In this article an attempt to determine the influence of mining factors on the seismic activity during the longwall mining of the upper layer of coal seam no.405/2 in one of the Polish hard coal mines in the Upper Sil...In this article an attempt to determine the influence of mining factors on the seismic activity during the longwall mining of the upper layer of coal seam no.405/2 in one of the Polish hard coal mines in the Upper Silesian Coal Basin was conducted.Two longwall panels were mined in analogous geological conditions and based on the same mining system and technology.However,there was significant difference with regards to the mining factors,which was reflected in the observed seismic activity.Some tools used in mining seismology were applied to illustrate the aforementioned influence of mining factors,e.g.the frequency-energy distribution,the frequency-magnitude distribution,the 2 D distribution of released seismic energy,the relationship between released seismic energy and the volume of mined coal,the Benioff strain release,and the Gutenberg-Richter(GR)b coefficient distribution(b is the proportion between high and low energy tremors).Concerning the Benioff strain release,a new solution,based on the slope of a fitted line in a moving time window,is proposed.展开更多
Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capaci...Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capacity of the mining plant is not fully used. Methane hazard, which may occur during planned coal exploitation, is presented in this paper. Following parameters are taken into consideration in the forecasts: coal extraction parameters, geological and mining conditions, deposit's methane saturation degree and impact of coal exploitation on the degasification coefficient of the seams, which are under the influence of relaxation zone. This paper presents the results of the analysis aiming to verify applicability of drainage ahead of mining of the coal seams by using surface directional wells. Based on the collected data(coal seams' structural maps, profiles of the exploratory wells, geological cross-sections), the lab tests of drilling cores and direct wells' tests, static model of the deposit was constructed and suitable grid of directional wells from the surface was designed. Comparison of forecasted methane emission volume between the two methods is investigated. The results indicated the necessity of performing appropriate deposit's stimulations in order to increase effectiveness of drainage ahead of mining.展开更多
Despite international efforts to limit worker exposure to coal dust,it continues to impact the health of thousands of miners across Europe.Airborne coal dust has been studied to improve risk models and its control to ...Despite international efforts to limit worker exposure to coal dust,it continues to impact the health of thousands of miners across Europe.Airborne coal dust has been studied to improve risk models and its control to protect workers.Particle size distribution analyses shows that using spraying systems to suppress airborne dusts can reduce particulate matter concentrations and that coals with higher ash yields produce finer dust.There are marked chemical differences between parent coals and relatively coarse deposited dusts(up to _(500)μm,DD_(500)).Enrichments in Ca,K,Ba,Se,Pb,Cr,Mo,Ni and especially As,Sn,Cu,Zn and Sb in the finest respirable dust fractions could originate from:(i)mechanical machinery wear;(ii)variations in coal mineralogy;(iii)coal fly ash used in shotcrete,and carbonates used to reduce the risk of explosions.Unusual enrichments in Ca in mine dusts are attributed to the use of such concrete,and elevated K to raised levels of phyllosilicate mineral matter.Sulphur concentrations are higher in the parent coal than in the DD_(500),probably due to relatively lower levels of organic matter.Mass concentrations of all elements observed in this study remained below occupational exposure limits.展开更多
The problem of proper assessment of the technical functionality of rock bolt support systems is still valid.Many research centers have undertaken eforts to diagnose and monitor the technical state of such a support sy...The problem of proper assessment of the technical functionality of rock bolt support systems is still valid.Many research centers have undertaken eforts to diagnose and monitor the technical state of such a support system used in mines and tunneling.With that aim the method of quality assessment of grouted rock bolts was invented and a relevant apparatus was constructed.The method concerns non-destructive identifcation of discontinuity of a resin layer(grout)surrounding rock bolts.The method is based on an impact excitation of a rock bolt and uses modal analysis procedures.Assuming that the installed rock bolt acts as an oscillator,diferent lengths and positions of grouting discontinuity alter its modal parameters.The extraction of these modal parameters,of which a resonant frequency is seen as the most valued,enable the relevant identifcation of grout discontinuity.After constructing a prototype version and validating the results for known cases of resin discontinuity in an experimental coal mine,the apparatus fulflling ATEX requirements was developed.Subsequently that version was also verifed both in laboratory conditions and in an experimental coal mine.As necessary for proper identifcation of discontinuity length,the reference data base was developed and elaborated consisting of a very large number of fnite element models(FE models),namely discontinuity cases.The models encountered diferent rock bolt lengths and diameters,diferent rock strata parameters and diferent positions and lengths of resin layers.Then the method was used in a working coal mine to monitor a technical state of rock bolt support system mounted to reinforce long underground openings.The data base was utilized as reference for investigated rock bolts.展开更多
