Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a s...Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development.展开更多
National Center for Nanoscience and Technology(NCNST),China,established in December 2003,is co-founded by the Chinese Academy of Sciences(CAS)and the Ministry of Education as an institution dedicated to fundamental an...National Center for Nanoscience and Technology(NCNST),China,established in December 2003,is co-founded by the Chinese Academy of Sciences(CAS)and the Ministry of Education as an institution dedicated to fundamental and applied researches in the field of nanoscience and technology,especially those with important potential applications.NCNST is operated under the supervision of the Governing Board and aims to become a world-class research center,as well as public technological platform and young talents training center in the field,and to act as an important bridge for international academic exchange and collaboration.The NCNST currently has three CAS Key Laboratories:the CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety,the CAS Key Laboratory for Standardization and Measurement for Nanotechnology and the CAS Key Laboratory for Nanosystem and Hierarchical Fabrication.In 2020,the CAS Key Laboratory of Nanophotonic Materials and Devices started construction.Besides,there are Division of Nanotechnology Development,Nanofabrication Laboratory,Intelligent Nanosensing Laboratory and Theoretical Laboratory.展开更多
Metal halide perovskites are promising materials for solar cells because of high power conversion efficiency(PCE),tun-able bandgap,high defect tolerance,long carrier diffusion length,and low-cost fabrication[1-7].The ...Metal halide perovskites are promising materials for solar cells because of high power conversion efficiency(PCE),tun-able bandgap,high defect tolerance,long carrier diffusion length,and low-cost fabrication[1-7].The PCE for perovskite solar cells(PSCs)reaches 26.14%for single-junction cells,29.1%for perovskite/perovskite tandem cells and 33.9%for perovskite/silicon tandem cells,being comparable to that for silicon and other thin-film solar cells[8-10].Perovskite solar cells have been made by solution methods including spin-coat-ing,blade coating and printing[11,12].展开更多
The power conversion efficiency(PCE)for single-junction organic solar cells(OSCs),wherein the photoactive layer is a typical bulk-heterojunction containing donor and acceptor materials,has surpassed 19%[1−4].The advan...The power conversion efficiency(PCE)for single-junction organic solar cells(OSCs),wherein the photoactive layer is a typical bulk-heterojunction containing donor and acceptor materials,has surpassed 19%[1−4].The advance is ascribed to the development of Y-series non-fullerene acceptors(NFAs)[5,6]and polymer donors[7−13],and the refined control of the blend film morphology.展开更多
In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a func...In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanopartides, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail.展开更多
A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOO...A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOOH,M=Fe,Co,Ni)as a model system,we investigate the effect of the transition-metal electrocatalysts on the oxygen evolution reaction(OER).Among the photoanodes with the three different electrocatalysts,the best OER activity,with a low-onset potential of∼1.01 VRHE,a high photocurrent density of 24.10 mA cm^(-2)at 1.23 VRHE,and a remarkable saturation photocurrent density of 38.82 mA cm^(-2),was obtained with the NiOOH overlayer under AM 1.5G simulated sunlight(100 mW cm^(-2))in 1 M KOH electrolyte.The optimal interfacial engineering for electrocatalysts plays a key role for achieving high performance because it promotes interfacial charge transport,provides a larger number of surface active sites,and results in higher OER activity,compared to other electrocatalysts.This study provides insights into how electrocatalysts function in water-splitting devices to guide future studies of solar energy conversion.展开更多
Remarkable progress has been made in conjugated copoly-mer donors due to the development of novel fused-ring ac-ceptor(FRA)building units[1−15].The copolymers based on FRA units have delivered excellent power conversi...Remarkable progress has been made in conjugated copoly-mer donors due to the development of novel fused-ring ac-ceptor(FRA)building units[1−15].The copolymers based on FRA units have delivered excellent power conversion efficien-cies(PCEs)up to 18.69%in organic solar cells(OSCs)[16].Fused-ring aromatic lactones are promising FRA units[17−19].展开更多
Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To pr...Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs.展开更多
