In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not...In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery.展开更多
Scour depth prediction of offshore pipelines is of great significance to the design and construction of the submarine pipeline projects. In this paper, based on the CFD software package FLUENT and User Defined Functi...Scour depth prediction of offshore pipelines is of great significance to the design and construction of the submarine pipeline projects. In this paper, based on the CFD software package FLUENT and User Defined Function (UDF), an Eulerian two-phase model, which includes an Euler-Euler coupled model for water and sediment phases, and a turbulent model for the fluid phase, is adopted to predict the scour depth around pipelines. The model is verified by observation data obtained from laboratory experiments. On the basis of the simulations, the factors affecting the scour depth, including the effects of incipient velocity, pipe diameter and sediment particle size and so on, were investigated. Meanwhile, according to formulas of incipient velocity of various sediments, approximate calculation on theoretical scour depths is developed for pipelines of seven stations in the South China Sea, where engineering application information is available.展开更多
The coal-measure source rock in the Chinese sea area plays a significant role as a hydrocarbon source rock,with its genetic environment,development and distribution,and hydrocarbon generation potential serving as esse...The coal-measure source rock in the Chinese sea area plays a significant role as a hydrocarbon source rock,with its genetic environment,development and distribution,and hydrocarbon generation potential serving as essential factors for the exploration of coal-type oil and gas fields.This study focuses on the coal-measure source rock of the Paleogene Enping Formation in the ZhuⅠDepression,located in the northern South China Sea.The main geological insights obtained are as follows.The coal measures of the Enping Formation are developed in a warm and wet tropical-subtropical climate.The development environment of the coal-measure source rock in the Enping Formation includes the braided river delta upper plain peat swamp,characterized by dry forest swamp coal facies with relatively thick coal seams and a small number of layers.The braided river delta lower plain swamp-interdistributary bay of braided river delta front represents a forest edge-wetland herbaceous swamp coal facies with numerous layers of thin coal seams and poor stability.The shore swamp corresponds to an open water swamp coal facies with multiple layers of thin coal seams and poor stability.The organic matter abundance in the braided river delta upper plain is the highest,followed by the braided river delta lower plain-braided river delta front,and the shore-shallow lake.The organic matter type is predominantly typeⅡ1.Thermal evolution analysis suggests that the organic matter has progressed into a substantial oil generation stage.The hydrocarbon generation potential of the coal-measure source rock in the Enping Formation is the highest in the braided river delta upper plain,followed by the braided river delta lower plain-braided river delta front and the shore-shallow lake.Overall,this study proposes three organic facies in the coal-measure source rock of the Enping Formation:upper-plain swamp-dry forest swamp facies,lower plain-interdistributary bay-forest-herbaceous swamp facies,and lake swamp-herbaceous swamp facies.展开更多
This study involved outcrop,drilling,seismic,gravity,and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea(PSCS)and establish its evolution model.The re...This study involved outcrop,drilling,seismic,gravity,and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea(PSCS)and establish its evolution model.The results indicate that a series of arc-shaped ophiolite belts and calcalkaline magmatic rocks are developed in northern Borneo,both of which have the characteristics of gradually changing younger from west to east,and are direct signs of subduction and collision of PSCS.At the same time,the subduction of PSCS led to the formation of three accretion zones from the south to the north in Borneo,the Kuching belt,Sibu belt,and Miri belt.The sedimentary formation of northern Borneo is characterized by a three-layer structure,with the oceanic basement at the bottom,overlying the deep-sea flysch deposits of the Rajang–Crocker group,and the molasse sedimentary sequence that is dominated by river-delta and shallow marine facies at the top,recording the whole subduction–collision–orogeny process of PSCS.Further,seismic reflection and tomography also confirmed the subduction and collision of PSCS.Based on the geological records of the subduction and collision of PSCS,combined with the comprehensive analysis of segmented expansion and key tectonic events in the South China Sea,we establish the“gradual”subduction-collision evolution model of PSCS.During the late Eocene to middle Miocene,the Zengmu,Nansha,and Liyue–Palawan blocks were separated by West Baram Line and Balabac Fault,which collided with the Borneo block and Kagayan Ridge successively from the west to the east,forming several foreland basin systems,and PSCS subducted and closed from the west to the east.The subduction and extinction of PSCS controlled the oil and gas distribution pattern of southern South China Sea(SSCS)mainly in three aspects.First,the“gradual”closure process of PSCS led to the continuous development of many large deltas in SSCS.Second,the deltas formed during the subduction–collision of PSCS controlled the development of source rocks in the basins of SSCS.Macroscopically,the distribution and scale of deltas controlled the distribution and scale of source rocks,forming two types of source rocks,namely,coal measures and terrestrial marine facies.Microscopically,the difference of terrestrial higher plants carried by the delta controlled the proportion of macerals of source rocks.Third,the difference of source rocks mainly controlled the distribution pattern of oil and gas in SSCS.Meanwhile,the difference in the scale of source rocks mainly controlled the difference in the amount of oil and gas discoveries,resulting in a huge amount of oil and gas discoveries in the basin of SSCS.Meanwhile,the difference of macerals of source rocks mainly controlled the difference of oil and gas generation,forming the oil and gas distribution pattern of“nearshore oil and far-shore gas”.展开更多
The connectivity of sandbodies is a key constraint to the exploration effectiveness of Bohai A Oilfield.Conventional connectivity studies often use methods such as seismic attribute fusion,while the development of con...The connectivity of sandbodies is a key constraint to the exploration effectiveness of Bohai A Oilfield.Conventional connectivity studies often use methods such as seismic attribute fusion,while the development of contiguous composite sandbodies in this area makes it challenging to characterize connectivity changes with conventional seismic attributes.Aiming at the above problem in the Bohai A Oilfield,this study proposes a big data analysis method based on the Deep Forest algorithm to predict the sandbody connectivity.Firstly,by compiling the abundant exploration and development sandbodies data in the study area,typical sandbodies with reliable connectivity were selected.Then,sensitive seismic attribute were extracted to obtain training samples.Finally,based on the Deep Forest algorithm,mapping model between attribute combinations and sandbody connectivity was established through machine learning.This method achieves the first quantitative determination of the connectivity for continuous composite sandbodies in the Bohai Oilfield.Compared with conventional connectivity discrimination methods such as high-resolution processing and seismic attribute analysis,this method can combine the sandbody characteristics of the study area in the process of machine learning,and jointly judge connectivity by combining multiple seismic attributes.The study results show that this method has high accuracy and timeliness in predicting connectivity for continuous composite sandbodies.Applied to the Bohai A Oilfield,it successfully identified multiple sandbody connectivity relationships and provided strong support for the subsequent exploration potential assessment and well placement optimization.This method also provides a new idea and method for studying sandbody connectivity under similar complex geological conditions.展开更多
Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea(SCS). In...Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea(SCS). In this paper, high-resolution 3D seismic data and multibeam data based on seismic sedimentology and geomorphology are employed to assist in identifying submarine landslides. In addition, deposition models are proposed that are based on specific geological structures and features, and which illustrate the local stress field over entire submarine landslides in deep-water areas of the SCS. The SCS is one of the largest fluvial sediment sinks in enclosed or semi-enclosed marginal seas worldwide. It therefore provides a set of preconditions for the formation of submarine landslides, including rapid sediment accumulation, formation of gas hydrates, and fluid overpressure. A new concept involving temporal and spatial analyses is tested to construct a relationship between submarine landslides and different time scale trigger mechanisms, and three mechanisms are discussed in the context of spatial scale and temporal frequency: evolution of slope gradient and overpressure, global environmental changes, and tectonic events. Submarine landslides that are triggered by tectonic events are the largest but occur less frequently, while submarine landslides triggered by the combination of slope gradient and overpressure evolution are the smallest but most frequently occurring events. In summary, analysis shows that the formation of submarine landslides is a complex process involving the operation of different factors on various time scales.展开更多
Based on the analysis of the hydrocarbon geochemical characteristics in the Kuqa petroleum system of the Tarim Basin, this study discusses the causes and controlling factors of the phase diversities and their differen...Based on the analysis of the hydrocarbon geochemical characteristics in the Kuqa petroleum system of the Tarim Basin, this study discusses the causes and controlling factors of the phase diversities and their differences in geochemical features. According to the characteristics and differences in oil and gas phase, the petroleum system can be divided into five categories: oil reservoir, wet gas reservoir, condensate gas-rich reservoir, condensate gas-poor reservoir and dry gas reservoir. The causes for the diversities in oil and gas phases include diversities of the sources of parent material, maturity of natural gas and the process of hydrocarbon accumulation of different hydrocarbon phases. On the whole, the Jurassic and Triassic terrestrial source rocks are the main sources for the hydrocarbon in the Kuqa Depression. The small differences in parent material may cause diversities in oil and gas amount, but the impact is small. The differences in oil and gas phase are mainly affected by maturity and the accumulation process, which closely relates with each other. Oil and gas at different thermal evolution stage can be captured in different accumulation process.展开更多
The Mesozoic porphyry assemblage in the Jinduicheng area is a special molybdenum area in China, the Mo deposits, including the Jinduicheng, Balipo, Shijiawan, Huanglongpu, are distributed. The emplacement age and geoc...The Mesozoic porphyry assemblage in the Jinduicheng area is a special molybdenum area in China, the Mo deposits, including the Jinduicheng, Balipo, Shijiawan, Huanglongpu, are distributed. The emplacement age and geochemical features of the granites in the Jinduicheng area can provide essential information for the exploration and development of the porphyry molybdenum deposit. In this study, we report LA-ICP-MS zircon U-Pb age and zircon Hf isotopic compositions of granite porphyries from the Jinduicheng area, and provide insights on the petrogensis and source characteristics of the granites. The results show that the zircon U-Pb ages of the Jinduicheng granite porphyry (143±1 Ma) and the Balipo granite (154±1 Ma), agree well with the Re-Os ages of molybdenite in the Jinduicheng molybdenum polymetallic deposit (139±3 Ma) and the Balipo molybdenum polymetallic deposit (156±2 Ma), indicating that the emplacement of granite porphyries occurred between Late Jurassic and Early Cretaceous. Zircons granite from the Jinduicheng area give the εHf(t) values mainly ranging from -10 to -16, and -20 to -24, respectively, corresponding to two- stage model ages (tDM2: mainly focused on 1.86-2.0 Ga, and 2.2-2.6 Ga, respectively) of zircons of the granite from the Jinduicheng values. The ore-forming materials are mainly derived from crust, with minor mantle substances. Zircons of the granite from the Balipo area give εHf(t) values ranging from -18 to -20, -28 to -38, and -42 to -44, respectively, corresponding to two-stage model ages (tDM2: mainly focused on 1.88-3.0 Ga, and 3.2-3.90 Ga, respectively). the εHf(t) values of the Jinduicheng porphyry more than that of the Balipo porphyry, and two-stage model ages (tDM2) less than that of the Balipo porphyry, shows that he source of the porphyries originated from ancient lower crustal materials in the Jinduicheng area, and mixed younger components, more younger components contributed for the source of the Jinduicheng porphyry.展开更多
This paper presents a new aquathermolysis study of conventional heavy oil in superheated steam. A new high temperature autoclave was designed, where volume and pressure could be adjusted. Aquathermolysis was studied o...This paper presents a new aquathermolysis study of conventional heavy oil in superheated steam. A new high temperature autoclave was designed, where volume and pressure could be adjusted. Aquathermolysis was studied on two different conventional heavy oil samples under different reaction times and temperatures. Experimental results show that aquathermolysis does take place for conventional heavy oil. As reaction time increases, the oil viscosity reduces. However, the reaction will reach equilibrium after a certain period of time and won't be sensitive to any further reaction time any more. Analysis shows that, while resin and asphaltenes decrease, saturated hydrocarbons and the H/C ratio increase after reaction. The main mechanism of aquathermolysis includes hydrogenization, desulfuration reaction of resin and asphaltenes, etc.展开更多
To the potential oil-spill risk caused by offshore pipeline more attention has been paid after the Dalian oil spill incident from oil-pipeline explosion. Since then an issue about how to prevent and control the sudden...To the potential oil-spill risk caused by offshore pipeline more attention has been paid after the Dalian oil spill incident from oil-pipeline explosion. Since then an issue about how to prevent and control the sudden oil-spill from the offshore pipeline has been raised. In this paper, we proposed an optimized model to analyze the main causes(probability) of spill and the consequence with the fuzzy comprehensive assessment model. Considering the complicated assessment process for oil-spill, the assessment factor system involving the spill probability and consequence was established based on the operative manual and statistic leakage/damage data of offshore pipeline in order to estimate the integrated spill risk score automatically. The evaluated factors of spill probability could be grouped into five aspects: corrosion, fatigue, national damage, third party, and operational fault; the consequence evaluated factors of spill included hazard of oil and impact-controlling capability. With some modifications based on experts' opinions, each of the evaluated factors in our work was developed with a relative weight and evaluation criterion. A test example for an offshore pipeline in the Bohai waters was described to show how the model can be used for an actual case in more detail. By using the oil-spill risk assessment model, it is easy to determine the risk level associated with the ongoing activity and management level and hence to take the risk mitigation action immediately.展开更多
Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, usin...Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, using numerical models. The underwater oil spill model is developed, and a description of the governing equations is proposed, along with modifications required for the particalization of the control volume. Available experimental data were introduced to evaluate the validity of the CFD predictions, the results of which proved to be in good agreement with the experimental data. The effects of oil leak rate, leak diameter, current velocity, and oil density are investigated, by the validated CFD model, to estimate the undersea leakage time, the lateral migration distance, and surface diffusion range when the oil reaches the sea surface. Results indicate that the leakage time and lateral migration distance increase with decreasing leak rates and leak diameter, and increase with increasing current velocity and oil density. On the other hand, a large leak diameter, high density, high leak rate, or fast currents result in a greater surface diffusion range. The findings and analysis presented here will provide practical predictions of oil spills, and guidance for emergency rescues.展开更多