Mining-induced seismicity occurs in numerous underground mines worldwide where extraction is conducted at great depths or in areas characterised by complex tectonic structure.It is accompanied by rock bursts,which res...Mining-induced seismicity occurs in numerous underground mines worldwide where extraction is conducted at great depths or in areas characterised by complex tectonic structure.It is accompanied by rock bursts,which result in the loss of working functionality and the possibility of accidents among personnel.The issue of a constant and reliable seismic hazard evaluation is of key signifcance for both the safety of miners and the stability of production.Research on its improvement is directed at developing new interpretive solutions and methods.The nature of the presented solution is the complex interpretation of seismological data that characterise rock mass seismicity and of underground measurement results in the form of a map presenting the longitudinal wave propagation velocity distribution in the rock surrounding the mined coal seam.The solution was tested in hard coal mines located in the Upper Silesian Coal Basin.The mines are equipped with a modern seismological system enabling the constant monitoring of seismicity together with hazard level evaluation as well as with seismic apparatus for conducting periodic measurements of the seismic wave propagation velocity before the mining face.Comprehensive seismic hazard evaluation criteria were determined based on the obtained results,involving the anomaly of the Gutenberg–Richter law“b”value and the maximum longitudinal seismic wave propagation velocity in the roof rock.The obtained experience and the result validation of this new comprehensive hazard evaluation method confrm its practical usefulness and indicate the directions of improvement for the solution in question.展开更多
Correction:International Journal of Coal Science&Technology(2022)9:88 https:/doi.org/10.1007/s40789-022-00553-6 In this article,the author would like to change the Ethics Declaration as below:EthicsDeclarations Sc...Correction:International Journal of Coal Science&Technology(2022)9:88 https:/doi.org/10.1007/s40789-022-00553-6 In this article,the author would like to change the Ethics Declaration as below:EthicsDeclarations Scientific work published within the framework of an international project DD-MET co-financed by the Research Fund for Coal and Steel(RFCS),(Grant Agreement:847338)and by the Polish Ministry of Science and Higher Education(Contract no.5073/FBWiS/19/2020/2 and 5038/FBWiS/2019/2).展开更多
Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini...Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface.展开更多
In the paper results of passive tomography calculations have been presented to assess rockburst hazard and locate high seismic activity zones in the vicinity of longwall 306 in Zabrze Bielszowice coal mine. The area o...In the paper results of passive tomography calculations have been presented to assess rockburst hazard and locate high seismic activity zones in the vicinity of longwall 306 in Zabrze Bielszowice coal mine. The area of study was 1000 m in X direction by 900 m in Y direction. The zones of high values of P-wave propagation velocity have been found to correlate with the distribution of large seismic tremors.展开更多
The risk of rockbursts is one of the main threats in hard coal mines. Compared to other underground mines, the number of factors contributing to the rockburst at underground coal mines is much greater.Factors such as ...The risk of rockbursts is one of the main threats in hard coal mines. Compared to other underground mines, the number of factors contributing to the rockburst at underground coal mines is much greater.Factors such as the coal seam tendency to rockbursts, the thickness of the coal seam, and the stress level in the seam have to be considered, but also the entire coal seam-surrounding rock system has to be evaluated when trying to predict the rockbursts. However, in hard coal mines, there are stroke or stress-stroke rockbursts in which the fracture of a thick layer of sandstone plays an essential role in predicting rockbursts. The occurrence of rockbursts in coal mines is complex, and their prediction is even more difficult than in other mines. In recent years, the interest in machine learning algorithms for solving complex nonlinear problems has increased, which also applies to geosciences. This study attempts to use machine learning algorithms, i.e. neural network, decision tree, random forest, gradient boosting, and extreme gradient boosting(XGB), to assess the rockburst hazard of an active hard coal mine in the Upper Silesian Coal Basin. The rock mass bursting tendency index WTGthat describes the tendency of the seam-surrounding rock system to rockbursts and the anomaly of the vertical stress component were applied for this purpose. Especially, the decision tree and neural network models were proved to be effective in correctly distinguishing rockbursts from tremors, after which the excavation was not damaged. On average, these models correctly classified about 80% of the rockbursts in the testing datasets.展开更多
Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor ...Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor array during longwall coal mining provide the data set used in the analyses. A spatially variable seismic velocity model is constructed using seismic event sources in a passive tomographic method. The resulting three-dimensional velocity model is used to relocate seismic event positions. An evolutionary optimization algorithm is implemented and used in both the velocity model development and in seeking improved event location solutions. Results obtained using the different velocity models are compared. The combination of the tomographic velocity model development and evolutionary search algorithm provides improvement to the event locations.展开更多
