Data-driven approaches and artificial intelligence(AI)algorithms are promising enough to be relied on even more than physics-based methods;their main feed is data which is the fundamental element of each phenomenon.Th...Data-driven approaches and artificial intelligence(AI)algorithms are promising enough to be relied on even more than physics-based methods;their main feed is data which is the fundamental element of each phenomenon.These algorithms learn from data and unveil unseen patterns out of it The petroleum industry as a realm where huge volumes of data are generated every second is of great interest to this new technology.As the oil and gas industry is in the transition phase to oilfield digitization,there has been an increased drive to integrate data-driven modeling and machine learning(ML)algorithms in different petroleum engineering challenges.ML has been widely used in different areas of the industry.Many extensive studies have been devoted to exploring AI applicability in various disciplines of this industry;however,lack of two main features is noticeable.Most of the research is either not practical enough to be applicable in real-field challenges or limited to a specific problem and not generalizable.Attention must be given to data itself and the way it is classified and stored.Although there are sheer volumes of data coming from different disciplines,they reside in departmental silos and are not accessible by consumers.In order to derive as much insight as possible out of data,the data needs to be stored in a centralized repository from where the data can be readily consumed by different applications.展开更多
Using sunlight to drive chemical reactions via photocatalysis is paramount for a sustainable future.Among several photocatalysts,employing layered double hydrides(LDH) for photocatalytic application is most straightfo...Using sunlight to drive chemical reactions via photocatalysis is paramount for a sustainable future.Among several photocatalysts,employing layered double hydrides(LDH) for photocatalytic application is most straightforward and desirable owing to their distinctive two-dimensional(2D) lamellar structure and optical attributes.This article reviews the advancements in bimetallic/trimetallic LDHs and various strategies to achieve high efficiency toward an outstanding performing photocatalyst.Firstly,the tuning of LDH components that control the electro nic and structural properties is explained.The tu ning obtained through the adoption,combination,and incorporation of different cations and anions is also explained.The progress of modification methods,such as the adoption of different morphologies,delamination,and defect engineering towards enhanced photocatalytic activities,is discussed in the mainstream.The band engineering,structural characteristics,and redox tuning are further deliberated to maximize solar energy harvesting for different photocatalytic applications.Finally,the progress obtained in forming hierarchical heterostructures through hybridization with other semiconductors or conducting materials is systematically disclosed to get maximum photocatalytic performance.Moreover,the structural changes during the in-situ synthesis of LDH and the stability of LDH-based photocatalysts are deliberated.The review also summarizes the improvements in LDH properties obtained through modification tactics and discusses the prospects for future energy and environmental applications.展开更多
A key global challenge in the 21st century is how to secure sustainable access to energy for a growing global population—set to reach 10 billion by 2035—while coping with the threat of dangerous climate change.The o...A key global challenge in the 21st century is how to secure sustainable access to energy for a growing global population—set to reach 10 billion by 2035—while coping with the threat of dangerous climate change.The oil and gas industry will still play an essential role in the energy transition by providing affordable and reliable energy to improve living conditions.Meanwhile,producing this energy with decreasing emissions supports a net-zero world.展开更多
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a...Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.展开更多
A new nanocomposite polymer gel is synthesized for reduction of excess water production in petroleum reservoirs at real operating conditions.This new nanocomposite gel contains SiO2 nanoparticles,partially hydrolyzed ...A new nanocomposite polymer gel is synthesized for reduction of excess water production in petroleum reservoirs at real operating conditions.This new nanocomposite gel contains SiO2 nanoparticles,partially hydrolyzed polyacrylamide(HPAM)and chromium triacetate.High pressure and high temperature tests using porous carbonate core are carried out to evaluate the effects of nanoparticles on the synthesized polymer gel performance.It is shown that the residual resistance factor ratio of water to oil using the synthesized polymer gel nanocomposite in this work is much higher than that of the ordinary polymer gels.The presented results confirm the high performance of the synthesized nanocomposite polymer gel for decreasing the water flow through porous carbonate bed.A mathematical model for description of oil and water flow behavior in the presence of synthesized nanocomposite polymer gel is also presented.The presented nano polymer gel leads to considerable cost saving in enhanced oil recovery(EOR)processes.展开更多
Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflo...Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflow regimes established in bubble columns.Some effort is also provided to introduce relevant definitions pertaining to thisfield,namely,that of“void fraction”and related(local,chordal,cross-sectional and volumetric)variants.Experimental studies involving different parameters that affect design and operating conditions are also discussed in detail.In the second part of the review,the attention is shifted to cases with internals of various types(perfo-rated plates,baffles,vibrating helical springs,mixers,and heat exchanger tubes)immersed in the bubble columns.It is shown that the presence of these elements has a limited influence on the global column hydrodynamics.However,they can make the homogeneousflow regime more stable in terms of transition gas velocity and transi-tion holdup value.The last section is used to highlight gaps which have not beenfilled yet and future directions of investigation.展开更多
A successful design, previously adapted for treatment of complex wastewaters in a microbial fuel cell (MFC), was used to fabricate two MFCs, with a few changes for cost reduction and ease of construction. Performanc...A successful design, previously adapted for treatment of complex wastewaters in a microbial fuel cell (MFC), was used to fabricate two MFCs, with a few changes for cost reduction and ease of construction. Performance and electrochemical characteristics of MFCs were evaluated in different environmental conditions (in complete darkness and presence of light), and different flow patterns of batch and continuous in four hydraulic retention times from 8 to 30 h. Changes in chemical oxygen demand, and nitrate and phosphate concentrations were evaluated. In contrast to the microbial fuel cell operated in darkness (D-MFC) with a stable open circuit voltage of 700 mV, presence of light led to growth of other species, and consecutively low and unsteady open circuit voltage. Although the performance of the MFC subjected to light (L-MFC) was quite low and unsteady in dynamic state (internal resistance = 100 Ω, power density = 5.15 W.m-3). it reached power density of 9.2 W.m-3 which was close to performance of D-MFC (internal resistance = 50 d, power density = 10.3 W.m-3). Evaluated only for D-MFC, the coulombic efficiency observed in batch mode (30%) was quite higher than the maximum acquired in continuous mode (9.6%) even at the highest hydraulic retention time. In this study, changes in phosphate and different types of nitrogen existing in dairy wastewater were investigated for the first time. At hydraulic retention time of 8 h, the orthophosphate concentration in effluent was 84% higher compared to influent. Total nitrogen and total Kjeldahl nitrogen were reduced 70% and 99% respectively at hydraulic retention time of 30 h, while nitrate and nitrite concentrations increased. The microbial electrolysis cell (MEC), revamped from D-MEC, showed the maximum gas production of 0.2 m3 H2·m-3·d-1 at 700 mV applied voltage.展开更多