As a potential oil and gas reservoir, reef complexes have been a research focus from petroleum geologists for a long time. There are favorable conditions for the development of reef complexes in the South China Sea; h...As a potential oil and gas reservoir, reef complexes have been a research focus from petroleum geologists for a long time. There are favorable conditions for the development of reef complexes in the South China Sea; however, their internal structures, evolution and distribution are still poorly understood. Based on 2D and 3D seismic data, the internal structures and evolution patterns of the reef complexes on the carbonate platform margin in the deep water areas over the western South China Sea were studied in detail. The result shows that two types of reef complexes, i.e., fault controlling platform margin reef complexes and ramp reef complexes have been developed in the study area. The reef complexes have independent or continuous mound or lenticular seismic reflections, with three internal structures (i.e., aggrading, prograding and retrograding structures). There are different growth rates during the evolution of the reef complexes, resulting in the formation of catch-up reefs, keep-up reefs and quick step reefs. The study also reveals that different platform margin reef complexes have different internal structures and distributions, because of the different platform types. These results may be applied to the exploration and prediction of carbonate platform margin reef complexes in other areas that are similar to the study area.展开更多
Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho charact...Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho characteristics influence oil and gas distribution.Therefore,it is important to study the relationship between the variation of the Moho surface depth undulation and hydrocarbon basins for the future prediction of their locations.The Moho depth in the study area can be inverted using the Moho depth control information,the Moho gravity anomaly,and the variable density distribution calculated by the infinite plate.Based on these results,the influences of Moho characteristics on petroleum basins were studied.We found that the Moho surface depth undulation deviation and crustal thickness undulation deviation in the hydrocarbon-rich basins are large,and the horizontal gradient deviation of the Moho surface shows a positive linear relationship with oil and gas resources in the basin.The oil-bearing mechanism of the Moho basin is further discussed herein.The Moho uplift area and the slope zone correspond to the distribution of oil and gas fields.The tensile stress produced by the Moho uplift can form tensile fractures or cause tensile fractures on the surface,further developing into a fault or depression basin that receives deposits.The organic matter can become oil and natural gas under suitable chemical and structural conditions.Under the action of groundwater or other dynamic forces,oil and natural gas are gradually transported to the uplift or the buried hill in the depression zone,and oil and gas fields are formed under the condition of good caprock.The research results can provide new insights into the relationship between deep structures and oil and gas basins as well as assist in the strategic planning of oil and gas exploration activities.展开更多
As one of the main controlling factors of oil and gas accumulation,faults are closely related to the distribution of oil and gas reservoirs.Studying how faults control petroliferous basins is particularly important.In...As one of the main controlling factors of oil and gas accumulation,faults are closely related to the distribution of oil and gas reservoirs.Studying how faults control petroliferous basins is particularly important.In this work,we investigated the plane positions of major faults in the China seas and its adjacent areas using the normalized vertical derivative of the total horizontal derivative(NVDR-THDR)of the Bouguer gravity anomaly,the fusion results of gravity and magnetic anomalies,and the residual Bouguer gravity anomaly.The apparent depths of major faults in the China seas and its adjacent areas were inverted using the Tilt-Euler method based on the Bouguer gravity anomaly.The results show that the strikes of the faults in the China seas and its adjacent areas are mainly NE and NW,followed by EW,and near-SN.Among them,the lengths of most ultra-crustal faults are in the range of 1000–3000 km,and their apparent depths lie between 10 km and 40 km.The lengths of crustal faults lie between 300 km and 1000 km,and their apparent depths are between 0 km and 20 km.According to the plane positions and apparent depths of the faults,we put forward the concept of fault influence factor for the first time.Based on this factor,the key areas for oil and gas exploration were found as follows:the east of South North China Basin in the intracontinental rift basins;the southeast region of East China Sea Shelf Basin,the Taixinan and Qiongdongnan basins in the continental margin rift basins;Zhongjiannan Basin in the strike-slip pull-apart basins;the Liyue,Beikang,and the Nanweixi basins in the rifted continental basins.This work provides valuable insights into oil and gas exploration,mineral resource exploration,and deep geological structure research in the China seas and its adjacent areas.展开更多
Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little ...Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little is known about the age and tectonic affinity of this basement.In this study,an integrated study of zircon U-Pb geochronology,Hf isotopes,and whole-rock major and trace elements on seven basement granitoids from seven boreholes of Qiongdongnan Basin has been carried out.New zircon U-Pb results for these granitoids present middle-late Permian((270.0±1.2)Ma;(253±3.4)Ma),middle to late Triassic((246.2±3.4)Ma;(239.3±0.96)Ma;(237.9±0.99)Ma;(228.9±1.0)Ma)and Late Cretaceous ages((120.6±0.6)Ma).New data from this study,in combination with the previous dataset,indicates that granitoid ages in northern SCS basement vary from 270 Ma to 70.5 Ma,with three age groups of 270–196 Ma,162–142 Ma,and 137–71 Ma,respectively.Except for the late Paleozoic-Mesozoic rocks in the basement of the northern SCS,a few old zircon grains with the age of(2708.1±17)Ma to(2166.6±19)Ma provide clues to the existence of the pre-Proterozoic components.The geochemical signatures indicate that the middle Permian-early Cretaceous granitoids from the Qiongdongnan Basin are I-type granites formed in a volcanic arc environment,which were probably related to the subduction of the Paleo-Pacific Plate.展开更多
Injecting CO_(2)into the underground for oil displacement and shortage is an important technique for carbon capture,utilization and storage(CCUS).One of the main problems during the CO_(2)injection is the channeling p...Injecting CO_(2)into the underground for oil displacement and shortage is an important technique for carbon capture,utilization and storage(CCUS).One of the main problems during the CO_(2)injection is the channeling plugging.Finding an effective method for the gas channeling plugging is a critical issue in the CO_(2)EOR process.In this work,an acid-resistance microgel named dispersed particle gel(DPG)was characterized and its stability was tested in the CO_(2)environment.The microgel size selection strategies for the homogeneous and heterogeneous reservoirs were respectively investigated using the single core flooding and three parallel core flooding experiments.Moreover,the comparison of microgel alternate CO_(2)(MAC)injection and water alternate CO_(2)(WAC)injection in the dual core flooding experiments were presented for the investigation of the role of microgel on the conformance control in CO_(2)flooding process.The results have shown that the microgel featured with ANH and CAN groups can keep its morphology after aging 7 days in the CO_(2)environment.Where,the small microgel with unobstructed migration and large microgel with good plugging efficiency for the high permeability zone were respectively featured with the higher recovery factor in homogeneous and heterogeneous conditions,which indicate they are preferred used for the oil displacement and conformance control.Compared to WAC injection,MAC injection had a higher incremental recovery factor of 12.4%.It suggests the acid-resistance microgel would be a good candidate for the conformance control during CO_(2)flooding process.展开更多
