Acoustic one-way manipulations have recently attracted significant attention due to the deep implications in many diverse fields such as biomedical imaging and treatment.However,the previous mechanisms of asymmetric m...Acoustic one-way manipulations have recently attracted significant attention due to the deep implications in many diverse fields such as biomedical imaging and treatment.However,the previous mechanisms of asymmetric manipulation of airborne sound need to use elaborate heavyweight structures and only work in certain frequency ranges.We propose a mechanism for designing an ultra-lightweight and optically transparent structure with asymmetric transmission property for normally incident plane waves.Instead of fabricating solids into complicated artificial structures with limited bandwidth and heavy asymmetric shape which allows the incident plane wave weight,we simply use xenon to fill a spatial region of to pass along one direction while reflecting the reversed wave regardless of frequency.We demonstrate both analytically and numerically its effectiveness of producing highly-asymmetric transmission within an ultra-broad band.Our design offers new possibility for the design of one-way devices and may have far-reaching impact on various scenarios such as noise control.展开更多
Word sense disambiguation(WSD)is a fundamental but significant task in natural language processing,which directly affects the performance of upper applications.However,WSD is very challenging due to the problem of kno...Word sense disambiguation(WSD)is a fundamental but significant task in natural language processing,which directly affects the performance of upper applications.However,WSD is very challenging due to the problem of knowledge bottleneck,i.e.,it is hard to acquire abundant disambiguation knowledge,especially in Chinese.To solve this problem,this paper proposes a graph-based Chinese WSD method with multi-knowledge integration.Particularly,a graph model combining various Chinese and English knowledge resources by word sense mapping is designed.Firstly,the content words in a Chinese ambiguous sentence are extracted and mapped to English words with BabelNet.Then,English word similarity is computed based on English word embeddings and knowledge base.Chinese word similarity is evaluated with Chinese word embedding and HowNet,respectively.The weights of the three kinds of word similarity are optimized with simulated annealing algorithm so as to obtain their overall similarities,which are utilized to construct a disambiguation graph.The graph scoring algorithm evaluates the importance of each word sense node and judge the right senses of the ambiguous words.Extensive experimental results on SemEval dataset show that our proposed WSD method significantly outperforms the baselines.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11634006
文摘Acoustic one-way manipulations have recently attracted significant attention due to the deep implications in many diverse fields such as biomedical imaging and treatment.However,the previous mechanisms of asymmetric manipulation of airborne sound need to use elaborate heavyweight structures and only work in certain frequency ranges.We propose a mechanism for designing an ultra-lightweight and optically transparent structure with asymmetric transmission property for normally incident plane waves.Instead of fabricating solids into complicated artificial structures with limited bandwidth and heavy asymmetric shape which allows the incident plane wave weight,we simply use xenon to fill a spatial region of to pass along one direction while reflecting the reversed wave regardless of frequency.We demonstrate both analytically and numerically its effectiveness of producing highly-asymmetric transmission within an ultra-broad band.Our design offers new possibility for the design of one-way devices and may have far-reaching impact on various scenarios such as noise control.
基金The research work is supported by National Key R&D Program of China under Grant No.2018YFC0831704National Nature Science Foundation of China under Grant No.61502259+1 种基金Natural Science Foundation of Shandong Province under Grant No.ZR2017MF056Taishan Scholar Program of Shandong Province in China(Directed by Prof.Yinglong Wang).
文摘Word sense disambiguation(WSD)is a fundamental but significant task in natural language processing,which directly affects the performance of upper applications.However,WSD is very challenging due to the problem of knowledge bottleneck,i.e.,it is hard to acquire abundant disambiguation knowledge,especially in Chinese.To solve this problem,this paper proposes a graph-based Chinese WSD method with multi-knowledge integration.Particularly,a graph model combining various Chinese and English knowledge resources by word sense mapping is designed.Firstly,the content words in a Chinese ambiguous sentence are extracted and mapped to English words with BabelNet.Then,English word similarity is computed based on English word embeddings and knowledge base.Chinese word similarity is evaluated with Chinese word embedding and HowNet,respectively.The weights of the three kinds of word similarity are optimized with simulated annealing algorithm so as to obtain their overall similarities,which are utilized to construct a disambiguation graph.The graph scoring algorithm evaluates the importance of each word sense node and judge the right senses of the ambiguous words.Extensive experimental results on SemEval dataset show that our proposed WSD method significantly outperforms the baselines.