One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the flu...One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the fluids in the dynamic state have been assessed at the reservoir conditions.The analyses in this research were Young’s modulus,compressive strength,porosity,and permeability which were done on core samples after and before fluid contact.Samples made with two different resins showed good resistance to crude oil in both states.No considerable change was seen in the analyses even at high crude oil injection rates in the dynamic state.Conversely,brine caused a noticeable change in the analyses in both states.In the presence of brine at the static state,Young’s modulus and compressive strength respectively decreased by 37.5%and 34.5%for epoxy cores,whereas these parameters respectively reduced by 30%and 41%for furan cores.In brine presence at the dynamic state,compressive strength reduction was 10.28 MPa for furan and 6.28 MPa for epoxy samples and their compressive strength reached 16.75 MPa and 26.54 MPa respectively which are higher than the critical point to be known as weak sandstone core.Moreover,Young’s modulus decrease values for furan and epoxy samples were respectively 0.37 GPa and 0.44 GPa.Therefore,brine had a more destructive effect on the mechanical characteristics of samples in the static state than the dynamic one for two resins.In addition,brine injection increased permeability by about 13.6%for furan and 34.8%for epoxy.Also,porosity raised by about 21.8%for furan,and 19%for epoxy by brine injection.The results showed that the chemical sand consolidation weakens in the face of brine production along with crude oil which can lead to increasing cost of oil production and treating wellbore again.展开更多
In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal-free catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by hea...In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal-free catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by heating treatment at 900℃ in nitrogen atmosphere that the characteristics of the sample were identified by the X-ray diffraction,Fourier-transform infrared spectroscopy,Raman spectroscopy,field emission scanning electron microscopy,transmission electron microscopy,atomic force microscopy,and N2 adsorption-desorption isotherms.The results of structural and morphological analysis represented that BN has been successfully synthesized.The efficacy of the main operating parameters on the process was studied by using response surface methodology based on the Box-Behnken design method.The prepared catalyst showed high efficiency in oxidative desulfurization of diesel fuel with initial sulfur content of 8040 mg·kg^(-1)S.From statistical analysis,a significant quadratic model was obtained to predict the sulfur removal as a function of efficient parameters.The maximum efficiency of 72.4%was achieved under optimized conditions at oxidant/sulfur molar ratio of 10.2,temperature of 71℃,reaction time of 113 min,and catalyst dosage of 0.36 g.Also,the reusability of the BN was studied,and the result showed little reduction in activity of the catalyst after 10 times regeneration.Moreover,a plausible mechanism was proposed for oxidation of sulfur compounds on the surface of the catalyst.The present study shows that BN materials can be selected as promising metal-free catalysts for desulfurization process.展开更多
Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marin...Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marine-continental transitional(MCT)shales is still ambiguous.In this study,a method of combining experimental data with analytical models was used to investigate the methane adsorption characteristics and GSC of MCT shales collected from the Qinshui Basin,China.The Ono-Kondo model was used to fit the adsorption data to obtain the adsorption parameters.Subsequently,the geological model of GSC based on pore evolution was constructed using a representative shale sample with a total organic carbon(TOC)content of 1.71%,and the effects of reservoir pressure coefficient and water saturation on GSC were explored.In experimental results,compared to the composition of the MCT shale,the pore structure dominates the methane adsorption,and meanwhile,the maturity mainly governs the pore structure.Besides,maturity in the middle-eastern region of the Qinshui Basin shows a strong positive correlation with burial depth.The two parameters,micropore pore volume and non-micropore surface area,induce a good fit for the adsorption capacity data of the shale.In simulation results,the depth,pressure coefficient,and water saturation of the shale all affect the GSC.It demonstrates a promising shale gas potential of the MCT shale in a deeper block,especially with low water saturation.Specifically,the economic feasibility of shale gas could be a major consideration for the shale with a depth of<800 m and/or water saturation>60%in the Yushe-Wuxiang area.This study provides a valuable reference for the reservoir evaluation and favorable block search of MCT shale gas.展开更多
This work uses thermal polymerization of urea nitrate,oxyacetic acid and urea as the raw material to prepare ultra-thin porous carbon nitride with carbon defects and C-O band(OA-UN-CN).Density functional theory(DFT)ca...This work uses thermal polymerization of urea nitrate,oxyacetic acid and urea as the raw material to prepare ultra-thin porous carbon nitride with carbon defects and C-O band(OA-UN-CN).Density functional theory(DFT)calculations showed OA-UN-CN had narrower band gap,faster electron transport and a new internal construction electric field.Additionally,the prepared OA-UN-CN significantly enhanced photocatalytic activation of peroxymonosulfate(PMS)due to enhanced light absorption performance and faster electron overflow.As the result,the OA-UN-CN/PMS could entirely degrade bisphenol A(BPA)within 30 min,where the photodegradation rate was 81.8 and 7.9 times higher than that of g-C_(3)N_(4)and OA-UN-CN,respectively.Beyond,the OA-UN-CN/PMS could likewise degrade other bisphenol pollutants and sodium lignosulfonate efficiently.We suggested possible photocatalytic degradation pathways accordingly and explored the toxicity of its degradation products.This work provides a new idea on the development of advanced photocatalytic oxidation processes for the treatment of bisphenol pollutants and lignin derivatives,via a metal-free photothermal-catalyst.展开更多
Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its...Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its economic and operational advantages over traditional carbon capture,utilization,and storage(CCUS)projects make SCCS a more cost-effective and flexible option.Despite the widespread use of salt caverns for storing various substances,differences exist between SCCS and traditional salt cavern energy storage in terms of gas-tightness,carbon injection,brine extraction control,long-term carbon storage stability,and site selection criteria.These distinctions stem from the unique phase change characteristics of CO_(2) and the application scenarios of SCCS.Therefore,targeted and forward-looking scientific research on SCCS is imperative.This paper introduces the implementation principles and application scenarios of SCCS,emphasizing its connections with carbon emissions,carbon utilization,and renewable energy peak shaving.It delves into the operational characteristics and economic advantages of SCCS compared with other CCUS methods,and addresses associated scientific challenges.In this paper,we establish a pressure equation for carbon injection and brine extraction,that considers the phase change characteristics of CO_(2),and we analyze the pressure during carbon injection.By comparing the viscosities of CO_(2) and other gases,SCCS’s excellent sealing performance is demonstrated.Building on this,we develop a long-term stability evaluation model and associated indices,which analyze the impact of the injection speed and minimum operating pressure on stability.Field countermeasures to ensure stability are proposed.Site selection criteria for SCCS are established,preliminary salt mine sites suitable for SCCS are identified in China,and an initial estimate of achievable carbon storage scale in China is made at over 51.8-77.7 million tons,utilizing only 20%-30%volume of abandoned salt caverns.This paper addresses key scientific and engineering challenges facing SCCS and determines crucial technical parameters,such as the operating pressure,burial depth,and storage scale,and it offers essential guidance for implementing SCCS projects in China.展开更多
Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,...Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,the challenge lies in achieving microwatt-scale outputs due to the inherent conductivity of the materials and diverting electric currents.To address this challenge,our research has concentrated on utilizing nonconductive mediums for water-based low-cost microfibrous ceramic wools in conjunction with a NaCl aqueous solution for power generation.The main source of electricity originates from the directed movement of water molecules and surface ions through densely packed microfibrous ceramic wools due to the effect of dynamic electric double layer.This occurrence bears resemblance to the natural water transpiration in plants,thereby presenting a fresh and straightforward approach for producing electricity in an ecofriendly manner.The generator module demonstrated in this study,measuring 12×6 cm^(2),exhibited a noteworthy open-circuit voltage of 0.35 V,coupled with a short-circuit current of 0.51 mA.Such low-cost ceramic wools are suitable for ubiquitous,permanent energy sources and hold potential for use as self-powered sensors and systems,eliminating the requirement for external energy sources such as sunlight or heat.展开更多
Lignocellulosic biomass can be convert to a condensable liquid named bio-oil,a solid product named as char and a mixture of gaseous products comprising CO2,CO,H2,CH4,etc.In recent years,much effort has been made on th...Lignocellulosic biomass can be convert to a condensable liquid named bio-oil,a solid product named as char and a mixture of gaseous products comprising CO2,CO,H2,CH4,etc.In recent years,much effort has been made on the investigation of conversion of biomass through pyrolysis.However,commercialisation of the biomass pyrolysis technology is still challenging due to various issues such as the deleterious properties of bio-oil including the low heating value and the high instability at elevated temperatures.To overcome such issues,many processes,reactors and catalysts have been developed for pyrolysis and catalytic pyrolysis of biomass.A state to the art of pyrolysis or catalytic pyrolysis of biomass need to be summarised to have an overall evaluation of the technologies,in order to provide a useful reference for the further development of pyrolysis technology.This study reviews the various pyrolysis process,especially focus on the effects of essential parameters,the process design,the reactors and the catalysts on the pyrolysis process.In addition,progress in commercialisation of pyrolysis technology was also reviewed and the remaining issues in the process of commercialisation were discussed.展开更多
The oxidative desulfurization of a real refinery feedstock (i.e.,non-hydrotreated kerosene with total sulfur mass content of 0.16%) with a mixture of hydrogen peroxide and acetic acid was studied.The influences of var...The oxidative desulfurization of a real refinery feedstock (i.e.,non-hydrotreated kerosene with total sulfur mass content of 0.16%) with a mixture of hydrogen peroxide and acetic acid was studied.The influences of various operating parameters including reaction temperature (T),acid to sulfur molar ratio (nacid/nS),and oxidant to sulfur molar ratio (nO/nS) on the sulfur removal of kerosene were investigated.The results revealed that an increase in the reaction temperature (T) and nacid/nS enhances the sulfur removal.Moreover,there is an optimum nO/nS related to the reaction temperature and the best sulfur removal could be obtained at nO/nS=8 and 23 for the reaction temperatures of 25 and 60°C,respectively.The maximum observed sulfur removal in the present oxidative desulfurization system was 83.3%.展开更多
The discovery of unconventional hydrocarbon resources since the late 20th century changed geologists’understanding of hydrocarbon migration and accumulations and provides a solution to energy shortage.In 2016,unconve...The discovery of unconventional hydrocarbon resources since the late 20th century changed geologists’understanding of hydrocarbon migration and accumulations and provides a solution to energy shortage.In 2016,unconventional oil production in the USA accounted for 41%of the total oil production;and unconventional natural gas production in China accounted for 35%of total gas production,showing strong growth momentum of unconventional hydrocarbons explorations.Unconventional hydrocarbons generally coexist with conventional petroleum resources;they sometimes distribute in a separate system,not coexisting with a conventional system.Identification and prediction of unconventional resources and their potentials are prominent challenges for geologists.This study analyzed the results of 12,237 drilling wells in six representative petroliferous basins in China and studied the correlations and differences between conventional and unconventional hydrocarbons by comparing their geological features.Migration and accumulation of conventional hydrocarbon are caused dominantly by buoyance.Wepropose a concept of buoyance-driven hydrocarbon accumulation depth to describe the deepest hydrocarbon accumulation depth driven dominantly by buoyance;beyond this depth the buoyance becomes unimportant for hydrocarbon accumulation.We found that the buoyance-driven hydrocarbon accumulation depth in petroliferous basins controls the different oil/gas reservoirs distribution and resource potentials.Hydrocarbon migration and accumulations above this depth is dominated by buoyancy,forming conventional reservoirs in traps with high porosity and permeability,while hydrocarbon migration and accumulation below this depth is dominated by non-buoyancy forces(mainly refers to capillary force,hydrocarbon volumeexpansion force,etc.),forming unconventional reservoirs in tight layers.The buoyance-driven hydrocarbon accumulation depths in six basins in China range from 1200mto 4200 m,which become shallowerwith increasing geothermal gradient,decreasing particle size of sandstone reservoir layers,or an uplift in the whole petroliferous basin.The predicted unconventional resource potential belowthe buoyance-driven hydrocarbon accumulation depth in six basins in China is more than 15.71×10^(9) t oil equivalent,among them 4.71×10^(9) t reserves have been proved.Worldwide,94%of 52,926 oil and gas reservoirs in 1186 basins are conventional reservoirs and only 6%of them are unconventional reservoirs.These 94%conventional reservoirs show promising exploration prospects in the deep area below buoyance-driven hydrocarbon accumulation depth.展开更多
Casing collapse is one of the costly incidents in the oil industry. In the oil fields of southwest Iran, most casing collapses have occurred in Gachsaran formation, and the halite rock salt layer in this formation may...Casing collapse is one of the costly incidents in the oil industry. In the oil fields of southwest Iran, most casing collapses have occurred in Gachsaran formation, and the halite rock salt layer in this formation may be the main cause for these incidents because of its peculiar creep behavior. In this research, triaxial creep experiments have been conducted on Gachsaran salt samples under various temperatures and differential stresses. The main purpose was to determine the creep characteristics of Gachsaran rock salt,and to examine the role of creep in several casing collapses that occurred in this formation. Results indicated that the halite rock salt of Gachsaran formation basically obeys the power law;however, its creep parameters are quite different from other halite rocks elsewhere. The time-dependent creep of Gachsaran rock salt exhibits strong sensitivity to temperature change;however, its sensitivity to variation of differential stress is rather low. The numerical simulation of the rock salt creep in a real oil well demonstrated the importance of creep and reservoir conditions on the safety factor of the tubing related to casing collapse.展开更多