In the period of the first twenty years after World War II the number of fires in Polish hard coal mines reached annually the value of several thousands of cases. About 80% of fires constituted spontaneous fires. Inve...In the period of the first twenty years after World War II the number of fires in Polish hard coal mines reached annually the value of several thousands of cases. About 80% of fires constituted spontaneous fires. Investigations into the development of new methods of fire hazard prediction and implementation of new methods and means of fire prevention as well as the introduction of prohibition concerning the use of products manufactured of combustible organic materials in underground mine workings re-duced considerably the hazard of underground fire rise. The worked out at the Central Mining Institute (GIG) new method of un-derground fire prediction allows the correct selection of fire prevention means. The introduction into common use of fire-resistant conveyor belts, the main factor giving rise to spontaneous fires, and methods of assessment of their fire resistance eliminated prac-tically the fire hazard. These activities contributed in an efficient way to the reduction of the number of underground fires to a sat-isfactory level.展开更多
Presently the seismic and rock burst hazard appears still to be important in most of hard coal mines in Poland. Recently, there was a significant increase of seismic activity of the Silesian rock massive, when compare...Presently the seismic and rock burst hazard appears still to be important in most of hard coal mines in Poland. Recently, there was a significant increase of seismic activity of the Silesian rock massive, when compared with the previous years. In the period 1999-2008 the hard coal mines experienced 34 rock bursts. The causes of rockburst occurrence are presented based on the analysis of the rockbursts occurring in the Polish hard coal mines. The scale of the rockburst hazard has been characterized with respect to the mining and geological conditions of the existing exploitation. Of the factors influencing the state of rockburst hazard, the most essential one is considered the depth interval ranging from 600 m to 900 m. The basic factors that promote the rockburst occurrence are as follows: seismogenic strata, edges and remnants, goal, faults, pillars and excessive paneling.展开更多
Hard coal mines are required to constantly ventilate mine workings to ensure that the air composition is at a certain humidity and temperature level that is comfortable for underground mine workers,especially in deep ...Hard coal mines are required to constantly ventilate mine workings to ensure that the air composition is at a certain humidity and temperature level that is comfortable for underground mine workers,especially in deep deposits.All underground workings,which are part of the mine ventilation network,should be ventilated in a way that allows maintaining proper oxygen concentration not lower than 19%(by volume),and limits concentration of gases in the air such as methane,carbon monoxide or carbon dioxide.The air flow in the mine ventilation network may be disturbed due to the natural convergence(deformation)and lead to change in its original cross-section.Reducing the cross-sectional area of the mining excavation causes local resistances in the air flow and changes in aerodynamic potentials,which leads to emergency states in the mine ventilation network.This paper presents the results of numerical simulations of the influence of gateroad convergence on the ventilation process of a selected part of the mine ventilation network.The gateroad convergence was modelled with the finite element software PHASE 2.The influence of changes in the cross-sectional area of the gateroad on the ventilation process was carried out using the computational fluid dynamics software Ansys-Fluent.展开更多
Exploitation of coal seams in the Upper Silesian Coal Basin is conducted in complex and difficult conditions. These difficulties are connected with the occurrence of many natural mining hazards and limitations resulti...Exploitation of coal seams in the Upper Silesian Coal Basin is conducted in complex and difficult conditions. These difficulties are connected with the occurrence of many natural mining hazards and limitations resulting from the existing in this area surface infrastructure. One of the most important problems of Polish mining is the rock burst hazard and reliable evaluation of its condition. During long-years’ mining practice in Poland a comprehensive system of evaluation and control of this hazard was developed. In the paper the main aspects of rock burst hazard state evaluation will be presented, comprising: 1) rock mass inclination for rock bursts, i.e., rock strength properties investigation, comprehensive parametric evaluation of rock mass inclination for rock bursts, prognosis of seismic events induced by mining operations, methods of computer-aided modelling of stress and rock mass deformation parameters distribution, strategic rock mass classification under rock burst degrees; 2) immediate seismic and rock burst hazard state evaluation, i.e., low diameter test drilling method, seismologic and seismoacoustic method, comprehensive method of rock burst hazard state evaluation, non-standard methods of evaluation; 3) legal aspects of rock burst hazard state evaluation. Selected elements of the hazard state evaluation system are illustrated with specific practical examples of their application.展开更多
