses Based on the Rock Tensile Strain-Softening Model
8
作者 Jiongchao Wang Jun Zheng +2 位作者 Jichao Guo Qing Lü Jianhui Deng 《Journal of Earth Science》 SCIE CAS CSCD 2024年第4期1243-1253,共11页
Flexural toppling occurs when a series of layered rock masses bend towards their free face.It is important to evaluate the maximum bending degree and the requirement of supports of flexural toppling rock mass to preve... Flexural toppling occurs when a series of layered rock masses bend towards their free face.It is important to evaluate the maximum bending degree and the requirement of supports of flexural toppling rock mass to prevent rock mass cracking and even failure leading to a landslide.Based on the rock tensile strain-softening model,this study proposes a method for calculating the maximum curvature(C_(ppmax))of flexural toppling rock masses.By applying this method to calculate Cppmax of 9 types of rock masses with different hardness and rock layer thickness,some conclusions are drawn:(1)the internal key factors affecting C_(ppmax)are E^(⋆)(E^(⋆)=E_(ss)/E_(0),where E_(0)and E_(ss)are the mean deformation moduli of the rock before and after reaching its peak tensile strength,respectively),the strainεt corresponding to the tensile strength of rock,and the thickness(h)of rock layers;(2)hard rock layers are more likely to develop into block toppling than soft rock layers;and(3)thin rock layers are more likely to remain in flexural toppling state than thick rock layers.In addition,it is found that C_(ppmax)for flexural toppling rock masses composed of bedded rocks such as gneiss is related to the tensile direction. 展开更多
关键词 flexural toppling rock mass maximum bending degree strain-softening model curvature rock mechanics
原文传递
Self-powered wireless environmental monitoring system for in-service bridges by galloping piezoelectric-triboelectric hybridized energy harvester
9
作者 HUANG KangXu WANG XiaoFei +7 位作者 WANG Li ZHOU YuHui LIU FuHai CHANG ShiYuan ZHU JunTao ZHOU YuXuan ZHANG He LUO JiKui 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第5期1498-1509,共12页
The energy harvesting technology for the ubiquitous natural wind enables a desirable solution to the issue of distributed sensors in the bridge environmental sensing Internet of Things(Io T)system being restricted to ... The energy harvesting technology for the ubiquitous natural wind enables a desirable solution to the issue of distributed sensors in the bridge environmental sensing Internet of Things(Io T)system being restricted to conventional energy supply.In this work,a self-powered system based on a compact galloping piezoelectric-triboelectric energy harvester(GPTEH)is developed to achieve efficient wind energy harvesting.The GPTEH is constructed on the prototype of a cantilever structure with piezoelectric macro-fiber composite(MFC)sheets and a rectangular bluff body with triboelectric nanogenerators(TENGs).Through a special swing-type structural design with iron blocks inside the bluff body,the GPTEH exhibits preferable aerodynamic behavior and excellent energy conversion efficiency,compared to conventional cantilever kind of piezoelectric wind energy harvester(PWEH).The GPTEH also demonstrates the capability of high output power density(PEH of 23.65 W m^(-2)and TENG of 1.59 W m^(-2)),superior response wind speed(about 0.5 m s^(-1)),and excellent long-term stability(over 14000 cyclic tests).Furthermore,a power management system is developed to efficiently utilize the output energy from GPTEH to power the sensors and wirelessly transmit environmental data to the terminals.The proposed GPTEH-powered system exhibits a great potential for the bridge environmental monitoring and Io T technologies. 展开更多
关键词 SELF-POWERED hybrid nanogenerator triboelectric nanogenerator macro-fiber composite wireless environmental monitoring system
原文传递
A universal elliptical disc(UED)model to represent natural rock fractures 被引量:7
10
作者 Jun Zheng Jichao Guo +3 位作者 Jiongchao Wang Honglei Sun Jianhui Deng Qing Lv 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期261-270,共10页
Since natural fractures are often non-equidimensional,the circular disc model still has great limitations.By contrast,the elliptical disc model is more applicable to representing natural fractures,especially for slend... Since natural fractures are often non-equidimensional,the circular disc model still has great limitations.By contrast,the elliptical disc model is more applicable to representing natural fractures,especially for slender ones.This paper developed a universal elliptical disc(UED)model by incorporating the center point,size,and azimuth of fractures as variables.Specifically,with respect to the azimuth of elliptical fractures in three-dimensional(3D)space,we proposed a paradigm to construct its probability density function(PDF)by coupling the orientation and rotation angle of long axis based on three coordinate transformations.To illustrate the construction process of the PDF of the fracture azimuth,we took the orientation following the Fisher distribution and the rotation angle following Von Mises distribution as an example.A rock slope is used to show the use of the developed UED model,and the 3D DFNs for the slope rock mass are generated by Monte Carlo simulation.In addition,the DFNs for the rock mass are also generated based on the existing circular disc model and non-universal elliptical disc model.The comparison results from the three models clearly illustrate the superiority of the UED model over the existing circular and non-universal elliptical disc models. 展开更多