Braid-delta depositional systems are widely developed in most continental basins in China. Research indicates that, for different types of braid delta, the facies sequence and association, which are critical to the pr...Braid-delta depositional systems are widely developed in most continental basins in China. Research indicates that, for different types of braid delta, the facies sequence and association, which are critical to the prediction of the distribution of reservoirs, differ greatly. This study illustrates the differences in braid-delta depositional systems in terms of sedimentary characteristics, associated systems and reser- voir distributions using three typical paleodeltas in western China: the Zhenbei delta of the upper Triassic Yanchang Formation in the Ordos Basin, the Yuanba delta of the upper Triassic Xujiahe Formation in the Sichuan Basin and the Jimsar delta of the upper Permian Wutonggou Formation in the Junggar Basin. A stratigraphic framework was established using seismic data, logs and cores by choosing stable mud sections as regional correlation markers and, topographies of these deltas were reconstructed based on the decompaction and paleobathymetric corrections. Based on both the paleotopography of these deltas and the differences of their sedimentary facies, these braided deltas can be classified into two systems: steep-gradient braid-delta-turbidite system and low-gradient braid-delta-lacustrine system. Moreover, the low-gradient braid-delta-lacustrine system can be further divided into interfingered and sharp contact sub-types according to the contact relation between the delta sands and lacustrine muds. This study shows that the paleotopography of basin margins strongly controls the accommodation as braid deltas prograde into lacustrine basins and, influences the location of the shoreline in response to changes in the lake level. Furthermore, paleotopography plays a significant role in facies and reservoir distribution which is important for petroleum exploration and development.展开更多
This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoir...This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoirs and produced by directional wells. There are mainly four contributions of this paper to the existing body of literature. Firstly, an equivalent simulation method of the pseudo start pressure gradient (PSPG) is developed to quantitatively predict the value of?IIF?under different geological reservoir conditions. Secondly, the interlayer interference is extended in time, and the time period of the study extends from a water cut stage to the whole process from the oil well open to produce?a?high water cut. Thirdly, besides the conventional productivity interlayer interference factor (PIIF), a new parameter, that is, the oil recovery interlayer interference factor (RIIF) is put forward.?RIIF?can be used to evaluate the technical indexes of stratified development and multilayer co-production effectively. Fourthly,?the?effectsof various geological reservoir parameters such as reservoir permeability and crude oil viscosity, etc. on the?PIIF?and?RIIF’s?type curves?are?discussed in detail and the typical plate?is?plotted. The research results provide a foundation for the effective development of multilayer heavy oil reservoirs.展开更多
Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodel...Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodels: a plume dynamics model and an advection-diffusion model. The former is used to simulate the stages dominated by the initial jet momentum and plume buoyancy of the spilled oil,while the latter is used to simulate the stage dominated by the ambient current and turbulence. The model validity was verified through comparisons of the model predictions with experimental data from several laboratory flume experiments and a field experiment. To demonstrate the capability of the model further,it was applied to the simulation of a hypothetical oil spill occurring at the seabed of a deepwater oil/gas field in the South China Sea. The results of the simulation would be useful for contingency planning with regard to the emergency response to an underwater oil spill.展开更多
Boosted by economic development and rising living standards,the world's carbon dioxide emissions remain high.Maintaining temperature rises below 1.5℃ by the end of the century requires rapid global carbon capture...Boosted by economic development and rising living standards,the world's carbon dioxide emissions remain high.Maintaining temperature rises below 1.5℃ by the end of the century requires rapid global carbon capture and storage implementation.The successful application of carbon capture,utilization,and storage(CCUS)technology in oilfields has become the key to getting rid of this predicament.Foam flooding,as an organic combination of gas and chemical flooding,became popular in the 1950s.Notwithstanding the irreplaceable advantages,as a thermodynamically unstable system,foam's stability has long restricted its development in enhanced oil and gas recovery.With special surface/interface effects and small-size effects,nanoparticles can be used as foam stabilizers to enhance foam stability,thereby improving foam seepage and oil displacement effects in porous media.In this paper,the decay kinetics and the stabilization mechanisms of nanoparticle-reinforced foams were systematically reviewed.The effects of nanoparticle characteristics,including particle concentration,surface wettability,particle size,and type,and reservoir environment factors,including oil,temperature,pressure,and salinity on the foam stabilization ability were analyzed in detail.The seepage and flooding mechanisms of nanoparticle-reinforced foams were summarized as:improving the plugging properties of foams,enhancing the interaction between foams and crude oil,and synergistically adjusting the wettability of reservoir rocks.Finally,the challenges in the practical application of nanoparticle-reinforced foams were highlighted,and the development direction was proposed.The development of nanoparticle-reinforced foam can open the way toward adaptive and evolutive EOR technology,taking one further step towards the high-efficiency production of the petroleum industry.展开更多
文摘In oil and gas exploration,elucidating the complex interdependencies among geological variables is paramount.Our study introduces the application of sophisticated regression analysis method at the forefront,aiming not just at predicting geophysical logging curve values but also innovatively mitigate hydrocarbon depletion observed in geochemical logging.Through a rigorous assessment,we explore the efficacy of eight regression models,bifurcated into linear and nonlinear groups,to accommodate the multifaceted nature of geological datasets.Our linear model suite encompasses the Standard Equation,Ridge Regression,Least Absolute Shrinkage and Selection Operator,and Elastic Net,each presenting distinct advantages.The Standard Equation serves as a foundational benchmark,whereas Ridge Regression implements penalty terms to counteract overfitting,thus bolstering model robustness in the presence of multicollinearity.The Least Absolute Shrinkage and Selection Operator for variable selection functions to streamline models,enhancing their interpretability,while Elastic Net amalgamates the merits of Ridge Regression and Least Absolute Shrinkage and Selection Operator,offering a harmonized solution to model complexity and comprehensibility.On the nonlinear front,Gradient Descent,Kernel Ridge Regression,Support Vector Regression,and Piecewise Function-Fitting methods introduce innovative approaches.Gradient Descent assures computational efficiency in optimizing solutions,Kernel Ridge Regression leverages the kernel trick to navigate nonlinear patterns,and Support Vector Regression is proficient in forecasting extremities,pivotal for exploration risk assessment.The Piecewise Function-Fitting approach,tailored for geological data,facilitates adaptable modeling of variable interrelations,accommodating abrupt data trend shifts.Our analysis identifies Ridge Regression,particularly when augmented by Piecewise Function-Fitting,as superior in recouping hydrocarbon losses,and underscoring its utility in resource quantification refinement.Meanwhile,Kernel Ridge Regression emerges as a noteworthy strategy in ameliorating porosity-logging curve prediction for well A,evidencing its aptness for intricate geological structures.This research attests to the scientific ascendancy and broad-spectrum relevance of these regression techniques over conventional methods while heralding new horizons for their deployment in the oil and gas sector.The insights garnered from these advanced modeling strategies are set to transform geological and engineering practices in hydrocarbon prediction,evaluation,and recovery.