An increase in methane,spontaneous fire and bumping hazards in Polish hard coal mines,observed in the last two decades,led to the need to elaborate the tools allowing proper selection of a range of preventive measures...An increase in methane,spontaneous fire and bumping hazards in Polish hard coal mines,observed in the last two decades,led to the need to elaborate the tools allowing proper selection of a range of preventive measures to fight them at the stage of designing coal extraction.Designing the production of a coal seams in the conditions of associated methane and spontaneous fires hazards in Polish hard coal mines requires elaboration of the design standards for coal panels in gassy coal seams.This paper presents the guidelines on how to design production in the conditions of associated methane and spontaneous fire hazards.Presented tools and methodology since the very first research were many times verified by daily mining operations in the conditions of associated methane and spontaneous fire hazards,which confirms their significant contribution to the development of safe and economical mining operations.展开更多
Increasingly higher hard coal production capacity in Upper Silesian Coal Basin(Poland) in the last two decades led to significant increase of methane hazard occurrence in the workings of exploitation areas.An increase...Increasingly higher hard coal production capacity in Upper Silesian Coal Basin(Poland) in the last two decades led to significant increase of methane hazard occurrence in the workings of exploitation areas.An increase of methane content in the exploited seams and in the surrounding strata, associated with increasing depth of mining, results in higher methane emission into the longwall areas from exploited seams and degassing seams in the mining-induced de-stressed zone. Operational experience gained by the collieries confirms that reducing methane release during longwall operations often requires decreasing operating speed of a shearer in a shift. The paper presents an analysis of the parameters and factors,which have critical influence on the formation of methane hazard in longwall areas with high production capacity.展开更多
At present, numerical modelling of distributions of many rock mass characteristics plays more and more important role in many geomechanical questions. In the issues related to seismic and rockburst hazards, the analys...At present, numerical modelling of distributions of many rock mass characteristics plays more and more important role in many geomechanical questions. In the issues related to seismic and rockburst hazards, the analyses of distributions of stress component values in the rock strata are performed, similarly as those of deformation parameters of the strata. To do this, commercial computer programs are used which function on the basis of the finite element-, separate element-, finite difference-, boundary element methods, or individually designed computer programs. They enable to obtain information, unattainable with other methods, being of importance for further concluding on those hazards. The programs based on applying those methods have contributed to important progress and development of science in the domain of analyzing and predicting the hazards. To this end, the commercial computer programs are used that are based on the methods of: finite elements, separate elements, finite differences, boundary elements, etc., or on individually developed computer programs. They enable to obtain information, unavailable using other methods, being of vital importance for further concluding on these hazards. The programs based on these methods have contributed to essential progress and development of science in the field of analysing and predicting the hazards. Apart from their obvious advantages, they have many drawbacks that hinder their practical, routine application. To allow making these type of analyses, without the necessity of constructing complicated models and knowing the detailed geomechanical parameters of rocks, together with laborious computation using a high-rank computer hardware, an analytical-empirical method has been developed at Central Mining Institute, Poland, to make prediction (modelling) of the distribution of pressure values (vertical component of stress) in SIGMAZ coal seams. It is based on geophysical measurements, generalized for the conditions of the Upper Silesia Coal Basin, of disturbing effect of the mining edge and tectonic faults on the state of stress. The paper presents methodological and programming assumptions of the method. The scope of its application has been discussed, and results of demonstration analyses for Polish hard coal mines presented. There have been also given the advantages of the method in relation to classical numerical methods.展开更多
The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification.As an alt...The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification.As an alternative to combustion pro-cesses,gasification offers increased efficiency,lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses.In order to select the most optimal lignite for the purpose of gasification,it is necessary to determine coal reactivity,the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers.This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700,800 and 900℃;the samples come from an open pit lignite mine in the southwest of Poland.The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields,gas composition,carbon conversion rate and chars reactivity.展开更多