Metal halide perovskites have been regarded as remarkable materials for next-generation light-harvesting and light emission devices.Due to their unique optical properties,such as high absorption coefficient,high optic...Metal halide perovskites have been regarded as remarkable materials for next-generation light-harvesting and light emission devices.Due to their unique optical properties,such as high absorption coefficient,high optical gain,low trappingstate density,and ease of band gap engineering,perovskites promise to be used in lasing devices.In this article,the recent progresses of microlasers based on reduced-dimensional structures including nanoplatelets,nanowires,and quantum dots are reviewed from both fundamental photophysics and device applications.Furthermore,perovskite-based plasmonic nanolasers and polariton lasers are summarized.Perspectives on perovskite-based small lasers are also discussed.This review can serve as an overview and evaluation of state-of-the-art micro/nanolaser science.展开更多
In this research highlight,recent significant advances with hot-assisted blade-coating or air knife-assisted blade-coating of different perovskite compositions with bandgaps ranging from 1.3 eV to 1.9 eV(i.e.widebandg...In this research highlight,recent significant advances with hot-assisted blade-coating or air knife-assisted blade-coating of different perovskite compositions with bandgaps ranging from 1.3 eV to 1.9 eV(i.e.widebandgap or small-bandgap perovskites with mixed cations and anions,2D/3D perovskites,Pb/Sn binary perovskites,and all-inorganic perovskites)for single-junction or tandem PSCs are discussed,with an emphasis on elucidating the distinct ink formulation engineering strategies,crystal growth mechanisms,crystallization kinetics,and optoelectronic properties of the different perovskite compositions.展开更多
The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH...The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH template which was pre-deposited onto the carbon cloth substrate.In this electrode configuration,carbon cloth is the three dimensional and conductive skeleton;NiCo-LDH nanosheets,as the template,ensure the oriented growth of MoS2 nanosheet arrays.Therefore,more MoS_(2) active sites are exposed and the catalyst exhibits good hydrogen evolution reaction activity.展开更多
Nano-CaCO3 incorporated polystyrene composites are compounded by twin-screw extrusion. Tensile and compact tensile tests show that the strength and toughness of polystyrene are decreased after the addition of nano-CaC...Nano-CaCO3 incorporated polystyrene composites are compounded by twin-screw extrusion. Tensile and compact tensile tests show that the strength and toughness of polystyrene are decreased after the addition of nano-CaCO3 particles. Fracture surface analysis suggests that the defects induced by interfacial debonding and nano-filler agglomerations would be the key factors responsible for the declined strength and toughness. Nevertheless, it has to be stated, if the applied stress is lower than the ultimate strength, the rigid nanoparticles would still stiffen the polymer molecules, and resist polymer chain mobility. Hence, the improved tensile modulus and creep resistance can be obtained with the increasing contents of nanoparticles.展开更多
Perovskite solar cells based on organic–inorganic hybrid perovskite materials have become a research hotspot in photovoltaics field due to their outstanding power conversion efficiency (PCE)[1]. Nonetheless, the orga...Perovskite solar cells based on organic–inorganic hybrid perovskite materials have become a research hotspot in photovoltaics field due to their outstanding power conversion efficiency (PCE)[1]. Nonetheless, the organic cations are volatile and have rotation freedom, which is not good for photoand thermal-stability of the devices.展开更多
Building a bridge between properties and structures has always been the key focus of any materials research.Nowadays,energy storage materials,especially lithium-ion batteries,are crucial both in daily life and for the...Building a bridge between properties and structures has always been the key focus of any materials research.Nowadays,energy storage materials,especially lithium-ion batteries,are crucial both in daily life and for the research community.Therefore,there is an urgent need to discover the functionality origin of battery performances to improve and design better material systems.Functionality originates from local symmetry and field.Local symmetry can be described by four fundamental degrees of freedom:lattice,charge,orbital,and spin.On the basis of this,detailed descriptions of the battery's properties in terms of lattice,charge,orbital,and spin are presented from the perspective of frontier transmission electron microscopy in this review.Besides,frontier in situ methods are introduced to record the dynamic structural evolution process during the battery cycle.Future discussion from the perspectives of both materials and characterizations is provided at the end of this review.展开更多
