The backreaming operation plays a significant role in safe drilling for horizontal wellbores, while it may cause severe stuck pipe accidents. To lower the risk of the stuck pipe in backreaming operations, the mechanis...The backreaming operation plays a significant role in safe drilling for horizontal wellbores, while it may cause severe stuck pipe accidents. To lower the risk of the stuck pipe in backreaming operations, the mechanism of cuttings transport needs to be carefully investigated. In this research, a transient cuttings transport with multiple flow patterns model is developed to predict the evolution of cuttings transported in the annulus while backreaming. The established model can provide predictions of the distribution of cuttings bed along the wellbore considering the bulldozer effect caused by large-size drilling tools(LSDTs). The sensitivity analyses of the size of LSDTs, and backreaming operating parameters are conducted in Section 4. And a new theory is proposed to explain the mechanism of cuttings transport in the backreaming operation, in which both the bit and LSDTs have the “cleaning effect” and “plugging effect”.The results demonstrate that the cuttings bed in annuli is in a state of dynamic equilibrium, but the overall trend and the distribution pattern are obvious. First, larger diameters and longer drilling tools could lead to a higher risk of the stuck pipe. Second, we find that it is not the case that the higher flow rate is always better for hole cleaning, so three flow-rate intervals are discussed separately under the given conditions. When the “dangerous flow rate”(<33 L/s in Case 4) is employed, the cuttings bed completely blocks the borehole near the step surface and causes a stuck pipe directly. If the flow rate increases to the “low flow rate” interval(33-35 L/s in Case 4), a smaller flow rate instead facilitates borehole cleaning. If the flow rate is large enough to be in the “high flow rate” interval(>35 L/s in Case 4),the higher the flow rate, the better the cleaning effect of cuttings beds. Third, an interval of tripping velocity called “dangerous velocity” is proposed, in which the cuttings bed accumulation near the LSDTs is more serious than those of other tripping velocities. As long as the applied tripping velocity is not within the “dangerous velocity”(0.4-0.5 m/s in Case 5) interval in the backreaming operation, the risk of the stuck pipe can be controlled validly. Finally, through the factors analyses of the annular geometry,particle properties, and fluid properties in Section 5, it can be found that the “low flow rate”, “high flow rate” and “dangers flow rate” tend to decrease and the “dangerous velocity” tends to increase with the conditions more favorable for hole cleaning. This study has some guiding significance for risk prediction and parameter setting of the backreaming operation.展开更多
A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in por...A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability.展开更多
Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of suc...Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future.展开更多
The Liwan(Lw) gas field located in the northern slope of the South China Sea(SCS) is extremely complex for its seafloor topograghy, which is a huge challenge for the safety of subsea facilities. It is economically imp...The Liwan(Lw) gas field located in the northern slope of the South China Sea(SCS) is extremely complex for its seafloor topograghy, which is a huge challenge for the safety of subsea facilities. It is economically impractical to obtain parameters for risk assessment of slope stability through a large amount of sampling over the whole field. The linkage between soil shear strength and seabed peak amplitude derived from 2D/3D seismic data is helpful for understanding the regional slope-instability risk. In this paper, the relationships among seabed peak, acoustic impedance and shear strength of shallow soil in the study area were discussed based on statistical analysis results. We obtained a similar relationship to that obtained in other deep-water areas. There is a positive correlation between seabed peak amplitude and acoustic impedance and an exponential relationship between acoustic impedance and shear strength of sediment. The acoustic impedance is the key factor linking the seismic amplitude and shear strength. Infinite slope stability analysis results indicate the areas have a high potential of shallow landslide on slopes exceeding 15? when the thickness of loose sediments exceeds 8 m in the Lw gas field. Our prediction shows that they are mainly located in the heads and walls of submarine canyons.展开更多