The case study describes longwall coal seam A in a hard coal mine,where longwall coal face stability loss and periodic roof fall occurrences had been registered.The authors have attempted to explain the situation base...The case study describes longwall coal seam A in a hard coal mine,where longwall coal face stability loss and periodic roof fall occurrences had been registered.The authors have attempted to explain the situation based on in-situ measurements and observations of the longwall working as well as numerical simulation.The calculations included several parameters,such as powered roof support geometry in the form of the canopy ratio,which is a factor that influences load distribution along the canopy.Numerical simulations were realized based on a rock mass model representing realistic mining and geological conditions at a depth of 600 m below surface for coal seam A.Numerical model assumptions are described,while the obtained results were compared with the in-situ measurements.The conclusions drawn from this work can complement engineering knowledge utilized at the stage of powered roof support construction and selection in order to improve both personnel safety and longwall working stability,and to achieve better extraction.展开更多
The Upper Silesian Coal Basin is one of the most active mining areas in the world in respect of seismicity. Underground mining in this area takes place in a special environment with a high degree of risk of unpredicta...The Upper Silesian Coal Basin is one of the most active mining areas in the world in respect of seismicity. Underground mining in this area takes place in a special environment with a high degree of risk of unpredictable event occurrence. Especially dangerous are phenomena that occur during the extraction of deposits at great depths in the environment of compact rocks. Deep underground mining violates the balance of these rocks and induces dynamic phenomena at the longwall life (in terms of distance) referred to as mine tremors. The sources of these tremors are located in layers characterised by high strength, especially in thick sandstone strata occurring in the roof of the mined seam. In the paper a discussion is presented about the influence of mining intensity (longwall face speed) on the location of mine tremor sources, both in the direction of longwall life (in terms of distance) and towards the surface. The presented material has been prepared basing on the results of tests and measurements carded out at the Central Mining Institute.展开更多
文摘In this article an attempt to determine the influence of mining factors on the seismic activity during the longwall mining of the upper layer of coal seam no.405/2 in one of the Polish hard coal mines in the Upper Silesian Coal Basin was conducted.Two longwall panels were mined in analogous geological conditions and based on the same mining system and technology.However,there was significant difference with regards to the mining factors,which was reflected in the observed seismic activity.Some tools used in mining seismology were applied to illustrate the aforementioned influence of mining factors,e.g.the frequency-energy distribution,the frequency-magnitude distribution,the 2 D distribution of released seismic energy,the relationship between released seismic energy and the volume of mined coal,the Benioff strain release,and the Gutenberg-Richter(GR)b coefficient distribution(b is the proportion between high and low energy tremors).Concerning the Benioff strain release,a new solution,based on the slope of a fitted line in a moving time window,is proposed.
文摘Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capacity of the mining plant is not fully used. Methane hazard, which may occur during planned coal exploitation, is presented in this paper. Following parameters are taken into consideration in the forecasts: coal extraction parameters, geological and mining conditions, deposit's methane saturation degree and impact of coal exploitation on the degasification coefficient of the seams, which are under the influence of relaxation zone. This paper presents the results of the analysis aiming to verify applicability of drainage ahead of mining of the coal seams by using surface directional wells. Based on the collected data(coal seams' structural maps, profiles of the exploratory wells, geological cross-sections), the lab tests of drilling cores and direct wells' tests, static model of the deposit was constructed and suitable grid of directional wells from the surface was designed. Comparison of forecasted methane emission volume between the two methods is investigated. The results indicated the necessity of performing appropriate deposit's stimulations in order to increase effectiveness of drainage ahead of mining.
基金European Commission Research Fund for Coal and Steel(Grant Agreement Number–754205)Generalitat de Catalunya(SGR41).Centre of Excellence Severo Ochoa—Spanish Ministry of Science and Innovation(Project CEX2018-000794-S).
文摘Despite international efforts to limit worker exposure to coal dust,it continues to impact the health of thousands of miners across Europe.Airborne coal dust has been studied to improve risk models and its control to protect workers.Particle size distribution analyses shows that using spraying systems to suppress airborne dusts can reduce particulate matter concentrations and that coals with higher ash yields produce finer dust.There are marked chemical differences between parent coals and relatively coarse deposited dusts(up to _(500)μm,DD_(500)).Enrichments in Ca,K,Ba,Se,Pb,Cr,Mo,Ni and especially As,Sn,Cu,Zn and Sb in the finest respirable dust fractions could originate from:(i)mechanical machinery wear;(ii)variations in coal mineralogy;(iii)coal fly ash used in shotcrete,and carbonates used to reduce the risk of explosions.Unusual enrichments in Ca in mine dusts are attributed to the use of such concrete,and elevated K to raised levels of phyllosilicate mineral matter.Sulphur concentrations are higher in the parent coal than in the DD_(500),probably due to relatively lower levels of organic matter.Mass concentrations of all elements observed in this study remained below occupational exposure limits.
基金Polish Ministry of Science and High Education(11132079-171).