关键词 Discrete fracture networks Rock mass DISCONTINUITY Elliptical disc model Fisher distribution Monte Carlo simulation
下载PDF
Clustering compression-based computation-efficient calibration method for digital twin modeling of HVAC system 被引量:2
11
作者 Jie Lu Xiangning Tian +4 位作者 Chenxin Feng Chaobo Zhang Yang Zhao Yiwen Zhang Zihao Wang 《Building Simulation》 SCIE EI CSCD 2023年第6期997-1012,共16页
Digital twin is regarded as the next-generation technology for the effective operation of heating,ventilation and air conditioning(HVAC)systems.It is essential to calibrate the digital twin models to match them closel... Digital twin is regarded as the next-generation technology for the effective operation of heating,ventilation and air conditioning(HVAC)systems.It is essential to calibrate the digital twin models to match them closely with real physical systems.Conventional real-time calibration methods cannot satisfy such requirements since the computation loads are beyond acceptable tolerances.To address this challenge,this study proposes a clustering compression-based method to enhance the computation efficiency of digital twin model calibration for HVAC systems.This method utilizes clustering algorithms to remove redundant data for achieving data compression.Moreover,a hierarchical multi-stage heuristic model calibration strategy is developed to accelerate the calibration of similar component models.Its basic idea is that once a component model is calibrated by heuristic methods,its optimal solution is utilized to narrow the ranges of parameter probability distributions of similar components.By doing so,the calibration process can be guided,so that fewer iterations would be used.The performance of the proposed method is evaluated using the operational data from an HVAC system in an industrial building.Results show that the proposed clustering compression-based method can reduce computation loads by 97%,compared to the conventional calibration method.And the proposed hierarchical heuristic model calibration strategy is capable of accelerating the calibration process after clustering and saves 14.6%of the time costs. 展开更多
关键词 heating ventilation and air conditioning systems model calibration digital twin heuristic methods clustering compression hierarchical calibration
原文传递
GPU-accelerated vector-form particle-element method for 3D elastoplastic contact of structures
12
作者 Wei WANG Yanfeng ZHENG +2 位作者 Jingzhe TANG Chao YANG Yaozhi LUO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第12期1120-1130,共11页
A graphics processing unit(GPU)-accelerated vector-form particle-element method,i.e.,the finite particle method(FPM),is proposed for 3D elastoplastic contact of structures involving strong nonlinearities and computati... A graphics processing unit(GPU)-accelerated vector-form particle-element method,i.e.,the finite particle method(FPM),is proposed for 3D elastoplastic contact of structures involving strong nonlinearities and computationally expensive contact calculations.A hexahedral FPM element with reduced integration and anti-hourglass is developed to model structural elastoplastic behaviors.The 3D space containing contact surfaces is decomposed into cubic cells and the contact search is performed between adjacent cells to improve search efficiency.A connected list data structure is used for storing contact particles to facilitate the parallel contact search procedure.The contact constraints are enforced by explicitly applying normal and tangential contact forces to the contact particles.The proposed method is fully accelerated by GPU-based parallel computing.After verification,the performance of the proposed method is compared with the serial finite element code Abaqus/Explicit by testing two large-scale contact examples.The maximum speedup of the proposed method over Abaqus/Explicit is approximately 80 for the overall computation and 340 for contact calculations.Therefore,the proposed method is shown to be effective and efficient. 展开更多
关键词 Graphics processing unit(GPU) Parallel acceleration Elastoplastic contact Contact search Finite particle method(FPM)
原文传递
考虑Steigmann-Ogden界面的复合材料远场解析解
13
作者 高梦园 贺哲龙 +1 位作者 Ougbe Anseme Ahehehinnou 王冠楠 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第1期35-43,共9页
本文给出了含有纳米纤维或孔隙的二维异质材料在远场载荷作用下的Steigmann-Ogden弹性面的解析解.该求解与最近文献中复函数法的数值结果进行了验证,并提供了具体位移和应力场的闭式表达式.数值研究了表面弹性参数、表面残余应力、纤维... 本文给出了含有纳米纤维或孔隙的二维异质材料在远场载荷作用下的Steigmann-Ogden弹性面的解析解.该求解与最近文献中复函数法的数值结果进行了验证,并提供了具体位移和应力场的闭式表达式.数值研究了表面弹性参数、表面残余应力、纤维/孔径和远场载荷对局部应力分布的影响.结果表明,表面弹性参数会扰乱纤维域内的内应力,而表面弯曲刚度参数会显著影响应力集中,这与经典Eshelby问题中的均匀应力分布不同.分析表达式揭示了一些有趣的现象,例如,纤维复合材料在静水载荷作用下的应力/位移场仅与表面Lamé参数有关,剪切载荷作用下分析表达式中的非常数系数保持为单轴拉伸载荷作用下的两倍,这些都是本文首次报道的.所建立的解决方案对于准确捕捉具有显著表面效应的纳米复合材料的力学响应至关重要. 展开更多