Mooring systems play an important role for semi-submersible rigs that drill in deepwater.A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater...Mooring systems play an important role for semi-submersible rigs that drill in deepwater.A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater location in the South China Sea in 2009.The rig was 30 years old and had a shallow platform with a designed maximum operating water depth of 457 m.Following the mooring analysis,a mooring design was given that requires upgrading of the rig’s original mooring system.The upgrade included several innovations,such as installing eight larger anchors,i.e.replacing the original anchors and inserting an additional 600 m of steel wires with the existing chains.All this was done to enhance the mooring capability of the rig in order for the rig to be held in position to conduct drilling at a water depth of 476 m.The overall duration of the drilling was 50 days and the upgraded mooring system proved to be efficient in achieving the goal of keeping the rig stationary while it was drilling the trial well in the South China Sea.This successful campaign demonstrates that an older semi-submersible rig can take on drilling in deep water after careful design and proper upgrading and modification to the original mooring system.展开更多
The Formation Evaluation Tool (FET) introduced in the paper represents a new generation of formation evaluation systems developed and manufactured by China Oilfield Services Limited (COSL), CNOOC, using a FET tech...The Formation Evaluation Tool (FET) introduced in the paper represents a new generation of formation evaluation systems developed and manufactured by China Oilfield Services Limited (COSL), CNOOC, using a FET technology transfer from Crocker Research, Australia. The system has been applied successfully in the Bohai Sea and South China Sea. For instance, a multilayered oil and water system has been confirmed with the aid of accurate formation pressure tests, even in very thin beds and edge water reservoirs, overcoming the difficulty of determining this kind of oil-water and gas-water contacts. Moreover, the FET pumping and real-time fluid monitoring function allows acquiring a true sample of formation fluid unpolluted by drilling mud which plays an important role in determining the fluid properties of the target stratum and analyzing the fluid component. The principles and purpose of the Formation Evaluation Tool (FET) will be briefly introduced and successful examples of the application of the technology will be described in detail in this paper.展开更多
Organic reef reservoirs in the platform margin of Kaijiang-Liangping trough in Damaoping area, Sichuan Basin are thin in single layer, fast in lateral variation, and have small P-impedance difference from the surround...Organic reef reservoirs in the platform margin of Kaijiang-Liangping trough in Damaoping area, Sichuan Basin are thin in single layer, fast in lateral variation, and have small P-impedance difference from the surrounding rock, it is difficult to identify and predict the reservoirs and fluid properties by conventional post-stack inversion. Through correlation analysis of core test data and logging P-S wave velocity, this work proposed a formula to calculate the shear wave velocity in different porosity ranges, and solved the issue that some wells in the study area have no S-wave data. AVO forward analysis reveals that formation porosity is the main factor affecting the variation of AVO type, the change of water saturation cannot affect the AVO type, but it has an effect on the change range of AVO. Through cross-plotting analysis of elastic parameters, it is found that fluid factor is a parameter sensitive to gas-bearing property of organic reef reservoir in the study area. By comparing results of post-stack impedance inversion, post-stack high frequency attenuation property, pre-stack simultaneous inversion and AVO anomaly analysis of angle gathers, it is found that the gas-bearing prediction of organic reef reservoirs by using fluid factor derived from simultaneous pre-stack inversion had the highest coincidence rate with actual drilling data. At last, according to the characteristics of fluid factor distribution, the favorable gas-bearing area of the organic reef reservoir in Changxing Formation was predicted, and the organic reef trap at the top of Changxing Formation in Block A of Damaoping area was sorted out as the next exploration target.展开更多
The development of highly efficient OER catalysts with superior durability for seawater electrolysis and Zn-air battery is important but challenging.Herein,the vacancy-modified heterostructured bimetallic Fe Mo S_(x)/...The development of highly efficient OER catalysts with superior durability for seawater electrolysis and Zn-air battery is important but challenging.Herein,the vacancy-modified heterostructured bimetallic Fe Mo S_(x)/Co Ni P_(x)OER electrocatalyst is exploited.Benefiting from the electron redistribution and reaction kinetics modulation resulting from vacancy introduction and heterojunction formation,it yields ultralow OER overpotentials of 196,276,303 m V in 1 M KOH and 197,318,348 m V in 1 M KOH+seawater at 10,500,1000 m A cm^(-2),respectively,surviving 600 h at 800 m A cm^(-2)without obvious decay.Further,FeMoS_(x)/CoNiP_(x)-based Zn-air battery not only affords the high peak power density of 214.5 m W cm^(-2)but also exhibits the small voltage gap of 0.698 V and long lifetime of 500 h at 10 m A cm^(-2),overmatching overwhelming majority of reported advanced catalysts.It is revealed experimentally that the OER process on rationally designed Fe Mo S_(x)/Co Ni P_(x)follows the adsorbate evolution mechanism and the ratedetermining step shifts from^(*)OOH formation in individual building blocks to^(*)OOH deprotonation process in FeMoS_(x)/CoNiP_(x),providing the directly proof of how the vacancy introduction and heterojunction formation affect the reaction kinetics.展开更多