To enhance the efficiency of wastewater biotreatment with microalgae, the effects of physical parameters need to be investigated and optimized. In this regard, the individual and interactive effects of temperature, p ...To enhance the efficiency of wastewater biotreatment with microalgae, the effects of physical parameters need to be investigated and optimized. In this regard, the individual and interactive effects of temperature, p H and aeration rate on the performance of biological removal of nitrate and phosphate by Chlorella vulgaris were studied by response surface methodology(RSM). Furthermore, a multi-objective optimization technique was applied to the response equations to simultaneously find optimal combinations of input parameters capable of removing the highest possible amount of nitrate and phosphate. The optimal calculated values were temperature of 26.3 °C, pH of 8 and aeration rate of 4.7 L·min^(-1). Interestingly, under the optimum condition, approximately 85% of total nitrate and 77% of whole phosphate were removed after 48 h and 24 h, respectively, which were in excellent agreement with the predicted values. Finally, the effect of baffle on mixing performance and, as a result, on bioremoval efficiency was investigated in Stirred Tank Photobioreactor(STP) by means of Computational Fluid Dynamics(CFD). Flow behavior indicated substantial enhancement in mixing performance when the baffle was inserted into the tank. Obtained simulation results were validated experimentally. Under the optimum condition, due to proper mixing in baffled STP, nitrate and phosphate removal increased up to 93% and 86%,respectively, compared to unbaffled one.展开更多
To study the feasibility of CO2 geological sequestration,it is needed to understand the complicated mul- tiple-phase equilibrium and the densities of aqueous solution with CO2 and multi-ions under wide geological cond...To study the feasibility of CO2 geological sequestration,it is needed to understand the complicated mul- tiple-phase equilibrium and the densities of aqueous solution with CO2 and multi-ions under wide geological condi- tions(273.15—473.15K,0—60MPa),which are also essential for designing separation equipments in chemical or oil-related industries.For this purpose,studies on the relevant phase equilibria and densities are reviewed and ana- lyzed and the method to improve or modify the existing model is suggested in order to obtain more reliable pre- dictions in a wide temperature and pressure range.Besides,three different models(the electrolyte non random two-liquid(ELECNRTL),the electrolyte NRTL combining with Helgeson model(ENRTL-HG),Pitzer activity co- efficient model combining with Helgeson model(PITZ-HG))are used to calculate the vapor-liquid phase equilib- rium of CO2-H2O and CO2-H2O-NaCl systems.For CO2-H2O system,the calculation results agree with the experi- mental data very well at low and medium pressure(0—20MPa),but there are great discrepancies above 20MPa.For the water content at 473.15K,the calculated results agree with the experimental data quite well.For the CO2-H2O-NaCl system,the PITZ-HG model show better results than ELECNRTL and ENRTL-HG models at the NaCl concentration of 0.52mol·L -1 .Bur for the NaCl concentration of 3.997mol·L -1 ,using the ELECNRTL and ENRTL-HG models gives better results than using the PITZ-HG model.It is shown that available experimental data and the thermodynamic calculations can satisfy the needs of the calculation of the sequestration capacity in the temperature and pressure range for disposal of CO2 in deep saline aquifers.More experimental data and more accu- rate thermodynamic calculations are needed in high temperature and pressure ranges(above 398.15K and 31.5MPa).展开更多
The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balanc...The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balance of supply and demand in the global energy market,but also improved our understanding of the formation mechanisms and distribution characteristics of oil/gas reservoirs.However,what is the difference of conventional and unconventional resources and why they always related to each other in petroliferous basins is not clear.As the differences and correlations between unconventional and conventional resources are complex challenging issues and very critical for resources assessment and hydrocarbon exploration,this paper focused on studying the relationship of formations and distributions among different oil/gas reservoirs.Drilling results of 12,237 exploratory wells in 6 representative petroliferous basins of China and distribution characteristics for 52,926 oil/gas accumulations over the world were applied to clarify the formation conditions and genetic relations of different oil/gas reservoirs in a petroliferous basin,and then to establish a unified model to address the differences and correlations of conventional and unconventional reservoirs.In this model,conventional reservoirs formed in free hydrocarbon dynamic field with high porosity and permeability located above the boundary of hydrocarbon buoyancy-driven accumulation depth limit.Unconventional tight reservoirs formed in confined hydrocarbon dynamic field with low porosity and permeability located between hydrocarbon buoyancy-driven accumulation depth limit and hydrocarbon accumulation depth limit.Shale oil/gas reservoirs formed in the bound hydrocarbon dynamic field with low porosity and ultra-low permeability within the source rock layers.More than 75%of proved reserves around the world are discovered in the free hydrocarbon dynamic field,which is estimated to contain only 10%of originally generated hydrocarbons.Most of undiscovered resources distributed in the confined hydrocarbon dynamic field and the bound hydrocarbon dynamic field,which contains 90%of original generated hydrocarbons,implying a reasonable and promising area for future hydrocarbon explorations.The buried depths of hydrocarbon dynamic fields become shallow with the increase of heat flow,and the remaining oil/gas resources mainly exist in the deep area of“cold basin”with low geothermal gradient.Lithology changing in the hydrocarbon dynamic field causes local anomalies in the oil/gas dynamic mechanism,leading to the local formation of unconventional hydrocarbon reservoirs in the free hydrocarbon dynamic field or the occurrence of oil/gas enrichment sweet points with high porosity and permeability in the confined hydrocarbon dynamic field.The tectonic movements destroy the medium conditions and oil/gas components,which leads to the transformation of conventional oil/gas reservoirs formed in free hydrocarbon dynamic field to unconventional ones or unconventional ones formed in confined and bound hydrocarbon dynamic fields to conventional ones.展开更多
文摘Data-driven approaches and artificial intelligence(AI)algorithms are promising enough to be relied on even more than physics-based methods;their main feed is data which is the fundamental element of each phenomenon.These algorithms learn from data and unveil unseen patterns out of it The petroleum industry as a realm where huge volumes of data are generated every second is of great interest to this new technology.As the oil and gas industry is in the transition phase to oilfield digitization,there has been an increased drive to integrate data-driven modeling and machine learning(ML)algorithms in different petroleum engineering challenges.ML has been widely used in different areas of the industry.Many extensive studies have been devoted to exploring AI applicability in various disciplines of this industry;however,lack of two main features is noticeable.Most of the research is either not practical enough to be applicable in real-field challenges or limited to a specific problem and not generalizable.Attention must be given to data itself and the way it is classified and stored.Although there are sheer volumes of data coming from different disciplines,they reside in departmental silos and are not accessible by consumers.In order to derive as much insight as possible out of data,the data needs to be stored in a centralized repository from where the data can be readily consumed by different applications.