Nickel oxide(NiOx)has exhibited great potential as an inorganic hole transport layer(HTL)in perovskite solar cells(PSCs)due to its wide optical bandgap and superior stability.In this study,we have modulated the Ni26 v...Nickel oxide(NiOx)has exhibited great potential as an inorganic hole transport layer(HTL)in perovskite solar cells(PSCs)due to its wide optical bandgap and superior stability.In this study,we have modulated the Ni26 vacancies in NiOx film by controlling deposition temperature in a hot-casting process,resulting the change of coordination structure and charge state of NiOx.Moreover,the change of the HOMO level of NiOx makes it more compatible with perovskite to decrease energy losses and enhance hole carrier injection efficiency.Besides,the defect modulation in the electronic structure of NiOx is beneficial for increasing the electrical conductivity and mobility,which are considered to achieve the balance of charge carrier transport and avoid charge accumulation at the interface between perovskite and HTL effectively.Both experimental analyses and theoretical calculations reveal the increase of nickel vacancy defects change the electronic structure of NiOx by increasing the ratio of Ni3^+/Ni2^+-and improving the p-type characteristics.Accordingly,an optimal deposition temperature at 120℃enabled a 36.24%improvement in the power conversion efficiency compared to that deposited at room temperature(25℃).Therefore,this work provides a facile method to manipulate the electronic structure of NiOx to improve the charge carrier transport and photovoltaic performance of related PSCs.展开更多
Photothermal cancer therapy is an alternative to chemotherapy, radiotherapy, and surgery. With the development of nanophotothermal agents, this therapy holds immense potential in clinical translation. However, the tox...Photothermal cancer therapy is an alternative to chemotherapy, radiotherapy, and surgery. With the development of nanophotothermal agents, this therapy holds immense potential in clinical translation. However, the toxicity issues derived from the fact that nanomaterials are trapped and retained in the reticuloendothelial systems limit their biomedical application.Developing biodegradable photothermal agents is the most practical route to address these concerns. In addition to the physicochemical properties of nanomaterials, various internal and external stimuli play key roles on nanomaterials uptake,transport, and clearance. In this review, we summarized novel nanoplatforms for photothermal therapy; these nanoplatforms can elicit stimuli-triggered degradation. We focused on the recent innovative designs endowed with biodegradable photothermal agents under different stimuli, including enzyme, p H, and near-infrared(NIR) laser.展开更多
Bulk-heterojunction polymer solar cells(PSCs)as a clean and renewable energy resource have attracted great attention from both academia and industry[1−20].Recently non-fullerene PSCs based on polymer donors(PDs)and sm...Bulk-heterojunction polymer solar cells(PSCs)as a clean and renewable energy resource have attracted great attention from both academia and industry[1−20].Recently non-fullerene PSCs based on polymer donors(PDs)and small molecule acceptors(SMAs)have achieved remarkable success with the power conversion efficiencies(PCEs)over 18%[21−26].展开更多
The sluggish kinetics of oxygen reduction reaction(ORR)hinders the commercialization of Zn‐air batteries(ZABs).Manipulating the electronic structure of electrocatalysts to optimize the adsorption energy of oxygen‐co...The sluggish kinetics of oxygen reduction reaction(ORR)hinders the commercialization of Zn‐air batteries(ZABs).Manipulating the electronic structure of electrocatalysts to optimize the adsorption energy of oxygen‐containing intermediates during the 4e–ORR offers a practical route toward improving ORR kinetics.Herein,we designed a novel ORR electrocatalyst containing Co single atoms and nanoparticles supported by carbon dots‐derived carbon nanoflowers(Co SAs/NPs CNF).Co SAs/NPs CNF possessed a very high ORR activity(E_(1/2) of the Co SAs/NPs CNF catalyst is 0.83 V(vs.RHE)),and outstanding catalytic performance and stability when used as the air‐electrode catalyst in rechargeable ZABs(152.32 mW cm^(-2),1000.58 mWh gZn^(–1),and over 1300 cycles at a current density of 5 mA cm^(-2)).The Co SAs and Co NPs cooperated to improve electron and proton transfer processes during ORR.Theoretical calculations revealed that the presence of adjacent Co NPs optimized the electronic structure of the isolated Co‐N_(4) sites,significantly lowering the energy barriers for the rate‐determining step in ORR(adsorption of*OOH)and thereby delivering outstanding ORR performance.This work reveals that the combination of supported single‐atom sites and metal nanoparticles can be highly beneficial for ORR electrocatalysis,outperforming catalysts containing only Co SAs or Co NPs.展开更多