关键词 纳米复合材料 异质材料 表面效应 纤维复合材料 弹性参数 载荷作用 剪切载荷 弯曲刚度
原文传递
Micromechanics of Thermal Conductive Composites:Review,Developments and Applications
14
作者 Guannan Wang Yulin Huang +1 位作者 Mengyuan Gao Qiang Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第2期215-237,共23页
Micromechanics investigations of composites with fiber-shaped reinforcement are extensively applied in the engineering design and theoretical analysis of thermal composites in the aerospace engineering and high-tech i... Micromechanics investigations of composites with fiber-shaped reinforcement are extensively applied in the engineering design and theoretical analysis of thermal composites in the aerospace engineering and high-tech industry.In this paper,a critical review of various classical micromechanics approaches is provided based on the classification framework and the development of micromechanics tools.Several numerical micromechanics tools have been developed to overcome limitations through exactly/approximately solving the internal governing equations of microstructures.The connections and limitations of those models are also investigated and discussed,based on which three recently developed numerical or semi-analytical models are explained,including finite-element micromechanics,finite-volume direct averaging micromechanics,and locally exact homogenization theory,as well as machine learning tools.Since it is almost inevitable to mention the interfacial effects on thermal behavior of fibrous composites,we review the new mathematical relations that interrupt the original continuity conditions due to the existence of interphase/interface within unit cells.Generally speaking,the interphase/interface is demonstrated to play a significant role in influencing the effective coefficients and localized thermal fields.The present work also briefly reviews the application of micromechanics tools in emerging engineered woven composites,natural fibrous composites,and ablative thermal protection composites.It is demonstrated that sophisticated micromechanics tools are always demanded for investigating the effective and localized responses of thermal fibrous composites. 展开更多
关键词 Micromechanics models Thermal fibrous composites Microstructural detail-free models Semi-analytical and numerical methods Interfacial effects Woven composites Natural composites
原文传递
AWells-Riley/based COVID-19 infectiousrisk assessment model combining both short rangeandroom scale effects
15
作者 Yinshuai Feng Yifan Fan +1 位作者 Xiaoyu Luo Jian Ge 《Building Simulation》 SCIE EI CSCD 2024年第1期93-111,共19页
There is growing evidence of the high transmission potential of COVID-19 through virus-laden aerosols.Because aerosols are inhaled in various concentrations,an overall assessment of transmission risks at different ind... There is growing evidence of the high transmission potential of COVID-19 through virus-laden aerosols.Because aerosols are inhaled in various concentrations,an overall assessment of transmission risks at different indoor scales is crucial.However,a comprehensive risk assessment method that evaluates the direct link between short-range and room-scale zones is stl lacking.In this paper,a risk assessment model combining both short-range and room-scale effects is developed to obtain effective reproduction number in confined indoor environments,called Turbulent Jet Wells Riley(TJWR)model.Combined with the viral load data and aerosol generation data of different human respiratory activities,the Monte Carlo simulation method is applied to calculate the quanta emission rate,which further provides the input parameters of the TJWR model.Three known outbreaks(Hangzhou banquet hall X,Guangzhou restaurant Y,and Hong Kong restaurant Z,China)are chosen to validate the TJWR model.Results show that the TJWR model is more efficient than the original Wells-Riley model.The average relative error of the TJWR model ranges between 9%and 44%,while for the Wells-Riley model,it ranges between 57%and 78%.The TJWR model also proves that infection risk assessments using the well-mixed assumption can systematically underestimate the transmission risk for those close to the source.Additionally,there is a significant positive linear correlation between the total number of exposed individuals at the short-range and the effective reproduction number.This newly developed TJWR model has great potential for rapid and real-time overall airborne transmission risk assessment in buildings and cities. 展开更多
关键词 COVID-19 airborne transmission infection risk Wells-Riley model Monte Carlo simulation
原文传递
Interface failure of segmental tunnel lining strengthened with steel plates based on fracture mechanics
16
作者 Yazhen SUN Yang YU +1 位作者 Jinchang WANG Longyan WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第1期137-149,共13页
