Innovation design for complex products is a difficult issue in the military manufacturing industry. Ontology may provide a feasible way to rebuild the design process for complex products via sharing and reusing of des...Innovation design for complex products is a difficult issue in the military manufacturing industry. Ontology may provide a feasible way to rebuild the design process for complex products via sharing and reusing of design knowledge. In this paper, a design method used in the innovation design process of the complex products with knowledge modeling is proposed. Knowledge modeling is realized through ontology construction by combining the cycling evolutional theory of constructing ontology and OWL (Ontology Web Language)-based knowledge representation. As a case study, the satellite is selected as one of the complex products. The application domain of the satellite ontology is analyzed. According to the analysis result, the knowledge structure of satellite ontology is put forward based on OWL. The application of satellite product design shows that the method can effectively organize and reuse the knowledge resources in the innovation design of complex product and help companies to create more competitive products based on the existing knowledge and experience.展开更多
The microscopic structures and the bonding properties of Y-doped and undoped (011^-8)/[044^-1]/180° (∑37) grain boundaries in alumina are investigated by using ab initio method. The formation energy of grain...The microscopic structures and the bonding properties of Y-doped and undoped (011^-8)/[044^-1]/180° (∑37) grain boundaries in alumina are investigated by using ab initio method. The formation energy of grain boundary and the segregation energy of Y to grain boundary are acquired. Electronic structures, potential distributions, bond orders and effective charges of Y-doped and undoped ∑37 GB systems are calculated. Our results reveal that the higher strength Y-O bond than Al-O bond is ascribed to the hybridization of Y(4p, 3d) with O(2s). Meanwhile, dopant Y also causes a change in potential distribution in the grain boundary region, thereby further affecting the transport property of ceramic alumina.展开更多
文摘Innovation design for complex products is a difficult issue in the military manufacturing industry. Ontology may provide a feasible way to rebuild the design process for complex products via sharing and reusing of design knowledge. In this paper, a design method used in the innovation design process of the complex products with knowledge modeling is proposed. Knowledge modeling is realized through ontology construction by combining the cycling evolutional theory of constructing ontology and OWL (Ontology Web Language)-based knowledge representation. As a case study, the satellite is selected as one of the complex products. The application domain of the satellite ontology is analyzed. According to the analysis result, the knowledge structure of satellite ontology is put forward based on OWL. The application of satellite product design shows that the method can effectively organize and reuse the knowledge resources in the innovation design of complex product and help companies to create more competitive products based on the existing knowledge and experience.
基金supported by the National Natural Science Foundation of China (Grant Nos 10744002 and 10774017)supported by the Supercomputing Centre of Chinese Academy of Sciences (SCCAS)
文摘The microscopic structures and the bonding properties of Y-doped and undoped (011^-8)/[044^-1]/180° (∑37) grain boundaries in alumina are investigated by using ab initio method. The formation energy of grain boundary and the segregation energy of Y to grain boundary are acquired. Electronic structures, potential distributions, bond orders and effective charges of Y-doped and undoped ∑37 GB systems are calculated. Our results reveal that the higher strength Y-O bond than Al-O bond is ascribed to the hybridization of Y(4p, 3d) with O(2s). Meanwhile, dopant Y also causes a change in potential distribution in the grain boundary region, thereby further affecting the transport property of ceramic alumina.