Water electrolysis using proton-exchange membranes is one of the most promising technologies for carbon-neutral and sustainable energy production.Generally,the overall efficiency of water splitting is limited by the o...Water electrolysis using proton-exchange membranes is one of the most promising technologies for carbon-neutral and sustainable energy production.Generally,the overall efficiency of water splitting is limited by the oxygen evolution reaction(OER).Nevertheless,a trade-off between activity and stability exists for most electrocatalytic materials in strong acids and oxidizing media,and the development of efficient and stable catalytic materials has been an important focus of research.In this view,gaining in-depth insights into the OER system,particularly the interactions between reaction intermediates and active sites,is significantly important.To this end,this review introduces the fundamentals of the OER over Ru-based materials,including the conventional adsorbate evolution mechanism,lattice oxygen oxidation mechanism,and oxide path mechanism.Moreover,the up-to-date progress of representative modifications for improving OER performance is further discussed with reference to specific mechanisms,such as tuning of geometric,electronic structures,incorporation of proton acceptors,and optimization of metal-oxygen covalency.Finally,some valuable insights into the challenges and opportunities for OER electrocatalysts are provided with the aim to promote the development of next-generation catalysts with high activity and excellent stability.展开更多
Ultra-thin flexible films have attracted wide attention because of their excellent ductility and potential versatility.In particular,the energy-harvesting films(EHFs)have become a research hotspot because of the indis...Ultra-thin flexible films have attracted wide attention because of their excellent ductility and potential versatility.In particular,the energy-harvesting films(EHFs)have become a research hotspot because of the indispensability of power source in various devices.However,the design and fabrication of such films that can capture or transform di erent types of energy from environments for multiple usages remains a challenge.Herein,the multifunctional flexible EHFs with e ective electro-/photo-thermal abilities are proposed by successive spraying Ag microparticles and MXene suspension between on waterborne polyurethane films,supplemented by a hot-pressing.The optimal coherent film exhibits a high electrical conductivity(1.17×10^(4)S m^(-1)),excellent Joule heating performance(121.3℃)at 2 V,and outstanding photo-thermal performance(66.2℃ within 70 s under 100 mW cm^(-1)).In addition,the EHFs-based single-electrode triboelectric nanogenerators(TENG)give short-circuit transferred charge of 38.9 nC,open circuit voltage of 114.7 V,and short circuit current of 0.82μA.More interestingly,the output voltage of TENG can be further increased via constructing the double triboelectrification layers.The comprehensive ability for harvesting various energies of the EHFs promises their potential to satisfy the corresponding requirements.展开更多
基金supported by the Key Research Projects of Universities of Henan Province,No.21A320064 (to XS)the National Key Research and Development Program of China,No.2021YFA1201504 (to LZ)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Science,No.XDB36000000 (to CW)the National Natural Science Foundation of China,Nos.31971295,12374406 (both to LZ)。
文摘Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development.
文摘National Center for Nanoscience and Technology(NCNST),China,established in December 2003,is co-founded by the Chinese Academy of Sciences(CAS)and the Ministry of Education as an institution dedicated to fundamental and applied researches in the field of nanoscience and technology,especially those with important potential applications.NCNST is operated under the supervision of the Governing Board and aims to become a world-class research center,as well as public technological platform and young talents training center in the field,and to act as an important bridge for international academic exchange and collaboration.The NCNST currently has three CAS Key Laboratories:the CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety,the CAS Key Laboratory for Standardization and Measurement for Nanotechnology and the CAS Key Laboratory for Nanosystem and Hierarchical Fabrication.In 2020,the CAS Key Laboratory of Nanophotonic Materials and Devices started construction.Besides,there are Division of Nanotechnology Development,Nanofabrication Laboratory,Intelligent Nanosensing Laboratory and Theoretical Laboratory.