文摘The problem of proper assessment of the technical functionality of rock bolt support systems is still valid.Many research centers have undertaken eforts to diagnose and monitor the technical state of such a support system used in mines and tunneling.With that aim the method of quality assessment of grouted rock bolts was invented and a relevant apparatus was constructed.The method concerns non-destructive identifcation of discontinuity of a resin layer(grout)surrounding rock bolts.The method is based on an impact excitation of a rock bolt and uses modal analysis procedures.Assuming that the installed rock bolt acts as an oscillator,diferent lengths and positions of grouting discontinuity alter its modal parameters.The extraction of these modal parameters,of which a resonant frequency is seen as the most valued,enable the relevant identifcation of grout discontinuity.After constructing a prototype version and validating the results for known cases of resin discontinuity in an experimental coal mine,the apparatus fulflling ATEX requirements was developed.Subsequently that version was also verifed both in laboratory conditions and in an experimental coal mine.As necessary for proper identifcation of discontinuity length,the reference data base was developed and elaborated consisting of a very large number of fnite element models(FE models),namely discontinuity cases.The models encountered diferent rock bolt lengths and diameters,diferent rock strata parameters and diferent positions and lengths of resin layers.Then the method was used in a working coal mine to monitor a technical state of rock bolt support system mounted to reinforce long underground openings.The data base was utilized as reference for investigated rock bolts.
文摘Mining-induced seismicity occurs in numerous underground mines worldwide where extraction is conducted at great depths or in areas characterised by complex tectonic structure.It is accompanied by rock bursts,which result in the loss of working functionality and the possibility of accidents among personnel.The issue of a constant and reliable seismic hazard evaluation is of key signifcance for both the safety of miners and the stability of production.Research on its improvement is directed at developing new interpretive solutions and methods.The nature of the presented solution is the complex interpretation of seismological data that characterise rock mass seismicity and of underground measurement results in the form of a map presenting the longitudinal wave propagation velocity distribution in the rock surrounding the mined coal seam.The solution was tested in hard coal mines located in the Upper Silesian Coal Basin.The mines are equipped with a modern seismological system enabling the constant monitoring of seismicity together with hazard level evaluation as well as with seismic apparatus for conducting periodic measurements of the seismic wave propagation velocity before the mining face.Comprehensive seismic hazard evaluation criteria were determined based on the obtained results,involving the anomaly of the Gutenberg–Richter law“b”value and the maximum longitudinal seismic wave propagation velocity in the roof rock.The obtained experience and the result validation of this new comprehensive hazard evaluation method confrm its practical usefulness and indicate the directions of improvement for the solution in question.
文摘Correction:International Journal of Coal Science&Technology(2022)9:88 https:/doi.org/10.1007/s40789-022-00553-6 In this article,the author would like to change the Ethics Declaration as below:EthicsDeclarations Scientific work published within the framework of an international project DD-MET co-financed by the Research Fund for Coal and Steel(RFCS),(Grant Agreement:847338)and by the Polish Ministry of Science and Higher Education(Contract no.5073/FBWiS/19/2020/2 and 5038/FBWiS/2019/2).
基金supported by the European Research Fund for Coal and Steel in the AMSSTED Programme RFCR-CT-2013-00001
文摘Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface.
文摘In the paper results of passive tomography calculations have been presented to assess rockburst hazard and locate high seismic activity zones in the vicinity of longwall 306 in Zabrze Bielszowice coal mine. The area of study was 1000 m in X direction by 900 m in Y direction. The zones of high values of P-wave propagation velocity have been found to correlate with the distribution of large seismic tremors.
基金supported by the Ministry of Science and Higher Education, Republic of Poland (Statutory Activity of the Central Mining Institute, Grant No. 11133010)
文摘The risk of rockbursts is one of the main threats in hard coal mines. Compared to other underground mines, the number of factors contributing to the rockburst at underground coal mines is much greater.Factors such as the coal seam tendency to rockbursts, the thickness of the coal seam, and the stress level in the seam have to be considered, but also the entire coal seam-surrounding rock system has to be evaluated when trying to predict the rockbursts. However, in hard coal mines, there are stroke or stress-stroke rockbursts in which the fracture of a thick layer of sandstone plays an essential role in predicting rockbursts. The occurrence of rockbursts in coal mines is complex, and their prediction is even more difficult than in other mines. In recent years, the interest in machine learning algorithms for solving complex nonlinear problems has increased, which also applies to geosciences. This study attempts to use machine learning algorithms, i.e. neural network, decision tree, random forest, gradient boosting, and extreme gradient boosting(XGB), to assess the rockburst hazard of an active hard coal mine in the Upper Silesian Coal Basin. The rock mass bursting tendency index WTGthat describes the tendency of the seam-surrounding rock system to rockbursts and the anomaly of the vertical stress component were applied for this purpose. Especially, the decision tree and neural network models were proved to be effective in correctly distinguishing rockbursts from tremors, after which the excavation was not damaged. On average, these models correctly classified about 80% of the rockbursts in the testing datasets.