基金United Arab Emirates University (UAE) for providing funding of this research undergrant # 12N097。
文摘Using sunlight to drive chemical reactions via photocatalysis is paramount for a sustainable future.Among several photocatalysts,employing layered double hydrides(LDH) for photocatalytic application is most straightforward and desirable owing to their distinctive two-dimensional(2D) lamellar structure and optical attributes.This article reviews the advancements in bimetallic/trimetallic LDHs and various strategies to achieve high efficiency toward an outstanding performing photocatalyst.Firstly,the tuning of LDH components that control the electro nic and structural properties is explained.The tu ning obtained through the adoption,combination,and incorporation of different cations and anions is also explained.The progress of modification methods,such as the adoption of different morphologies,delamination,and defect engineering towards enhanced photocatalytic activities,is discussed in the mainstream.The band engineering,structural characteristics,and redox tuning are further deliberated to maximize solar energy harvesting for different photocatalytic applications.Finally,the progress obtained in forming hierarchical heterostructures through hybridization with other semiconductors or conducting materials is systematically disclosed to get maximum photocatalytic performance.Moreover,the structural changes during the in-situ synthesis of LDH and the stability of LDH-based photocatalysts are deliberated.The review also summarizes the improvements in LDH properties obtained through modification tactics and discusses the prospects for future energy and environmental applications.
文摘A key global challenge in the 21st century is how to secure sustainable access to energy for a growing global population—set to reach 10 billion by 2035—while coping with the threat of dangerous climate change.The oil and gas industry will still play an essential role in the energy transition by providing affordable and reliable energy to improve living conditions.Meanwhile,producing this energy with decreasing emissions supports a net-zero world.
基金the financial support from the Scientific Research and Technology Development Project of China Energy Engineering Corporation Limited(CEEC-KJZX-04).
文摘Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.
文摘A new nanocomposite polymer gel is synthesized for reduction of excess water production in petroleum reservoirs at real operating conditions.This new nanocomposite gel contains SiO2 nanoparticles,partially hydrolyzed polyacrylamide(HPAM)and chromium triacetate.High pressure and high temperature tests using porous carbonate core are carried out to evaluate the effects of nanoparticles on the synthesized polymer gel performance.It is shown that the residual resistance factor ratio of water to oil using the synthesized polymer gel nanocomposite in this work is much higher than that of the ordinary polymer gels.The presented results confirm the high performance of the synthesized nanocomposite polymer gel for decreasing the water flow through porous carbonate bed.A mathematical model for description of oil and water flow behavior in the presence of synthesized nanocomposite polymer gel is also presented.The presented nano polymer gel leads to considerable cost saving in enhanced oil recovery(EOR)processes.
文摘Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflow regimes established in bubble columns.Some effort is also provided to introduce relevant definitions pertaining to thisfield,namely,that of“void fraction”and related(local,chordal,cross-sectional and volumetric)variants.Experimental studies involving different parameters that affect design and operating conditions are also discussed in detail.In the second part of the review,the attention is shifted to cases with internals of various types(perfo-rated plates,baffles,vibrating helical springs,mixers,and heat exchanger tubes)immersed in the bubble columns.It is shown that the presence of these elements has a limited influence on the global column hydrodynamics.However,they can make the homogeneousflow regime more stable in terms of transition gas velocity and transi-tion holdup value.The last section is used to highlight gaps which have not beenfilled yet and future directions of investigation.
基金supported by Sharif University of Technology,Vice President for Research Grant G930111
文摘A successful design, previously adapted for treatment of complex wastewaters in a microbial fuel cell (MFC), was used to fabricate two MFCs, with a few changes for cost reduction and ease of construction. Performance and electrochemical characteristics of MFCs were evaluated in different environmental conditions (in complete darkness and presence of light), and different flow patterns of batch and continuous in four hydraulic retention times from 8 to 30 h. Changes in chemical oxygen demand, and nitrate and phosphate concentrations were evaluated. In contrast to the microbial fuel cell operated in darkness (D-MFC) with a stable open circuit voltage of 700 mV, presence of light led to growth of other species, and consecutively low and unsteady open circuit voltage. Although the performance of the MFC subjected to light (L-MFC) was quite low and unsteady in dynamic state (internal resistance = 100 Ω, power density = 5.15 W.m-3). it reached power density of 9.2 W.m-3 which was close to performance of D-MFC (internal resistance = 50 d, power density = 10.3 W.m-3). Evaluated only for D-MFC, the coulombic efficiency observed in batch mode (30%) was quite higher than the maximum acquired in continuous mode (9.6%) even at the highest hydraulic retention time. In this study, changes in phosphate and different types of nitrogen existing in dairy wastewater were investigated for the first time. At hydraulic retention time of 8 h, the orthophosphate concentration in effluent was 84% higher compared to influent. Total nitrogen and total Kjeldahl nitrogen were reduced 70% and 99% respectively at hydraulic retention time of 30 h, while nitrate and nitrite concentrations increased. The microbial electrolysis cell (MEC), revamped from D-MEC, showed the maximum gas production of 0.2 m3 H2·m-3·d-1 at 700 mV applied voltage.
文摘One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the fluids in the dynamic state have been assessed at the reservoir conditions.The analyses in this research were Young’s modulus,compressive strength,porosity,and permeability which were done on core samples after and before fluid contact.Samples made with two different resins showed good resistance to crude oil in both states.No considerable change was seen in the analyses even at high crude oil injection rates in the dynamic state.Conversely,brine caused a noticeable change in the analyses in both states.In the presence of brine at the static state,Young’s modulus and compressive strength respectively decreased by 37.5%and 34.5%for epoxy cores,whereas these parameters respectively reduced by 30%and 41%for furan cores.In brine presence at the dynamic state,compressive strength reduction was 10.28 MPa for furan and 6.28 MPa for epoxy samples and their compressive strength reached 16.75 MPa and 26.54 MPa respectively which are higher than the critical point to be known as weak sandstone core.Moreover,Young’s modulus decrease values for furan and epoxy samples were respectively 0.37 GPa and 0.44 GPa.Therefore,brine had a more destructive effect on the mechanical characteristics of samples in the static state than the dynamic one for two resins.In addition,brine injection increased permeability by about 13.6%for furan and 34.8%for epoxy.Also,porosity raised by about 21.8%for furan,and 19%for epoxy by brine injection.The results showed that the chemical sand consolidation weakens in the face of brine production along with crude oil which can lead to increasing cost of oil production and treating wellbore again.