基金We thank the Key Research and Development Project of Anhui Province(2023t07020005)Natural Science Foundation of Anhui Province(2308085QE137)+2 种基金Anhui Innovation&Entrepreneurship Support Plan for Returned Overseas Students(2022LCX018)L.Ding thanks the Nation al Key Research and Development Program of China(2022YFB3803300,2023YFE0116800)Beijing Natural Science Foundation(IS23037).
文摘Metal halide perovskites are promising materials for solar cells because of high power conversion efficiency(PCE),tun-able bandgap,high defect tolerance,long carrier diffusion length,and low-cost fabrication[1-7].The PCE for perovskite solar cells(PSCs)reaches 26.14%for single-junction cells,29.1%for perovskite/perovskite tandem cells and 33.9%for perovskite/silicon tandem cells,being comparable to that for silicon and other thin-film solar cells[8-10].Perovskite solar cells have been made by solution methods including spin-coat-ing,blade coating and printing[11,12].
基金supported by the National Natural Science Foundation of China (52373175)High-level Innovative Talents Foundation of Guizhou Province (QKHPTRCGCC[2023]024)+3 种基金Science and Technology Innovation Team of Higher Education Department of Guizhou Province(QJJ[2023]053)Natural Science Foundation of Guizhou University (GZUTGH[2023]12, GZUTGH[2023]71)National Key Research and Development Program of China(2022YFB3803300, 2023YFE0116800)Beijing Natural Science Foundation (IS23037)
文摘The power conversion efficiency(PCE)for single-junction organic solar cells(OSCs),wherein the photoactive layer is a typical bulk-heterojunction containing donor and acceptor materials,has surpassed 19%[1−4].The advance is ascribed to the development of Y-series non-fullerene acceptors(NFAs)[5,6]and polymer donors[7−13],and the refined control of the blend film morphology.
基金supported by the Chinese Natural Science Foundation Project (Grant No. 30970784 and 81171455)a National Distinguished Young Scholars Grant (Grant No. 31225009) from the National Natural Science Foundation of China+5 种基金the National Key Basic Research Program of China (Grant No. 2009CB930200)the Chinese Academy of Sciences (CAS) ‘Hundred Talents Program’ (Grant No. 07165111ZX)the CAS Knowledge Innovation Program, and the State HighTech Development Plan (Grant No. 2012AA020804)the ‘Strategic Priority Research Program’ of the Chinese Academy of Sciences (Grant No. XDA09030301)NIH/NIMHD 8 G12 MD007597USAMRMC W81XWH-10-1-0767 grants
文摘In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanopartides, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail.
文摘A comprehensive understanding of the role of the electrocatalyst in photoelectrochemical(PEC)water splitting is central to improving its performance.Herein,taking the Si-based photoanodes(n^(+)p-Si/SiO_(x)/Fe/FeOx/MOOH,M=Fe,Co,Ni)as a model system,we investigate the effect of the transition-metal electrocatalysts on the oxygen evolution reaction(OER).Among the photoanodes with the three different electrocatalysts,the best OER activity,with a low-onset potential of∼1.01 VRHE,a high photocurrent density of 24.10 mA cm^(-2)at 1.23 VRHE,and a remarkable saturation photocurrent density of 38.82 mA cm^(-2),was obtained with the NiOOH overlayer under AM 1.5G simulated sunlight(100 mW cm^(-2))in 1 M KOH electrolyte.The optimal interfacial engineering for electrocatalysts plays a key role for achieving high performance because it promotes interfacial charge transport,provides a larger number of surface active sites,and results in higher OER activity,compared to other electrocatalysts.This study provides insights into how electrocatalysts function in water-splitting devices to guide future studies of solar energy conversion.