文摘Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor array during longwall coal mining provide the data set used in the analyses. A spatially variable seismic velocity model is constructed using seismic event sources in a passive tomographic method. The resulting three-dimensional velocity model is used to relocate seismic event positions. An evolutionary optimization algorithm is implemented and used in both the velocity model development and in seeking improved event location solutions. Results obtained using the different velocity models are compared. The combination of the tomographic velocity model development and evolutionary search algorithm provides improvement to the event locations.
文摘In the period of the first twenty years after World War II the number of fires in Polish hard coal mines reached annually the value of several thousands of cases. About 80% of fires constituted spontaneous fires. Investigations into the development of new methods of fire hazard prediction and implementation of new methods and means of fire prevention as well as the introduction of prohibition concerning the use of products manufactured of combustible organic materials in underground mine workings re-duced considerably the hazard of underground fire rise. The worked out at the Central Mining Institute (GIG) new method of un-derground fire prediction allows the correct selection of fire prevention means. The introduction into common use of fire-resistant conveyor belts, the main factor giving rise to spontaneous fires, and methods of assessment of their fire resistance eliminated prac-tically the fire hazard. These activities contributed in an efficient way to the reduction of the number of underground fires to a sat-isfactory level.
文摘Presently the seismic and rock burst hazard appears still to be important in most of hard coal mines in Poland. Recently, there was a significant increase of seismic activity of the Silesian rock massive, when compared with the previous years. In the period 1999-2008 the hard coal mines experienced 34 rock bursts. The causes of rockburst occurrence are presented based on the analysis of the rockbursts occurring in the Polish hard coal mines. The scale of the rockburst hazard has been characterized with respect to the mining and geological conditions of the existing exploitation. Of the factors influencing the state of rockburst hazard, the most essential one is considered the depth interval ranging from 600 m to 900 m. The basic factors that promote the rockburst occurrence are as follows: seismogenic strata, edges and remnants, goal, faults, pillars and excessive paneling.
基金research realized at the Central Mining Institute in Katowice,Poland(No.10030217-152)financed by the Polish Ministry of Science and Higher Education
文摘Hard coal mines are required to constantly ventilate mine workings to ensure that the air composition is at a certain humidity and temperature level that is comfortable for underground mine workers,especially in deep deposits.All underground workings,which are part of the mine ventilation network,should be ventilated in a way that allows maintaining proper oxygen concentration not lower than 19%(by volume),and limits concentration of gases in the air such as methane,carbon monoxide or carbon dioxide.The air flow in the mine ventilation network may be disturbed due to the natural convergence(deformation)and lead to change in its original cross-section.Reducing the cross-sectional area of the mining excavation causes local resistances in the air flow and changes in aerodynamic potentials,which leads to emergency states in the mine ventilation network.This paper presents the results of numerical simulations of the influence of gateroad convergence on the ventilation process of a selected part of the mine ventilation network.The gateroad convergence was modelled with the finite element software PHASE 2.The influence of changes in the cross-sectional area of the gateroad on the ventilation process was carried out using the computational fluid dynamics software Ansys-Fluent.
基金Project R0903003 supported by the Research-Development Project of Poland
文摘Exploitation of coal seams in the Upper Silesian Coal Basin is conducted in complex and difficult conditions. These difficulties are connected with the occurrence of many natural mining hazards and limitations resulting from the existing in this area surface infrastructure. One of the most important problems of Polish mining is the rock burst hazard and reliable evaluation of its condition. During long-years’ mining practice in Poland a comprehensive system of evaluation and control of this hazard was developed. In the paper the main aspects of rock burst hazard state evaluation will be presented, comprising: 1) rock mass inclination for rock bursts, i.e., rock strength properties investigation, comprehensive parametric evaluation of rock mass inclination for rock bursts, prognosis of seismic events induced by mining operations, methods of computer-aided modelling of stress and rock mass deformation parameters distribution, strategic rock mass classification under rock burst degrees; 2) immediate seismic and rock burst hazard state evaluation, i.e., low diameter test drilling method, seismologic and seismoacoustic method, comprehensive method of rock burst hazard state evaluation, non-standard methods of evaluation; 3) legal aspects of rock burst hazard state evaluation. Selected elements of the hazard state evaluation system are illustrated with specific practical examples of their application.
文摘An increase in methane,spontaneous fire and bumping hazards in Polish hard coal mines,observed in the last two decades,led to the need to elaborate the tools allowing proper selection of a range of preventive measures to fight them at the stage of designing coal extraction.Designing the production of a coal seams in the conditions of associated methane and spontaneous fires hazards in Polish hard coal mines requires elaboration of the design standards for coal panels in gassy coal seams.This paper presents the guidelines on how to design production in the conditions of associated methane and spontaneous fire hazards.Presented tools and methodology since the very first research were many times verified by daily mining operations in the conditions of associated methane and spontaneous fire hazards,which confirms their significant contribution to the development of safe and economical mining operations.