A 2.5D finite-difference(FD)algorithm for the modeling of the electromagnetic(EM)logging-whiledrilling(LWD)tool in anisotropic media is presented.The FD algorithm is based on the Lebedev grid,which allows for the disc...A 2.5D finite-difference(FD)algorithm for the modeling of the electromagnetic(EM)logging-whiledrilling(LWD)tool in anisotropic media is presented.The FD algorithm is based on the Lebedev grid,which allows for the discretization of the frequency-domain Maxwell's equations in the anisotropic media in 2.5D scenarios without interpolation.This leads to a system of linear equations that is solved using the multifrontal direct solver which enables the simulation of multi-sources at nearly the cost of simulating a single source for each frequency.In addition,near-optimal quadrature derived from an optimized integration path in the complex plane is employed to implement the fast inverse Fourier Transform(IFT).The algorithm is then validated by both analytic and 3D solutions.Numerical results show that two Lebedev subgrid sets are sufficient for TI medium,which is common in geosteering environments.The number of quadrature points is greatly reduced by using the near-optimal quadrature method.展开更多
The dissociation rates of methane hydrates formed with and without the presence of sodium dodecyl sulfate (methane-SDS hydrates), were measured under atmospheric pressure and temperatures below ice point to investig...The dissociation rates of methane hydrates formed with and without the presence of sodium dodecyl sulfate (methane-SDS hydrates), were measured under atmospheric pressure and temperatures below ice point to investigate the influence of the hydrate production conditions and manners upon its dissociation kinetic behavior. The experimental results demonstrated that the dissociation rate of methane hydrate below ice point is strongly dependent on the manners of hydrate formation and processing. The dissociation rate of hydrate formed quiescently was lower than that of hydrate formed with stirring; the dissociation rate of hydrate formed at lower pressure was higher than that of hydrate formed at higher oressure; the comoaction of hydrate after its formation lowered its stability, i.e., increased'its dissociation rate.The stability of hydrate could beincreased by prolonging the time period for which hydrate was held at formation temperature and pressure before it was cooled down, or by prolonging the time period for which hydrate was held at dissociation temperature and formation pressure before it was depressurized to atmospheric pressure. It was found that the dissociation rate of methane hydrate varied with the temperature (ranging from 245.2 to 272.2 K) anomalously as reported on the dissociation of methane hydrate without the presence of surfactant as kinetic promoter. The dissociation rate at 268 K was found to be the lowest when the manners and conditions at which hydrates were formed and processed were fixed.展开更多
A composite gel was prepared for plugging CO2 channeling, which is a serious problem for enhanced oil recovery with CO2. A composite gel which is one of the materials for successful control of CO2 channeling during CO...A composite gel was prepared for plugging CO2 channeling, which is a serious problem for enhanced oil recovery with CO2. A composite gel which is one of the materials for successful control of CO2 channeling during CO2 injection process was studied in this paper. SEM and nano particle size analysis were used to describe this material’s microstructure. Its effect on CO2 channeling control was evaluated with core flow experiments. Both the rheological test and core plugging experiments indicated that both acrylamide monomer concentration and reaction pressure had positive influences on gel properties. The gel system with an acrylamide monomer concentration of 2% and 5% sodium silicate was proved to have excellent strength, elastic and plugging efficiency, which confirmed huge development potential and wide application of the composite gel system. The high-pressure acid environment arising from the CO2 injection not only reacts with solid silicate to form silicic acid gel, but also facilitates efficient polymerization.展开更多
Highly precise acoustic impedance inversion is a key technology for pre-drilling prediction by VSP data. In this paper, based on the facts that VSP data has high resolution, high signal to noise ratio, and the downgoi...Highly precise acoustic impedance inversion is a key technology for pre-drilling prediction by VSP data. In this paper, based on the facts that VSP data has high resolution, high signal to noise ratio, and the downgoing and upgoing waves can be accurately separated, we propose a method of predicting the impedance below the borehole in front of the bit using VSP data. First, the method of nonlinear iterative inversion is adopted to invert for impedance using the VSP corridor stack. Then, by modifying the damping factor in the iteration and using the preconditioned conjugate gradient method to solve the equations, the stability and convergence of the inversion results can be enhanced. The results of theoretical models and actual data demonstrate that the method is effective for pre-drilling prediction using VSP data.展开更多