文摘In order to reduce the sulfur compounds in diesel fuel,boron nitride(BN)has been used as a novel metal-free catalyst in the present research.This nanocatalyst was synthesized via template-free approach followed by heating treatment at 900℃ in nitrogen atmosphere that the characteristics of the sample were identified by the X-ray diffraction,Fourier-transform infrared spectroscopy,Raman spectroscopy,field emission scanning electron microscopy,transmission electron microscopy,atomic force microscopy,and N2 adsorption-desorption isotherms.The results of structural and morphological analysis represented that BN has been successfully synthesized.The efficacy of the main operating parameters on the process was studied by using response surface methodology based on the Box-Behnken design method.The prepared catalyst showed high efficiency in oxidative desulfurization of diesel fuel with initial sulfur content of 8040 mg·kg^(-1)S.From statistical analysis,a significant quadratic model was obtained to predict the sulfur removal as a function of efficient parameters.The maximum efficiency of 72.4%was achieved under optimized conditions at oxidant/sulfur molar ratio of 10.2,temperature of 71℃,reaction time of 113 min,and catalyst dosage of 0.36 g.Also,the reusability of the BN was studied,and the result showed little reduction in activity of the catalyst after 10 times regeneration.Moreover,a plausible mechanism was proposed for oxidation of sulfur compounds on the surface of the catalyst.The present study shows that BN materials can be selected as promising metal-free catalysts for desulfurization process.
基金jointly supported by the Science and Technology Department of Shanxi Province,China (20201101003)the National Natural Science Foundation of China (U1810201)the China Scholarship Council (202206400012)。
文摘Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marine-continental transitional(MCT)shales is still ambiguous.In this study,a method of combining experimental data with analytical models was used to investigate the methane adsorption characteristics and GSC of MCT shales collected from the Qinshui Basin,China.The Ono-Kondo model was used to fit the adsorption data to obtain the adsorption parameters.Subsequently,the geological model of GSC based on pore evolution was constructed using a representative shale sample with a total organic carbon(TOC)content of 1.71%,and the effects of reservoir pressure coefficient and water saturation on GSC were explored.In experimental results,compared to the composition of the MCT shale,the pore structure dominates the methane adsorption,and meanwhile,the maturity mainly governs the pore structure.Besides,maturity in the middle-eastern region of the Qinshui Basin shows a strong positive correlation with burial depth.The two parameters,micropore pore volume and non-micropore surface area,induce a good fit for the adsorption capacity data of the shale.In simulation results,the depth,pressure coefficient,and water saturation of the shale all affect the GSC.It demonstrates a promising shale gas potential of the MCT shale in a deeper block,especially with low water saturation.Specifically,the economic feasibility of shale gas could be a major consideration for the shale with a depth of<800 m and/or water saturation>60%in the Yushe-Wuxiang area.This study provides a valuable reference for the reservoir evaluation and favorable block search of MCT shale gas.
基金the National Natural Science Foundation of China(No.22076068,8111310014)(China)the University of Calgary’s Canada First Research Excellence Fund(CFREF)program(Canada)for financial support。
文摘This work uses thermal polymerization of urea nitrate,oxyacetic acid and urea as the raw material to prepare ultra-thin porous carbon nitride with carbon defects and C-O band(OA-UN-CN).Density functional theory(DFT)calculations showed OA-UN-CN had narrower band gap,faster electron transport and a new internal construction electric field.Additionally,the prepared OA-UN-CN significantly enhanced photocatalytic activation of peroxymonosulfate(PMS)due to enhanced light absorption performance and faster electron overflow.As the result,the OA-UN-CN/PMS could entirely degrade bisphenol A(BPA)within 30 min,where the photodegradation rate was 81.8 and 7.9 times higher than that of g-C_(3)N_(4)and OA-UN-CN,respectively.Beyond,the OA-UN-CN/PMS could likewise degrade other bisphenol pollutants and sodium lignosulfonate efficiently.We suggested possible photocatalytic degradation pathways accordingly and explored the toxicity of its degradation products.This work provides a new idea on the development of advanced photocatalytic oxidation processes for the treatment of bisphenol pollutants and lignin derivatives,via a metal-free photothermal-catalyst.
基金supported by the National Natural Science Foundation of China(52074046,52122403,51834003,and 52274073)the Graduate Research and Innovation Foundation of Chongqing(CYB22023)+2 种基金the Chongqing Talents Plan for Young Talents(cstc2022ycjh-bgzxm0035)Hunan Institute of Engineering(21RC025 and XJ2005)Hunan Province Education Department(21B0664).
文摘Underground salt cavern CO_(2) storage(SCCS)offers the dual benefits of enabling extensive CO_(2) storage and facilitating the utilization of CO_(2) resources while contributing the regulation of the carbon market.Its economic and operational advantages over traditional carbon capture,utilization,and storage(CCUS)projects make SCCS a more cost-effective and flexible option.Despite the widespread use of salt caverns for storing various substances,differences exist between SCCS and traditional salt cavern energy storage in terms of gas-tightness,carbon injection,brine extraction control,long-term carbon storage stability,and site selection criteria.These distinctions stem from the unique phase change characteristics of CO_(2) and the application scenarios of SCCS.Therefore,targeted and forward-looking scientific research on SCCS is imperative.This paper introduces the implementation principles and application scenarios of SCCS,emphasizing its connections with carbon emissions,carbon utilization,and renewable energy peak shaving.It delves into the operational characteristics and economic advantages of SCCS compared with other CCUS methods,and addresses associated scientific challenges.In this paper,we establish a pressure equation for carbon injection and brine extraction,that considers the phase change characteristics of CO_(2),and we analyze the pressure during carbon injection.By comparing the viscosities of CO_(2) and other gases,SCCS’s excellent sealing performance is demonstrated.Building on this,we develop a long-term stability evaluation model and associated indices,which analyze the impact of the injection speed and minimum operating pressure on stability.Field countermeasures to ensure stability are proposed.Site selection criteria for SCCS are established,preliminary salt mine sites suitable for SCCS are identified in China,and an initial estimate of achievable carbon storage scale in China is made at over 51.8-77.7 million tons,utilizing only 20%-30%volume of abandoned salt caverns.This paper addresses key scientific and engineering challenges facing SCCS and determines crucial technical parameters,such as the operating pressure,burial depth,and storage scale,and it offers essential guidance for implementing SCCS projects in China.