基金Foundation item: Supported by the State Key Laboratory of Hydraulic Engineering Simulation and Safety (Grant No. HESS-1401), the National Natural Science Foundation of China (Grant No. 51279124), the Marine Science and Technology Foundation of South China Sea Branch, State Oceanic Administration (Grant No. 1417), and the National High Technology Research and Development Program of China (Grant No. 2008AA09A401). Acknowledgement We wish to thank Prof. Bai YC for stimulating discussions and reviewers for their helpful comments that led to considerable improvements to the paper.
文摘Scour depth prediction of offshore pipelines is of great significance to the design and construction of the submarine pipeline projects. In this paper, based on the CFD software package FLUENT and User Defined Function (UDF), an Eulerian two-phase model, which includes an Euler-Euler coupled model for water and sediment phases, and a turbulent model for the fluid phase, is adopted to predict the scour depth around pipelines. The model is verified by observation data obtained from laboratory experiments. On the basis of the simulations, the factors affecting the scour depth, including the effects of incipient velocity, pipe diameter and sediment particle size and so on, were investigated. Meanwhile, according to formulas of incipient velocity of various sediments, approximate calculation on theoretical scour depths is developed for pipelines of seven stations in the South China Sea, where engineering application information is available.
基金The Scientific research project under contract under contract No.CCL2021RCPS172KQNFormation mechanism and distribution prediction of Cenozoic marine source rocks in Qiongdongnan and Pearl River Mouth Basin under contract No.2021KT-YXKY-01+2 种基金the resource potential,accumulation mechanism and breakthrough direction of potential oil-rich sags in offshore basins of China under contract No.2021-KT-YXKY-03the Open Foundation of Hebei Provincial Key Laboratory of Resource Survey and Researchthe National Natural Science Foundation of China(NSFC)under contract Nos 42072188,42272205。
文摘The coal-measure source rock in the Chinese sea area plays a significant role as a hydrocarbon source rock,with its genetic environment,development and distribution,and hydrocarbon generation potential serving as essential factors for the exploration of coal-type oil and gas fields.This study focuses on the coal-measure source rock of the Paleogene Enping Formation in the ZhuⅠDepression,located in the northern South China Sea.The main geological insights obtained are as follows.The coal measures of the Enping Formation are developed in a warm and wet tropical-subtropical climate.The development environment of the coal-measure source rock in the Enping Formation includes the braided river delta upper plain peat swamp,characterized by dry forest swamp coal facies with relatively thick coal seams and a small number of layers.The braided river delta lower plain swamp-interdistributary bay of braided river delta front represents a forest edge-wetland herbaceous swamp coal facies with numerous layers of thin coal seams and poor stability.The shore swamp corresponds to an open water swamp coal facies with multiple layers of thin coal seams and poor stability.The organic matter abundance in the braided river delta upper plain is the highest,followed by the braided river delta lower plain-braided river delta front,and the shore-shallow lake.The organic matter type is predominantly typeⅡ1.Thermal evolution analysis suggests that the organic matter has progressed into a substantial oil generation stage.The hydrocarbon generation potential of the coal-measure source rock in the Enping Formation is the highest in the braided river delta upper plain,followed by the braided river delta lower plain-braided river delta front and the shore-shallow lake.Overall,this study proposes three organic facies in the coal-measure source rock of the Enping Formation:upper-plain swamp-dry forest swamp facies,lower plain-interdistributary bay-forest-herbaceous swamp facies,and lake swamp-herbaceous swamp facies.
基金The National Natural Science Foundation of China under contract No.91528303the National Science and Technology Major Project under contract No.2016ZX05026-004the CNOOC Basic Geology and Exploration Strategy of Natural Gas in the South China Sea under contract No.2021-KT-YXKY-05。
文摘This study involved outcrop,drilling,seismic,gravity,and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea(PSCS)and establish its evolution model.The results indicate that a series of arc-shaped ophiolite belts and calcalkaline magmatic rocks are developed in northern Borneo,both of which have the characteristics of gradually changing younger from west to east,and are direct signs of subduction and collision of PSCS.At the same time,the subduction of PSCS led to the formation of three accretion zones from the south to the north in Borneo,the Kuching belt,Sibu belt,and Miri belt.The sedimentary formation of northern Borneo is characterized by a three-layer structure,with the oceanic basement at the bottom,overlying the deep-sea flysch deposits of the Rajang–Crocker group,and the molasse sedimentary sequence that is dominated by river-delta and shallow marine facies at the top,recording the whole subduction–collision–orogeny process of PSCS.Further,seismic reflection and tomography also confirmed the subduction and collision of PSCS.Based on the geological records of the subduction and collision of PSCS,combined with the comprehensive analysis of segmented expansion and key tectonic events in the South China Sea,we establish the“gradual”subduction-collision evolution model of PSCS.During the late Eocene to middle Miocene,the Zengmu,Nansha,and Liyue–Palawan blocks were separated by West Baram Line and Balabac Fault,which collided with the Borneo block and Kagayan Ridge successively from the west to the east,forming several foreland basin systems,and PSCS subducted and closed from the west to the east.The subduction and extinction of PSCS controlled the oil and gas distribution pattern of southern South China Sea(SSCS)mainly in three aspects.First,the“gradual”closure process of PSCS led to the continuous development of many large deltas in SSCS.Second,the deltas formed during the subduction–collision of PSCS controlled the development of source rocks in the basins of SSCS.Macroscopically,the distribution and scale of deltas controlled the distribution and scale of source rocks,forming two types of source rocks,namely,coal measures and terrestrial marine facies.Microscopically,the difference of terrestrial higher plants carried by the delta controlled the proportion of macerals of source rocks.Third,the difference of source rocks mainly controlled the distribution pattern of oil and gas in SSCS.Meanwhile,the difference in the scale of source rocks mainly controlled the difference in the amount of oil and gas discoveries,resulting in a huge amount of oil and gas discoveries in the basin of SSCS.Meanwhile,the difference of macerals of source rocks mainly controlled the difference of oil and gas generation,forming the oil and gas distribution pattern of“nearshore oil and far-shore gas”.