Manually picking regularly and densely distributed first breaks(FBs)are critical for shallow velocitymodel building in seismic data processing.However,it is time consuming.We employ the fullyconvolutional Seg Net to a...Manually picking regularly and densely distributed first breaks(FBs)are critical for shallow velocitymodel building in seismic data processing.However,it is time consuming.We employ the fullyconvolutional Seg Net to address this issue and present a fast automatic seismic waveform classification method to pick densely-sampled FBs directly from common-shot gathers with sparsely distributed traces.Through feeding a large number of representative shot gathers with missing traces and the corresponding binary labels segmented by manually interpreted fully-sampled FBs,we can obtain a welltrained Seg Net model.When any unseen gather including the one with irregular trace spacing is inputted,the Seg Net can output the probability distribution of different categories for waveform classification.Then FBs can be picked by locating the boundaries between one class on post-FBs data and the other on pre-FBs background.Two land datasets with each over 2000 shots are adopted to illustrate that one well-trained 25-layer Seg Net can favorably classify waveform and further pick fully-sampled FBs verified by the manually-derived ones,even when the proportion of randomly missing traces reaches50%,21 traces are missing consecutively,or traces are missing regularly.展开更多
Long delays and poor real-time transmission are disadvantageous to well logging networks consisting of multiple subnets. In this paper, we proposed a time-driven transmission method (TDTM) to improve the efficiency ...Long delays and poor real-time transmission are disadvantageous to well logging networks consisting of multiple subnets. In this paper, we proposed a time-driven transmission method (TDTM) to improve the efficiency and precision of logging networks. Using TDTM, we obtained well logging curves by fusing the depth acquired on the surface, and the data acquired in downhole instruments based on the synchronization timestamp. For the TDTM, the precision of time synchronization and the data fusion algorithm were two main factors influencing system errors. A piecewise fractal interpolation was proposed to fast fuse data in each interval of the logging curves. Intervals with similar characteristics in curves were extracted based on the change in the histogram of the interval. The TDTM is evaluated with a sonic curve, as an example. Experimental results showed that the fused data had little error, and the TDTM was effective and suitable for the logging networks.展开更多
At present, mud pulse transmission systems are widely used in downhole data transmission. But the systems are very low in transmission efficiency, only 5-10 bits/s, with very large anti-inter-symbol-interference (ISI)...At present, mud pulse transmission systems are widely used in downhole data transmission. But the systems are very low in transmission efficiency, only 5-10 bits/s, with very large anti-inter-symbol-interference (ISI). It cannot meet high requirements for high-speed transmission of modern logging system. The development of communication technology has laid some foundation for this requirement. For this purpose, the Orthogonal Frequency Division Multiplexing (OFDM) Wireless Downhole Transmission Systems are proposed for the first time because of their high transmission rate, anti-inter-symbol-interference (ISI), and high spectral efficiency, etc. Due to non-linear power amplifier (PA) of logging systems with limited dynamic range, the drawbacks of high peak-average power ratio (PAPR) may outweigh all the potential benefits of OFDM wireless downhole transmission systems. Selective mapping (SLM) method can reduce the PAPR of OFDM logging signals without distortion. But at the receiver, the conventional SLM method needs exact bits of side information (SI) to recover the data signal. The probability of erroneous SI detection has a significant influence on the error performance of the system. And individual transmissions of SI result in the reduction of bandwidth efficiency. To restore the exact data signal, our scheme codes the SI bits by linear block codes (LBC), and is easily decoded by syndrome decoding. And then the coding SI bits are superimposed onto the logging signals to omit SI bits transmission. The theory and simulation results show that the proposed method has better performance than the conventional one. Accordingly, the OFDM wireless downhole transmission systems can tackle the high PAPR problem, and highten the transmission rate of logging signals.展开更多