文摘Increasingly higher hard coal production capacity in Upper Silesian Coal Basin(Poland) in the last two decades led to significant increase of methane hazard occurrence in the workings of exploitation areas.An increase of methane content in the exploited seams and in the surrounding strata, associated with increasing depth of mining, results in higher methane emission into the longwall areas from exploited seams and degassing seams in the mining-induced de-stressed zone. Operational experience gained by the collieries confirms that reducing methane release during longwall operations often requires decreasing operating speed of a shearer in a shift. The paper presents an analysis of the parameters and factors,which have critical influence on the formation of methane hazard in longwall areas with high production capacity.
基金Project R0903003 supported by the Research-Development Project of Poland
文摘At present, numerical modelling of distributions of many rock mass characteristics plays more and more important role in many geomechanical questions. In the issues related to seismic and rockburst hazards, the analyses of distributions of stress component values in the rock strata are performed, similarly as those of deformation parameters of the strata. To do this, commercial computer programs are used which function on the basis of the finite element-, separate element-, finite difference-, boundary element methods, or individually designed computer programs. They enable to obtain information, unattainable with other methods, being of importance for further concluding on those hazards. The programs based on applying those methods have contributed to important progress and development of science in the domain of analyzing and predicting the hazards. To this end, the commercial computer programs are used that are based on the methods of: finite elements, separate elements, finite differences, boundary elements, etc., or on individually developed computer programs. They enable to obtain information, unavailable using other methods, being of vital importance for further concluding on these hazards. The programs based on these methods have contributed to essential progress and development of science in the field of analysing and predicting the hazards. Apart from their obvious advantages, they have many drawbacks that hinder their practical, routine application. To allow making these type of analyses, without the necessity of constructing complicated models and knowing the detailed geomechanical parameters of rocks, together with laborious computation using a high-rank computer hardware, an analytical-empirical method has been developed at Central Mining Institute, Poland, to make prediction (modelling) of the distribution of pressure values (vertical component of stress) in SIGMAZ coal seams. It is based on geophysical measurements, generalized for the conditions of the Upper Silesia Coal Basin, of disturbing effect of the mining edge and tectonic faults on the state of stress. The paper presents methodological and programming assumptions of the method. The scope of its application has been discussed, and results of demonstration analyses for Polish hard coal mines presented. There have been also given the advantages of the method in relation to classical numerical methods.
文摘The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification.As an alternative to combustion pro-cesses,gasification offers increased efficiency,lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses.In order to select the most optimal lignite for the purpose of gasification,it is necessary to determine coal reactivity,the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers.This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700,800 and 900℃;the samples come from an open pit lignite mine in the southwest of Poland.The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields,gas composition,carbon conversion rate and chars reactivity.
基金research conducted within the Research Project:Productivity and Safety of Shield Support(PRASS Ⅲ)-co-financed by European Commission-Research Fund for Coal and Steel(No.752504)and Polish Ministry of Science and Higher Education
文摘The case study describes longwall coal seam A in a hard coal mine,where longwall coal face stability loss and periodic roof fall occurrences had been registered.The authors have attempted to explain the situation based on in-situ measurements and observations of the longwall working as well as numerical simulation.The calculations included several parameters,such as powered roof support geometry in the form of the canopy ratio,which is a factor that influences load distribution along the canopy.Numerical simulations were realized based on a rock mass model representing realistic mining and geological conditions at a depth of 600 m below surface for coal seam A.Numerical model assumptions are described,while the obtained results were compared with the in-situ measurements.The conclusions drawn from this work can complement engineering knowledge utilized at the stage of powered roof support construction and selection in order to improve both personnel safety and longwall working stability,and to achieve better extraction.
文摘The Upper Silesian Coal Basin is one of the most active mining areas in the world in respect of seismicity. Underground mining in this area takes place in a special environment with a high degree of risk of unpredictable event occurrence. Especially dangerous are phenomena that occur during the extraction of deposits at great depths in the environment of compact rocks. Deep underground mining violates the balance of these rocks and induces dynamic phenomena at the longwall life (in terms of distance) referred to as mine tremors. The sources of these tremors are located in layers characterised by high strength, especially in thick sandstone strata occurring in the roof of the mined seam. In the paper a discussion is presented about the influence of mining intensity (longwall face speed) on the location of mine tremor sources, both in the direction of longwall life (in terms of distance) and towards the surface. The presented material has been prepared basing on the results of tests and measurements carded out at the Central Mining Institute.