文摘The connectivity of sandbodies is a key constraint to the exploration effectiveness of Bohai A Oilfield.Conventional connectivity studies often use methods such as seismic attribute fusion,while the development of contiguous composite sandbodies in this area makes it challenging to characterize connectivity changes with conventional seismic attributes.Aiming at the above problem in the Bohai A Oilfield,this study proposes a big data analysis method based on the Deep Forest algorithm to predict the sandbody connectivity.Firstly,by compiling the abundant exploration and development sandbodies data in the study area,typical sandbodies with reliable connectivity were selected.Then,sensitive seismic attribute were extracted to obtain training samples.Finally,based on the Deep Forest algorithm,mapping model between attribute combinations and sandbody connectivity was established through machine learning.This method achieves the first quantitative determination of the connectivity for continuous composite sandbodies in the Bohai Oilfield.Compared with conventional connectivity discrimination methods such as high-resolution processing and seismic attribute analysis,this method can combine the sandbody characteristics of the study area in the process of machine learning,and jointly judge connectivity by combining multiple seismic attributes.The study results show that this method has high accuracy and timeliness in predicting connectivity for continuous composite sandbodies.Applied to the Bohai A Oilfield,it successfully identified multiple sandbody connectivity relationships and provided strong support for the subsequent exploration potential assessment and well placement optimization.This method also provides a new idea and method for studying sandbody connectivity under similar complex geological conditions.
基金supported by the National Natural Science Foundation of China (Nos. 41576049, 4166 6002)the Key Research Projects of Frontier Science of the Chinese Academy of Sciences (No. QYZDB-SSWSYS025)+1 种基金Qingdao National Laboratory for Marine Science and Technology (No. 2016ASKJ13)Key Science and Technology Foundation of Sanya (Nos. 2017PT 13, 2017PT14)
文摘Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea(SCS). In this paper, high-resolution 3D seismic data and multibeam data based on seismic sedimentology and geomorphology are employed to assist in identifying submarine landslides. In addition, deposition models are proposed that are based on specific geological structures and features, and which illustrate the local stress field over entire submarine landslides in deep-water areas of the SCS. The SCS is one of the largest fluvial sediment sinks in enclosed or semi-enclosed marginal seas worldwide. It therefore provides a set of preconditions for the formation of submarine landslides, including rapid sediment accumulation, formation of gas hydrates, and fluid overpressure. A new concept involving temporal and spatial analyses is tested to construct a relationship between submarine landslides and different time scale trigger mechanisms, and three mechanisms are discussed in the context of spatial scale and temporal frequency: evolution of slope gradient and overpressure, global environmental changes, and tectonic events. Submarine landslides that are triggered by tectonic events are the largest but occur less frequently, while submarine landslides triggered by the combination of slope gradient and overpressure evolution are the smallest but most frequently occurring events. In summary, analysis shows that the formation of submarine landslides is a complex process involving the operation of different factors on various time scales.
基金supported by the Tarim Oil Field Research InstituteNational Natural Science Foundation (sanctified number:40602016)National Key Basic Research and Development Projects (Itemnumber:113404GJ0003)
文摘Based on the analysis of the hydrocarbon geochemical characteristics in the Kuqa petroleum system of the Tarim Basin, this study discusses the causes and controlling factors of the phase diversities and their differences in geochemical features. According to the characteristics and differences in oil and gas phase, the petroleum system can be divided into five categories: oil reservoir, wet gas reservoir, condensate gas-rich reservoir, condensate gas-poor reservoir and dry gas reservoir. The causes for the diversities in oil and gas phases include diversities of the sources of parent material, maturity of natural gas and the process of hydrocarbon accumulation of different hydrocarbon phases. On the whole, the Jurassic and Triassic terrestrial source rocks are the main sources for the hydrocarbon in the Kuqa Depression. The small differences in parent material may cause diversities in oil and gas amount, but the impact is small. The differences in oil and gas phase are mainly affected by maturity and the accumulation process, which closely relates with each other. Oil and gas at different thermal evolution stage can be captured in different accumulation process.
基金supported by the Basic Research Project for the Central Public Welfare Scientific Institutions(K1019) granted by the Institute of Mineral Resources,Chinese Academy of Geological Sciencesthe ministry of land and resources public welfare industry research project of China (200911007-6)the national crisis's mine resources prospecting project of China (20089949)
文摘The Mesozoic porphyry assemblage in the Jinduicheng area is a special molybdenum area in China, the Mo deposits, including the Jinduicheng, Balipo, Shijiawan, Huanglongpu, are distributed. The emplacement age and geochemical features of the granites in the Jinduicheng area can provide essential information for the exploration and development of the porphyry molybdenum deposit. In this study, we report LA-ICP-MS zircon U-Pb age and zircon Hf isotopic compositions of granite porphyries from the Jinduicheng area, and provide insights on the petrogensis and source characteristics of the granites. The results show that the zircon U-Pb ages of the Jinduicheng granite porphyry (143±1 Ma) and the Balipo granite (154±1 Ma), agree well with the Re-Os ages of molybdenite in the Jinduicheng molybdenum polymetallic deposit (139±3 Ma) and the Balipo molybdenum polymetallic deposit (156±2 Ma), indicating that the emplacement of granite porphyries occurred between Late Jurassic and Early Cretaceous. Zircons granite from the Jinduicheng area give the εHf(t) values mainly ranging from -10 to -16, and -20 to -24, respectively, corresponding to two- stage model ages (tDM2: mainly focused on 1.86-2.0 Ga, and 2.2-2.6 Ga, respectively) of zircons of the granite from the Jinduicheng values. The ore-forming materials are mainly derived from crust, with minor mantle substances. Zircons of the granite from the Balipo area give εHf(t) values ranging from -18 to -20, -28 to -38, and -42 to -44, respectively, corresponding to two-stage model ages (tDM2: mainly focused on 1.88-3.0 Ga, and 3.2-3.90 Ga, respectively). the εHf(t) values of the Jinduicheng porphyry more than that of the Balipo porphyry, and two-stage model ages (tDM2) less than that of the Balipo porphyry, shows that he source of the porphyries originated from ancient lower crustal materials in the Jinduicheng area, and mixed younger components, more younger components contributed for the source of the Jinduicheng porphyry.
基金support from the National Natural Science Foundation of China(Grant No.50276040)is gratefully acknowledged.
文摘This paper presents a new aquathermolysis study of conventional heavy oil in superheated steam. A new high temperature autoclave was designed, where volume and pressure could be adjusted. Aquathermolysis was studied on two different conventional heavy oil samples under different reaction times and temperatures. Experimental results show that aquathermolysis does take place for conventional heavy oil. As reaction time increases, the oil viscosity reduces. However, the reaction will reach equilibrium after a certain period of time and won't be sensitive to any further reaction time any more. Analysis shows that, while resin and asphaltenes decrease, saturated hydrocarbons and the H/C ratio increase after reaction. The main mechanism of aquathermolysis includes hydrogenization, desulfuration reaction of resin and asphaltenes, etc.