基金supported by JSPS Kakenhi program(program number 16H06364)and JST CRESTThe authors extend their appreciation to the Deputyship for Research and Innovation,“Ministry of Education”in Saudi Arabia for funding this research(IFKSUOR3-615-5)O.M.also thank the support of Tomsk State University Development Programme(priority-2030)for this work.
文摘Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,the challenge lies in achieving microwatt-scale outputs due to the inherent conductivity of the materials and diverting electric currents.To address this challenge,our research has concentrated on utilizing nonconductive mediums for water-based low-cost microfibrous ceramic wools in conjunction with a NaCl aqueous solution for power generation.The main source of electricity originates from the directed movement of water molecules and surface ions through densely packed microfibrous ceramic wools due to the effect of dynamic electric double layer.This occurrence bears resemblance to the natural water transpiration in plants,thereby presenting a fresh and straightforward approach for producing electricity in an ecofriendly manner.The generator module demonstrated in this study,measuring 12×6 cm^(2),exhibited a noteworthy open-circuit voltage of 0.35 V,coupled with a short-circuit current of 0.51 mA.Such low-cost ceramic wools are suitable for ubiquitous,permanent energy sources and hold potential for use as self-powered sensors and systems,eliminating the requirement for external energy sources such as sunlight or heat.
基金University of Tabriz for their supportsupported by the Strategic International Scientific and Technological Innovation Cooperation Special Funds of National Key R&D Program of China(No.2016YFE0204000)+2 种基金the Program for Taishan Scholars of Shandong Province Government,the Recruitment Program of Global Young Experts(Thousand Youth Talents Plan)the Natural Science Foundation of Shandong Province(ZR2017BB002)the Key R&D Program of Shandong Province(2018GSF116014)
文摘Lignocellulosic biomass can be convert to a condensable liquid named bio-oil,a solid product named as char and a mixture of gaseous products comprising CO2,CO,H2,CH4,etc.In recent years,much effort has been made on the investigation of conversion of biomass through pyrolysis.However,commercialisation of the biomass pyrolysis technology is still challenging due to various issues such as the deleterious properties of bio-oil including the low heating value and the high instability at elevated temperatures.To overcome such issues,many processes,reactors and catalysts have been developed for pyrolysis and catalytic pyrolysis of biomass.A state to the art of pyrolysis or catalytic pyrolysis of biomass need to be summarised to have an overall evaluation of the technologies,in order to provide a useful reference for the further development of pyrolysis technology.This study reviews the various pyrolysis process,especially focus on the effects of essential parameters,the process design,the reactors and the catalysts on the pyrolysis process.In addition,progress in commercialisation of pyrolysis technology was also reviewed and the remaining issues in the process of commercialisation were discussed.
基金Supported by the R&D center of Esfahan refinery (Esfahan,Iran)the technical supports of central laboratory of Esfahan Refinery for total sulfur analysis
文摘The oxidative desulfurization of a real refinery feedstock (i.e.,non-hydrotreated kerosene with total sulfur mass content of 0.16%) with a mixture of hydrogen peroxide and acetic acid was studied.The influences of various operating parameters including reaction temperature (T),acid to sulfur molar ratio (nacid/nS),and oxidant to sulfur molar ratio (nO/nS) on the sulfur removal of kerosene were investigated.The results revealed that an increase in the reaction temperature (T) and nacid/nS enhances the sulfur removal.Moreover,there is an optimum nO/nS related to the reaction temperature and the best sulfur removal could be obtained at nO/nS=8 and 23 for the reaction temperatures of 25 and 60°C,respectively.The maximum observed sulfur removal in the present oxidative desulfurization system was 83.3%.
基金by the National Natural Science Foundation of China(No.U19B6003-02)the National Basic Research Program(973)of China(No.2011CB201100).
文摘The discovery of unconventional hydrocarbon resources since the late 20th century changed geologists’understanding of hydrocarbon migration and accumulations and provides a solution to energy shortage.In 2016,unconventional oil production in the USA accounted for 41%of the total oil production;and unconventional natural gas production in China accounted for 35%of total gas production,showing strong growth momentum of unconventional hydrocarbons explorations.Unconventional hydrocarbons generally coexist with conventional petroleum resources;they sometimes distribute in a separate system,not coexisting with a conventional system.Identification and prediction of unconventional resources and their potentials are prominent challenges for geologists.This study analyzed the results of 12,237 drilling wells in six representative petroliferous basins in China and studied the correlations and differences between conventional and unconventional hydrocarbons by comparing their geological features.Migration and accumulation of conventional hydrocarbon are caused dominantly by buoyance.Wepropose a concept of buoyance-driven hydrocarbon accumulation depth to describe the deepest hydrocarbon accumulation depth driven dominantly by buoyance;beyond this depth the buoyance becomes unimportant for hydrocarbon accumulation.We found that the buoyance-driven hydrocarbon accumulation depth in petroliferous basins controls the different oil/gas reservoirs distribution and resource potentials.Hydrocarbon migration and accumulations above this depth is dominated by buoyancy,forming conventional reservoirs in traps with high porosity and permeability,while hydrocarbon migration and accumulation below this depth is dominated by non-buoyancy forces(mainly refers to capillary force,hydrocarbon volumeexpansion force,etc.),forming unconventional reservoirs in tight layers.The buoyance-driven hydrocarbon accumulation depths in six basins in China range from 1200mto 4200 m,which become shallowerwith increasing geothermal gradient,decreasing particle size of sandstone reservoir layers,or an uplift in the whole petroliferous basin.The predicted unconventional resource potential belowthe buoyance-driven hydrocarbon accumulation depth in six basins in China is more than 15.71×10^(9) t oil equivalent,among them 4.71×10^(9) t reserves have been proved.Worldwide,94%of 52,926 oil and gas reservoirs in 1186 basins are conventional reservoirs and only 6%of them are unconventional reservoirs.These 94%conventional reservoirs show promising exploration prospects in the deep area below buoyance-driven hydrocarbon accumulation depth.