Segmental tunnel lining strengthened with steel plates is widely used worldwide to provide a permanent strengthening method.Most existing studies assume an ideal steel-concrete interface,ignoring discontinuous deforma... Segmental tunnel lining strengthened with steel plates is widely used worldwide to provide a permanent strengthening method.Most existing studies assume an ideal steel-concrete interface,ignoring discontinuous deformation characteristics,making it difficult to accurately analyze the strengthened structure’s failure mechanism.In this study,interfacial fracture mechanics of composite material was applied to the segmental tunnel lining strengthened with steel plates,and a numerical three-dimensional solid nonlinear model of the lining structure was established,combining the extended finite element method with a cohesive-zone model to account for the discontinuous deformation characteristics of the interface.The results accurately describe the crack propagation process,and are verified by full-scale testing.Next,dynamic simulations based on the calibrated model were conducted to analyze the sliding failure and cracking of the steel-concrete interface.Lastly,detailed location of the interface bonding failure are further verified by model test.The results show that,the cracking failure and bond failure of the interface are the decisive factors determining the instability and failure of the strengthened structure.The proposed numerical analysis is a major step forward in revealing the interface failure mechanism of strengthened composite material structures. 展开更多
关键词 segmental tunnel lining steel plate strengthening connecting interface cohesive-zone model extended finite element method
原文传递
A Multiscale Model of Mass-Functionally Graded Beam-Fluid System Under Bending and Vibration Responses
17
作者 Lei Zhang Jianping Lin +1 位作者 Jiaqing Jiang Guannan Wang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第2期327-340,共14页
In this paper,a multiscale model is developed for the mass functionally graded(FG)beam-fluid system to investigate its static and dynamic responses based on 3D printed porous beam free vibration tests,which are determ... In this paper,a multiscale model is developed for the mass functionally graded(FG)beam-fluid system to investigate its static and dynamic responses based on 3D printed porous beam free vibration tests,which are determined by two aspects.At the microstructural level,the gradient variation is realized by arbitrary distribution of matrix pores,and the effective moduli under specific distribution are obtained using the micromechanics homogenization theory.In the meantime,at the structural level,the mechanical responses of FG porous beams subjected to mass loading are considered in a static fluid environment.Then,the explicit expressions of local finite-element(FE)expressions corresponding to the static and dynamic responses are given in the appendices.The present results are validated against numerical and experimental results from the literature and mechanical tests of 3D printed structures,with good agreement generally obtained,giving credence to the present model.On this basis,a comprehensive parametric study is carried out,with a particular focus on the effects of boundary conditions,fluid density,and slenderness ratio on the bending and vibration of FG beams with several different gradations. 展开更多
关键词 3D printed test Mass functionally graded beam-fluid system Multiscale model Local finite-element expressions Static bending Free vibration
原文传递
A real-time sensing system based on triboelectric nanogenerator for dynamic response of bridges 被引量:3
18
作者 ZHANG He HUANG KangXu +3 位作者 ZHOU YuHui SUN LiangFeng ZHANG ZhiCheng LUO JiKui 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第11期2723-2733,共11页
The strain of bridges under traffic loads is time-varying and of small amplitude(~10^(-6)),which is a type of cumulative response and needs long-term continuous monitoring.To precisely capture the time-varying respons... The strain of bridges under traffic loads is time-varying and of small amplitude(~10^(-6)),which is a type of cumulative response and needs long-term continuous monitoring.To precisely capture the time-varying responses,a dynamic strain triboelectric nanogenerator(TENG)sensor with superior response capability,sensitivity,self-powered,and long-term stability is proposed in this paper.An analytical correlation between the structural strain response signal and the detected electrical signal is established for long-term continuous quantitative strain measurements based on the principles of contact electrification and electrostatic induction.A series of experiments are conducted to investigate the output performance of the proposed lateral-sliding mode TENG sensors.The results reveal that,with the loading condition with frequencies lower than 10 Hz,the time-varying strain responses of the steel bridge within the range of 3 to 150 microstrains can also be detected with high precision of 0.1 microstrains.And it achieves long-term stability after 10000 loading cycles compared with commercial sensors.The proposed novel sensing theory and method based on TENG technology can be applied as a new alternative approach for monitoring realtime structural strain information quantitatively with general applicability and feasibility for bridges. 展开更多