基金the Marine Public Welfare Research Project of China (No. 201205012)Preferential Funding of Tianjin
文摘To the potential oil-spill risk caused by offshore pipeline more attention has been paid after the Dalian oil spill incident from oil-pipeline explosion. Since then an issue about how to prevent and control the sudden oil-spill from the offshore pipeline has been raised. In this paper, we proposed an optimized model to analyze the main causes(probability) of spill and the consequence with the fuzzy comprehensive assessment model. Considering the complicated assessment process for oil-spill, the assessment factor system involving the spill probability and consequence was established based on the operative manual and statistic leakage/damage data of offshore pipeline in order to estimate the integrated spill risk score automatically. The evaluated factors of spill probability could be grouped into five aspects: corrosion, fatigue, national damage, third party, and operational fault; the consequence evaluated factors of spill included hazard of oil and impact-controlling capability. With some modifications based on experts' opinions, each of the evaluated factors in our work was developed with a relative weight and evaluation criterion. A test example for an offshore pipeline in the Bohai waters was described to show how the model can be used for an actual case in more detail. By using the oil-spill risk assessment model, it is easy to determine the risk level associated with the ongoing activity and management level and hence to take the risk mitigation action immediately.
基金The National Basic Research Program(973 Program)under contract No.2014CB046803the National Natural Science Foundation of China under contract No.51239008the National Science and Technology Major Project under contract No.2016ZX05028005-004
文摘Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, using numerical models. The underwater oil spill model is developed, and a description of the governing equations is proposed, along with modifications required for the particalization of the control volume. Available experimental data were introduced to evaluate the validity of the CFD predictions, the results of which proved to be in good agreement with the experimental data. The effects of oil leak rate, leak diameter, current velocity, and oil density are investigated, by the validated CFD model, to estimate the undersea leakage time, the lateral migration distance, and surface diffusion range when the oil reaches the sea surface. Results indicate that the leakage time and lateral migration distance increase with decreasing leak rates and leak diameter, and increase with increasing current velocity and oil density. On the other hand, a large leak diameter, high density, high leak rate, or fast currents result in a greater surface diffusion range. The findings and analysis presented here will provide practical predictions of oil spills, and guidance for emergency rescues.
基金The National Science and Technology Major Project of China under contract No.2011ZX05025-002-02the National Natural Science Foundation of China under contract No.41202086+3 种基金the National Natural Science Foundation of China under contract No.41102068China Postdoctoral Science Special Fund under contract No.201003654the Special Fund for Basic Scientific Research of Central Colleges,China University of Geosciences(Wuhan)under contract No.CUGL100252the Young Scholars Development Fund of SWPU under contract No.201599010078
文摘As a potential oil and gas reservoir, reef complexes have been a research focus from petroleum geologists for a long time. There are favorable conditions for the development of reef complexes in the South China Sea; however, their internal structures, evolution and distribution are still poorly understood. Based on 2D and 3D seismic data, the internal structures and evolution patterns of the reef complexes on the carbonate platform margin in the deep water areas over the western South China Sea were studied in detail. The result shows that two types of reef complexes, i.e., fault controlling platform margin reef complexes and ramp reef complexes have been developed in the study area. The reef complexes have independent or continuous mound or lenticular seismic reflections, with three internal structures (i.e., aggrading, prograding and retrograding structures). There are different growth rates during the evolution of the reef complexes, resulting in the formation of catch-up reefs, keep-up reefs and quick step reefs. The study also reveals that different platform margin reef complexes have different internal structures and distributions, because of the different platform types. These results may be applied to the exploration and prediction of carbonate platform margin reef complexes in other areas that are similar to the study area.
基金The Scientific and Technological Project of CNOOC Research Institute Co.,Ltd.,under contract No.CCL2021RCPS0167KQNthe Fundamental Research Fund for the Central Universities,CHD,under contract No.300102261717。
文摘Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho characteristics influence oil and gas distribution.Therefore,it is important to study the relationship between the variation of the Moho surface depth undulation and hydrocarbon basins for the future prediction of their locations.The Moho depth in the study area can be inverted using the Moho depth control information,the Moho gravity anomaly,and the variable density distribution calculated by the infinite plate.Based on these results,the influences of Moho characteristics on petroleum basins were studied.We found that the Moho surface depth undulation deviation and crustal thickness undulation deviation in the hydrocarbon-rich basins are large,and the horizontal gradient deviation of the Moho surface shows a positive linear relationship with oil and gas resources in the basin.The oil-bearing mechanism of the Moho basin is further discussed herein.The Moho uplift area and the slope zone correspond to the distribution of oil and gas fields.The tensile stress produced by the Moho uplift can form tensile fractures or cause tensile fractures on the surface,further developing into a fault or depression basin that receives deposits.The organic matter can become oil and natural gas under suitable chemical and structural conditions.Under the action of groundwater or other dynamic forces,oil and natural gas are gradually transported to the uplift or the buried hill in the depression zone,and oil and gas fields are formed under the condition of good caprock.The research results can provide new insights into the relationship between deep structures and oil and gas basins as well as assist in the strategic planning of oil and gas exploration activities.
基金The Scientific and Technological Project of China National Offshore Oil Corporation(CNOOC)Research Institute Co.,Ltd.,under contract No.CCL2021RCPS0167KQNthe Fundamental Research Funds for the Central Universities,CHD under contract No.300102261714。
文摘As one of the main controlling factors of oil and gas accumulation,faults are closely related to the distribution of oil and gas reservoirs.Studying how faults control petroliferous basins is particularly important.In this work,we investigated the plane positions of major faults in the China seas and its adjacent areas using the normalized vertical derivative of the total horizontal derivative(NVDR-THDR)of the Bouguer gravity anomaly,the fusion results of gravity and magnetic anomalies,and the residual Bouguer gravity anomaly.The apparent depths of major faults in the China seas and its adjacent areas were inverted using the Tilt-Euler method based on the Bouguer gravity anomaly.The results show that the strikes of the faults in the China seas and its adjacent areas are mainly NE and NW,followed by EW,and near-SN.Among them,the lengths of most ultra-crustal faults are in the range of 1000–3000 km,and their apparent depths lie between 10 km and 40 km.The lengths of crustal faults lie between 300 km and 1000 km,and their apparent depths are between 0 km and 20 km.According to the plane positions and apparent depths of the faults,we put forward the concept of fault influence factor for the first time.Based on this factor,the key areas for oil and gas exploration were found as follows:the east of South North China Basin in the intracontinental rift basins;the southeast region of East China Sea Shelf Basin,the Taixinan and Qiongdongnan basins in the continental margin rift basins;Zhongjiannan Basin in the strike-slip pull-apart basins;the Liyue,Beikang,and the Nanweixi basins in the rifted continental basins.This work provides valuable insights into oil and gas exploration,mineral resource exploration,and deep geological structure research in the China seas and its adjacent areas.
基金The National Natural Science Foundation of China under contract No.42072181。
文摘Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little is known about the age and tectonic affinity of this basement.In this study,an integrated study of zircon U-Pb geochronology,Hf isotopes,and whole-rock major and trace elements on seven basement granitoids from seven boreholes of Qiongdongnan Basin has been carried out.New zircon U-Pb results for these granitoids present middle-late Permian((270.0±1.2)Ma;(253±3.4)Ma),middle to late Triassic((246.2±3.4)Ma;(239.3±0.96)Ma;(237.9±0.99)Ma;(228.9±1.0)Ma)and Late Cretaceous ages((120.6±0.6)Ma).New data from this study,in combination with the previous dataset,indicates that granitoid ages in northern SCS basement vary from 270 Ma to 70.5 Ma,with three age groups of 270–196 Ma,162–142 Ma,and 137–71 Ma,respectively.Except for the late Paleozoic-Mesozoic rocks in the basement of the northern SCS,a few old zircon grains with the age of(2708.1±17)Ma to(2166.6±19)Ma provide clues to the existence of the pre-Proterozoic components.The geochemical signatures indicate that the middle Permian-early Cretaceous granitoids from the Qiongdongnan Basin are I-type granites formed in a volcanic arc environment,which were probably related to the subduction of the Paleo-Pacific Plate.