文摘Remarkable progress has been made in conjugated copoly-mer donors due to the development of novel fused-ring ac-ceptor(FRA)building units[1−15].The copolymers based on FRA units have delivered excellent power conversion efficien-cies(PCEs)up to 18.69%in organic solar cells(OSCs)[16].Fused-ring aromatic lactones are promising FRA units[17−19].
基金the financial support from the National Natural Science Foundation of China(No.91963118)the 111 Project(No.B13013)supported by the Open Project Program of Key Laboratory of Preparation and Application of Environmental Friendly Materials(Jilin Normal University),Ministry of Education,China(No.2020004)。
文摘Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0304600,2017YFA0205700,and2016YFA0200700)the National Natural Science Foundation of China(Grant Nos.61774003 and 21673054)+2 种基金the Start-up Funding of Peking University,National Young 1000-talents Scholarship of Chinathe Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,China(Grant No.KF201604)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-SYS031)
文摘Metal halide perovskites have been regarded as remarkable materials for next-generation light-harvesting and light emission devices.Due to their unique optical properties,such as high absorption coefficient,high optical gain,low trappingstate density,and ease of band gap engineering,perovskites promise to be used in lasing devices.In this article,the recent progresses of microlasers based on reduced-dimensional structures including nanoplatelets,nanowires,and quantum dots are reviewed from both fundamental photophysics and device applications.Furthermore,perovskite-based plasmonic nanolasers and polariton lasers are summarized.Perspectives on perovskite-based small lasers are also discussed.This review can serve as an overview and evaluation of state-of-the-art micro/nanolaser science.
基金the financial supports from the National Key R&D Program of China(2019YFB1503200)the GDUPS(2016)+4 种基金the NSF of Guangdong Province(2019B1515120050)the Fundamental Research Funds for the Central Universities(19lgjc07)the financial support from the Guangdong Basic and Applied Basic Research Foundation(2019A1515110770)National Key Research and Development Program of China(2017YFA0206600)National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)for financial support
文摘In this research highlight,recent significant advances with hot-assisted blade-coating or air knife-assisted blade-coating of different perovskite compositions with bandgaps ranging from 1.3 eV to 1.9 eV(i.e.widebandgap or small-bandgap perovskites with mixed cations and anions,2D/3D perovskites,Pb/Sn binary perovskites,and all-inorganic perovskites)for single-junction or tandem PSCs are discussed,with an emphasis on elucidating the distinct ink formulation engineering strategies,crystal growth mechanisms,crystallization kinetics,and optoelectronic properties of the different perovskite compositions.
基金financial support for this work from the Strategic Priority Research Program of CAS(XDB36030000)the National Natural Science Foundation of China(21422303,21573049,21872043,22002028)+3 种基金the National Basic Research Plan of China(2016YFA0201600)the Beijing Natural Science Foundation(2142036)the Youth Innovation Promotion Associationthe Special Program of “One Belt One Road”of CAS。
文摘The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH template which was pre-deposited onto the carbon cloth substrate.In this electrode configuration,carbon cloth is the three dimensional and conductive skeleton;NiCo-LDH nanosheets,as the template,ensure the oriented growth of MoS2 nanosheet arrays.Therefore,more MoS_(2) active sites are exposed and the catalyst exhibits good hydrogen evolution reaction activity.
基金sponsored by the National Key Research Program of China (No2006CB932304)a Key International Collaboration Project (No2008DFA51220) of the China Ministry of Science and Technologya Key Item ofthe Knowledge Innovation Project of Chinese Academy of Sciences (NoKJCX1YW07)
文摘Nano-CaCO3 incorporated polystyrene composites are compounded by twin-screw extrusion. Tensile and compact tensile tests show that the strength and toughness of polystyrene are decreased after the addition of nano-CaCO3 particles. Fracture surface analysis suggests that the defects induced by interfacial debonding and nano-filler agglomerations would be the key factors responsible for the declined strength and toughness. Nevertheless, it has to be stated, if the applied stress is lower than the ultimate strength, the rigid nanoparticles would still stiffen the polymer molecules, and resist polymer chain mobility. Hence, the improved tensile modulus and creep resistance can be obtained with the increasing contents of nanoparticles.