关键词 triboelectric nanogenerator self-driven sensing quantitative sensing theory V-Q-εmodel dynamic strain monitoring of civil infrastructures
原文传递
Effects of the outlet pressure on two-phase slug flow distribution uniformity in a multi-branch microchannel 被引量:2
19
作者 Peng-fei ZHANG Xiang-guo XU +1 位作者 Yong-jun HUA Yu-qi HUANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第1期68-82,共15页
The two-phase flow maldistribution phenomenon in microchannels with multi-parallel branches is inevitable in almost all common conditions,and not only affects the performance of the facility but also increases the ris... The two-phase flow maldistribution phenomenon in microchannels with multi-parallel branches is inevitable in almost all common conditions,and not only affects the performance of the facility but also increases the risk of system instability.In order to better understand the distribution mechanism and to explore a potential strategy to improve uniformity,the pressure evolutions under different split modes in a microchannel with multi-parallel branches,were analyzed numerically.The results show that the fluctuations of transient pressure exhibit similar trends at various split modes,but the time-averaged pressure drops in the branches are very different.This may be related to the maldistribution of mass flow.Thus,the outlet pressures of the branches are numerically changed to explore the relationship between differential pressure and flow distribution.From this study,the flow distribution is seen to display a strong sensitivity to the branch differential pressure.By changing the pressure conditions,the gas flow of the middle branch can be effectively prevented from the main channel,and the flow type in this branch turns from gas-liquid to a single liquid phase.When the differential pressure of the first branch channel changes,the maldistribution phenomenon of the model can be mitigated to a certain extent.Based on this,by adjusting the differential pressures of the second branch,the maldistribution phenomenon can be further mitigated,and the normalized standard deviation(NSTD)decreases from 0.52 to approximately 0.26.The results and conclusions are useful in understanding the two-phase flow distribution mechanism and for seeking optimizing strategies. 展开更多
关键词 Two-phase flow Multi-parallel microchannel Flow distribution Slug flow Split modes
原文传递
Energy flexibility characteristics of centralized hot water system in university dormitories 被引量:2
20
作者 Zhiqin Rao Shuqin Chen +3 位作者 Isaac Lun Lizhi Shen Ang Yu Huijun Fu 《Building Simulation》 SCIE EI CSCD 2023年第4期641-662,共22页
The large-scale application of renewable energy is an important strategy to achieve the goal of carbon neutrality in the building sector.Energy flexibility is essential for ensuring balance between energy demand and s... The large-scale application of renewable energy is an important strategy to achieve the goal of carbon neutrality in the building sector.Energy flexibility is essential for ensuring balance between energy demand and supply when targeting the maximum penetration rate of renewable energy during the operation of regional integrated energy systems.Revealing the energy flexibility characteristics of centralized hot water systems,which are an important source of such flexibility,is of great significance to the optimal operation of regional integrated energy systems.Hence,in this study,based on the annual real-time monitoring data,the energy flexibility of the centralized hot water system in university dormitories is evaluated from the perspective of available storage capacity(C_(ADR)),recovery time(t_(recovery)),and storage efficiency(η_(ADR)),by the data-driven simulation method.The factors influencing the energy flexibility of the centralized hot water system are also analyzed.Available storage capacity has a strong positive correlation with daily water consumption and a strong negative correlation with daily mean outdoor temperature.These associations indicate that increased water use on the energy flexibility of the centralized hot water system is conducive to optimal dispatching.In contrast,higher outdoor temperature is unfavorable.The hourly mean value of the available storage capacity in spring and winter is found to be around 80 kWh in the daytime,and about twice that in summer and autumn.Recovery time is evenly distributed throughout the year,while t_(recovery)/C_(ADR)in spring and winter is about half that in summer.The storage efficiency was significantly higher in spring,summer,and winter than in autumn.The hourly mean storage efficiency was found to be about 40%in the daytime.The benefits of activating energy flexibility in spring and winter are the best,because these two seasons have higher available storage capacity and storage efficiency,while the benefit of activating energy flexibility is the highest at 6:00 a.m.,and very low from midnight to 3:00 a.m. 展开更多
关键词 energy flexibility centralized hot water system university dormitory back propagation(BP)neural network
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部