基金funded by Iran National Science Foundation (Grant No. 96001589 and contract No. 96002219)
文摘Casing collapse is one of the costly incidents in the oil industry. In the oil fields of southwest Iran, most casing collapses have occurred in Gachsaran formation, and the halite rock salt layer in this formation may be the main cause for these incidents because of its peculiar creep behavior. In this research, triaxial creep experiments have been conducted on Gachsaran salt samples under various temperatures and differential stresses. The main purpose was to determine the creep characteristics of Gachsaran rock salt,and to examine the role of creep in several casing collapses that occurred in this formation. Results indicated that the halite rock salt of Gachsaran formation basically obeys the power law;however, its creep parameters are quite different from other halite rocks elsewhere. The time-dependent creep of Gachsaran rock salt exhibits strong sensitivity to temperature change;however, its sensitivity to variation of differential stress is rather low. The numerical simulation of the rock salt creep in a real oil well demonstrated the importance of creep and reservoir conditions on the safety factor of the tubing related to casing collapse.
文摘To enhance the efficiency of wastewater biotreatment with microalgae, the effects of physical parameters need to be investigated and optimized. In this regard, the individual and interactive effects of temperature, p H and aeration rate on the performance of biological removal of nitrate and phosphate by Chlorella vulgaris were studied by response surface methodology(RSM). Furthermore, a multi-objective optimization technique was applied to the response equations to simultaneously find optimal combinations of input parameters capable of removing the highest possible amount of nitrate and phosphate. The optimal calculated values were temperature of 26.3 °C, pH of 8 and aeration rate of 4.7 L·min^(-1). Interestingly, under the optimum condition, approximately 85% of total nitrate and 77% of whole phosphate were removed after 48 h and 24 h, respectively, which were in excellent agreement with the predicted values. Finally, the effect of baffle on mixing performance and, as a result, on bioremoval efficiency was investigated in Stirred Tank Photobioreactor(STP) by means of Computational Fluid Dynamics(CFD). Flow behavior indicated substantial enhancement in mixing performance when the baffle was inserted into the tank. Obtained simulation results were validated experimentally. Under the optimum condition, due to proper mixing in baffled STP, nitrate and phosphate removal increased up to 93% and 86%,respectively, compared to unbaffled one.
基金Supported by the Chinese National Science Foundation for 0utstanding Young Scholars (No.29925616), the Joint Research Fund for Young Scholars in Hong Kong and Abroad (No.20428606), the National Natural Science Foundation of China (Nos.20236010, 20246002, 20376032), the Natural Science Foundation of Jiangsu Province (Nos.BK2002016, BK2004215) and Chinese National Fundamental Research Development Program (973 Program: 2003CB615700).
文摘To study the feasibility of CO2 geological sequestration,it is needed to understand the complicated mul- tiple-phase equilibrium and the densities of aqueous solution with CO2 and multi-ions under wide geological condi- tions(273.15—473.15K,0—60MPa),which are also essential for designing separation equipments in chemical or oil-related industries.For this purpose,studies on the relevant phase equilibria and densities are reviewed and ana- lyzed and the method to improve or modify the existing model is suggested in order to obtain more reliable pre- dictions in a wide temperature and pressure range.Besides,three different models(the electrolyte non random two-liquid(ELECNRTL),the electrolyte NRTL combining with Helgeson model(ENRTL-HG),Pitzer activity co- efficient model combining with Helgeson model(PITZ-HG))are used to calculate the vapor-liquid phase equilib- rium of CO2-H2O and CO2-H2O-NaCl systems.For CO2-H2O system,the calculation results agree with the experi- mental data very well at low and medium pressure(0—20MPa),but there are great discrepancies above 20MPa.For the water content at 473.15K,the calculated results agree with the experimental data quite well.For the CO2-H2O-NaCl system,the PITZ-HG model show better results than ELECNRTL and ENRTL-HG models at the NaCl concentration of 0.52mol·L -1 .Bur for the NaCl concentration of 3.997mol·L -1 ,using the ELECNRTL and ENRTL-HG models gives better results than using the PITZ-HG model.It is shown that available experimental data and the thermodynamic calculations can satisfy the needs of the calculation of the sequestration capacity in the temperature and pressure range for disposal of CO2 in deep saline aquifers.More experimental data and more accu- rate thermodynamic calculations are needed in high temperature and pressure ranges(above 398.15K and 31.5MPa).
基金the Joint Fund of the National Natural Science Foundation of China under funding number of U19B6003-02-04the fund of A Theoretical Study of Marine Petroliferous System,Sichuan Basin,and the Science Foundation of China University of Petroleum,Beijing under funding number of 2462020BJRC005.
文摘The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balance of supply and demand in the global energy market,but also improved our understanding of the formation mechanisms and distribution characteristics of oil/gas reservoirs.However,what is the difference of conventional and unconventional resources and why they always related to each other in petroliferous basins is not clear.As the differences and correlations between unconventional and conventional resources are complex challenging issues and very critical for resources assessment and hydrocarbon exploration,this paper focused on studying the relationship of formations and distributions among different oil/gas reservoirs.Drilling results of 12,237 exploratory wells in 6 representative petroliferous basins of China and distribution characteristics for 52,926 oil/gas accumulations over the world were applied to clarify the formation conditions and genetic relations of different oil/gas reservoirs in a petroliferous basin,and then to establish a unified model to address the differences and correlations of conventional and unconventional reservoirs.In this model,conventional reservoirs formed in free hydrocarbon dynamic field with high porosity and permeability located above the boundary of hydrocarbon buoyancy-driven accumulation depth limit.Unconventional tight reservoirs formed in confined hydrocarbon dynamic field with low porosity and permeability located between hydrocarbon buoyancy-driven accumulation depth limit and hydrocarbon accumulation depth limit.Shale oil/gas reservoirs formed in the bound hydrocarbon dynamic field with low porosity and ultra-low permeability within the source rock layers.More than 75%of proved reserves around the world are discovered in the free hydrocarbon dynamic field,which is estimated to contain only 10%of originally generated hydrocarbons.Most of undiscovered resources distributed in the confined hydrocarbon dynamic field and the bound hydrocarbon dynamic field,which contains 90%of original generated hydrocarbons,implying a reasonable and promising area for future hydrocarbon explorations.The buried depths of hydrocarbon dynamic fields become shallow with the increase of heat flow,and the remaining oil/gas resources mainly exist in the deep area of“cold basin”with low geothermal gradient.Lithology changing in the hydrocarbon dynamic field causes local anomalies in the oil/gas dynamic mechanism,leading to the local formation of unconventional hydrocarbon reservoirs in the free hydrocarbon dynamic field or the occurrence of oil/gas enrichment sweet points with high porosity and permeability in the confined hydrocarbon dynamic field.The tectonic movements destroy the medium conditions and oil/gas components,which leads to the transformation of conventional oil/gas reservoirs formed in free hydrocarbon dynamic field to unconventional ones or unconventional ones formed in confined and bound hydrocarbon dynamic fields to conventional ones.