基金supported by the National Natural Science Foundation of China (51872321, 11874402, 52072402,51627803)the National Key Research and Development Program of China (2018YFB1500101)+1 种基金the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China (51773045, 21772030, 51922032, 21961160720)for financial support。
文摘Perovskite solar cells based on organic–inorganic hybrid perovskite materials have become a research hotspot in photovoltaics field due to their outstanding power conversion efficiency (PCE)[1]. Nonetheless, the organic cations are volatile and have rotation freedom, which is not good for photoand thermal-stability of the devices.
基金China National Postdoctoral Program for Innovative Talents,Grant/Award Number:BX20190326National Natural Science Foundation of China,Grant/Award Numbers:52002396,51672307,51421002,52025025。
文摘Building a bridge between properties and structures has always been the key focus of any materials research.Nowadays,energy storage materials,especially lithium-ion batteries,are crucial both in daily life and for the research community.Therefore,there is an urgent need to discover the functionality origin of battery performances to improve and design better material systems.Functionality originates from local symmetry and field.Local symmetry can be described by four fundamental degrees of freedom:lattice,charge,orbital,and spin.On the basis of this,detailed descriptions of the battery's properties in terms of lattice,charge,orbital,and spin are presented from the perspective of frontier transmission electron microscopy in this review.Besides,frontier in situ methods are introduced to record the dynamic structural evolution process during the battery cycle.Future discussion from the perspectives of both materials and characterizations is provided at the end of this review.
基金financially supported by the National Natural Science Foundation of China NSFC(51702038)the Recruitment Program for Young Professionals+1 种基金the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)for financial support。
文摘Nickel oxide(NiOx)has exhibited great potential as an inorganic hole transport layer(HTL)in perovskite solar cells(PSCs)due to its wide optical bandgap and superior stability.In this study,we have modulated the Ni26 vacancies in NiOx film by controlling deposition temperature in a hot-casting process,resulting the change of coordination structure and charge state of NiOx.Moreover,the change of the HOMO level of NiOx makes it more compatible with perovskite to decrease energy losses and enhance hole carrier injection efficiency.Besides,the defect modulation in the electronic structure of NiOx is beneficial for increasing the electrical conductivity and mobility,which are considered to achieve the balance of charge carrier transport and avoid charge accumulation at the interface between perovskite and HTL effectively.Both experimental analyses and theoretical calculations reveal the increase of nickel vacancy defects change the electronic structure of NiOx by increasing the ratio of Ni3^+/Ni2^+-and improving the p-type characteristics.Accordingly,an optimal deposition temperature at 120℃enabled a 36.24%improvement in the power conversion efficiency compared to that deposited at room temperature(25℃).Therefore,this work provides a facile method to manipulate the electronic structure of NiOx to improve the charge carrier transport and photovoltaic performance of related PSCs.
文摘Photothermal cancer therapy is an alternative to chemotherapy, radiotherapy, and surgery. With the development of nanophotothermal agents, this therapy holds immense potential in clinical translation. However, the toxicity issues derived from the fact that nanomaterials are trapped and retained in the reticuloendothelial systems limit their biomedical application.Developing biodegradable photothermal agents is the most practical route to address these concerns. In addition to the physicochemical properties of nanomaterials, various internal and external stimuli play key roles on nanomaterials uptake,transport, and clearance. In this review, we summarized novel nanoplatforms for photothermal therapy; these nanoplatforms can elicit stimuli-triggered degradation. We focused on the recent innovative designs endowed with biodegradable photothermal agents under different stimuli, including enzyme, p H, and near-infrared(NIR) laser.
基金the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province(2021B1515020027)the National Natural Science Foundation of China(21801124 and 21774055)+2 种基金Shenzhen Science and Technology Innovation Commission(JCYJ20180504165709042)the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)for financial support.
文摘Bulk-heterojunction polymer solar cells(PSCs)as a clean and renewable energy resource have attracted great attention from both academia and industry[1−20].Recently non-fullerene PSCs based on polymer donors(PDs)and small molecule acceptors(SMAs)have achieved remarkable success with the power conversion efficiencies(PCEs)over 18%[21−26].