基金supported by the National Natural Science Foundation of China(52004305)the Postdoctoral Research Foundation of China(2021M693497)the Science Foundation of China University of Petroleum,Beijing(2462020XKBH006)。
文摘Injecting CO_(2)into the underground for oil displacement and shortage is an important technique for carbon capture,utilization and storage(CCUS).One of the main problems during the CO_(2)injection is the channeling plugging.Finding an effective method for the gas channeling plugging is a critical issue in the CO_(2)EOR process.In this work,an acid-resistance microgel named dispersed particle gel(DPG)was characterized and its stability was tested in the CO_(2)environment.The microgel size selection strategies for the homogeneous and heterogeneous reservoirs were respectively investigated using the single core flooding and three parallel core flooding experiments.Moreover,the comparison of microgel alternate CO_(2)(MAC)injection and water alternate CO_(2)(WAC)injection in the dual core flooding experiments were presented for the investigation of the role of microgel on the conformance control in CO_(2)flooding process.The results have shown that the microgel featured with ANH and CAN groups can keep its morphology after aging 7 days in the CO_(2)environment.Where,the small microgel with unobstructed migration and large microgel with good plugging efficiency for the high permeability zone were respectively featured with the higher recovery factor in homogeneous and heterogeneous conditions,which indicate they are preferred used for the oil displacement and conformance control.Compared to WAC injection,MAC injection had a higher incremental recovery factor of 12.4%.It suggests the acid-resistance microgel would be a good candidate for the conformance control during CO_(2)flooding process.
文摘Braid-delta depositional systems are widely developed in most continental basins in China. Research indicates that, for different types of braid delta, the facies sequence and association, which are critical to the prediction of the distribution of reservoirs, differ greatly. This study illustrates the differences in braid-delta depositional systems in terms of sedimentary characteristics, associated systems and reser- voir distributions using three typical paleodeltas in western China: the Zhenbei delta of the upper Triassic Yanchang Formation in the Ordos Basin, the Yuanba delta of the upper Triassic Xujiahe Formation in the Sichuan Basin and the Jimsar delta of the upper Permian Wutonggou Formation in the Junggar Basin. A stratigraphic framework was established using seismic data, logs and cores by choosing stable mud sections as regional correlation markers and, topographies of these deltas were reconstructed based on the decompaction and paleobathymetric corrections. Based on both the paleotopography of these deltas and the differences of their sedimentary facies, these braided deltas can be classified into two systems: steep-gradient braid-delta-turbidite system and low-gradient braid-delta-lacustrine system. Moreover, the low-gradient braid-delta-lacustrine system can be further divided into interfingered and sharp contact sub-types according to the contact relation between the delta sands and lacustrine muds. This study shows that the paleotopography of basin margins strongly controls the accommodation as braid deltas prograde into lacustrine basins and, influences the location of the shoreline in response to changes in the lake level. Furthermore, paleotopography plays a significant role in facies and reservoir distribution which is important for petroleum exploration and development.
文摘This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoirs and produced by directional wells. There are mainly four contributions of this paper to the existing body of literature. Firstly, an equivalent simulation method of the pseudo start pressure gradient (PSPG) is developed to quantitatively predict the value of?IIF?under different geological reservoir conditions. Secondly, the interlayer interference is extended in time, and the time period of the study extends from a water cut stage to the whole process from the oil well open to produce?a?high water cut. Thirdly, besides the conventional productivity interlayer interference factor (PIIF), a new parameter, that is, the oil recovery interlayer interference factor (RIIF) is put forward.?RIIF?can be used to evaluate the technical indexes of stratified development and multilayer co-production effectively. Fourthly,?the?effectsof various geological reservoir parameters such as reservoir permeability and crude oil viscosity, etc. on the?PIIF?and?RIIF’s?type curves?are?discussed in detail and the typical plate?is?plotted. The research results provide a foundation for the effective development of multilayer heavy oil reservoirs.
基金Supported by the 12th Five-Year Project of Science and Technology of China National Offshore Oil Corporation “Development of Underwater Oil Spill Numerical Simulation in Deep Water”(No.CNOOC-KJ 125 ZDXM 00 000 00 NFCY 2011-03)
文摘Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodels: a plume dynamics model and an advection-diffusion model. The former is used to simulate the stages dominated by the initial jet momentum and plume buoyancy of the spilled oil,while the latter is used to simulate the stage dominated by the ambient current and turbulence. The model validity was verified through comparisons of the model predictions with experimental data from several laboratory flume experiments and a field experiment. To demonstrate the capability of the model further,it was applied to the simulation of a hypothetical oil spill occurring at the seabed of a deepwater oil/gas field in the South China Sea. The results of the simulation would be useful for contingency planning with regard to the emergency response to an underwater oil spill.
基金The authors thank the National Natural Science Foundation of China(Grant 52004305)the Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC005)for the support of this work.
文摘Boosted by economic development and rising living standards,the world's carbon dioxide emissions remain high.Maintaining temperature rises below 1.5℃ by the end of the century requires rapid global carbon capture and storage implementation.The successful application of carbon capture,utilization,and storage(CCUS)technology in oilfields has become the key to getting rid of this predicament.Foam flooding,as an organic combination of gas and chemical flooding,became popular in the 1950s.Notwithstanding the irreplaceable advantages,as a thermodynamically unstable system,foam's stability has long restricted its development in enhanced oil and gas recovery.With special surface/interface effects and small-size effects,nanoparticles can be used as foam stabilizers to enhance foam stability,thereby improving foam seepage and oil displacement effects in porous media.In this paper,the decay kinetics and the stabilization mechanisms of nanoparticle-reinforced foams were systematically reviewed.The effects of nanoparticle characteristics,including particle concentration,surface wettability,particle size,and type,and reservoir environment factors,including oil,temperature,pressure,and salinity on the foam stabilization ability were analyzed in detail.The seepage and flooding mechanisms of nanoparticle-reinforced foams were summarized as:improving the plugging properties of foams,enhancing the interaction between foams and crude oil,and synergistically adjusting the wettability of reservoir rocks.Finally,the challenges in the practical application of nanoparticle-reinforced foams were highlighted,and the development direction was proposed.The development of nanoparticle-reinforced foam can open the way toward adaptive and evolutive EOR technology,taking one further step towards the high-efficiency production of the petroleum industry.