文摘The sluggish kinetics of oxygen reduction reaction(ORR)hinders the commercialization of Zn‐air batteries(ZABs).Manipulating the electronic structure of electrocatalysts to optimize the adsorption energy of oxygen‐containing intermediates during the 4e–ORR offers a practical route toward improving ORR kinetics.Herein,we designed a novel ORR electrocatalyst containing Co single atoms and nanoparticles supported by carbon dots‐derived carbon nanoflowers(Co SAs/NPs CNF).Co SAs/NPs CNF possessed a very high ORR activity(E_(1/2) of the Co SAs/NPs CNF catalyst is 0.83 V(vs.RHE)),and outstanding catalytic performance and stability when used as the air‐electrode catalyst in rechargeable ZABs(152.32 mW cm^(-2),1000.58 mWh gZn^(–1),and over 1300 cycles at a current density of 5 mA cm^(-2)).The Co SAs and Co NPs cooperated to improve electron and proton transfer processes during ORR.Theoretical calculations revealed that the presence of adjacent Co NPs optimized the electronic structure of the isolated Co‐N_(4) sites,significantly lowering the energy barriers for the rate‐determining step in ORR(adsorption of*OOH)and thereby delivering outstanding ORR performance.This work reveals that the combination of supported single‐atom sites and metal nanoparticles can be highly beneficial for ORR electrocatalysis,outperforming catalysts containing only Co SAs or Co NPs.
基金partly supported by the National Natural Science Foundation of China(NSFCs,52202050,52122308,21905253,51973200)the China Postdoctoral Science Foundation(2022TQ0286)the Natural Science Foundation of Henan(202300410372)。
文摘Water electrolysis using proton-exchange membranes is one of the most promising technologies for carbon-neutral and sustainable energy production.Generally,the overall efficiency of water splitting is limited by the oxygen evolution reaction(OER).Nevertheless,a trade-off between activity and stability exists for most electrocatalytic materials in strong acids and oxidizing media,and the development of efficient and stable catalytic materials has been an important focus of research.In this view,gaining in-depth insights into the OER system,particularly the interactions between reaction intermediates and active sites,is significantly important.To this end,this review introduces the fundamentals of the OER over Ru-based materials,including the conventional adsorbate evolution mechanism,lattice oxygen oxidation mechanism,and oxide path mechanism.Moreover,the up-to-date progress of representative modifications for improving OER performance is further discussed with reference to specific mechanisms,such as tuning of geometric,electronic structures,incorporation of proton acceptors,and optimization of metal-oxygen covalency.Finally,some valuable insights into the challenges and opportunities for OER electrocatalysts are provided with the aim to promote the development of next-generation catalysts with high activity and excellent stability.
基金National Natural Science Foundation of China(51803190)National Key R&D Program of China(2019YFA0706802)for financial support。
文摘Ultra-thin flexible films have attracted wide attention because of their excellent ductility and potential versatility.In particular,the energy-harvesting films(EHFs)have become a research hotspot because of the indispensability of power source in various devices.However,the design and fabrication of such films that can capture or transform di erent types of energy from environments for multiple usages remains a challenge.Herein,the multifunctional flexible EHFs with e ective electro-/photo-thermal abilities are proposed by successive spraying Ag microparticles and MXene suspension between on waterborne polyurethane films,supplemented by a hot-pressing.The optimal coherent film exhibits a high electrical conductivity(1.17×10^(4)S m^(-1)),excellent Joule heating performance(121.3℃)at 2 V,and outstanding photo-thermal performance(66.2℃ within 70 s under 100 mW cm^(-1)).In addition,the EHFs-based single-electrode triboelectric nanogenerators(TENG)give short-circuit transferred charge of 38.9 nC,open circuit voltage of 114.7 V,and short circuit current of 0.82μA.More interestingly,the output voltage of TENG can be further increased via constructing the double triboelectrification layers.The comprehensive ability for harvesting various energies of the EHFs promises their potential to satisfy the corresponding requirements.