The advent of transformation thermotics has seen a boom in development of thermal metamaterials with a variety of thermal functionalities,including phenomena such as thermal cloaking and camouflage.However,most therma...The advent of transformation thermotics has seen a boom in development of thermal metamaterials with a variety of thermal functionalities,including phenomena such as thermal cloaking and camouflage.However,most thermal metamaterials-based camouflage devices only tune in-plane heat conduction,which may fail to conceal a target from out-of-plane detection.We propose an adaptive radiative thermal camouflage via tuning out-ofplane transient heat conduction,and it is validated by both simulation and experiment.The physics underlying the performance of our adaptive thermal camouflage is based on real-time synchronous heat conduction through the camouflage device and the background plate,respectively.The proposed concept and device represent a promising new approach to fabrication of conductive thermal metamaterials,providing a feasible and effective way to achieve adaptive thermal camouflage.展开更多
Jack-up units are extensively playing a successful role in drilling engineering around the world, and their safety and efficiency take more and more attraction in both research and engineering practice. An accurate pr...Jack-up units are extensively playing a successful role in drilling engineering around the world, and their safety and efficiency take more and more attraction in both research and engineering practice. An accurate prediction of the spudcan penetration depth is quite instrumental in deciding on whether a jack-up unit is feasible to operate at the site. The prediction of a too large penetration depth may lead to the hesitation or even rejection of a site due to potential difficulties in the subsequent extraction process; the same is true of a too small depth prediction due to the problem of possible instability during operation. However, a deviation between predictive results and final field data usually exists, especially when a strong-over-soft soil is included in the strata. The ultimate decision sometimes to a great extent depends on the practical experience, not the predictive results given by the guideline. It is somewhat risky, but no choice. Therefore, a feasible predictive method for the spudcan penetration depth, especially in strata with strong-over-soft soil profile, is urgently needed by the jack-up industry. In view of this, a comprehensive investigation on methods of predicting spudcan penetration is executed. For types of different soil profiles, predictive methods for spudcan penetration depth are proposed, and the corresponding experiment is also conducted to validate these methods. In addition, to further verify the feasibility of the proposed methods, a practical engineering case encountered in the South China Sea is also presented, and the corresponding numerical and experimental results are also presented and discussed.展开更多
The goal of the research was to investigate the profile control and oil displacement characteristics of the polymer nanoparticles after high temperature swelling.The displacement parameters showed considerable influen...The goal of the research was to investigate the profile control and oil displacement characteristics of the polymer nanoparticles after high temperature swelling.The displacement parameters showed considerable influence on the plugging effect of the high-temperature swelled polymer nanoparticles,such as the core permeability,concentration of nanoparticles in the suspension,swelling time and swelling temperature,which makes it flexible to control the plugging effect by controlling displacement experiments conditions.Experimental results show that polymer nanoparticles dispersion system with a concentration of 500 mg/L is suitable for cores plugging with a permeability of 30×10^(-3)-150×10^(-3)μm^(2),even after aging at 150℃ for three months.The shunt flow experiments show that when the displacement factors are optimal values,the polymer nanoparticles after high temperature swelling to plug the high-permeability layer selectivity and almost do not clog the low-permeability layer.Oil recovery of homogeneous artificial core displacement experiment and a heterogeneous double-tube cores model are increased by 20%and 10.4%on the basis of water flooding.The polymer nanoparticles can be a great help for petroleum engineers to better apply this deep profile control and flooding technology.展开更多
To ensure safe drilling with narrow pressure margins in deepwater, a new deepwater dual-gradient drilling method based on downhole separation was designed. A laboratory experiment was conducted to verify the effective...To ensure safe drilling with narrow pressure margins in deepwater, a new deepwater dual-gradient drilling method based on downhole separation was designed. A laboratory experiment was conducted to verify the effectiveness of downhole separation and the feasibility of realizing dual-gradient in wellbore. The calculation of dynamic wellbore pressure during drilling was conducted. Then, an optimization model for drilling parameters was established for this drilling method, including separator position, separation efficiency, injection volume fraction, density of drilling fluid, wellhead back pressure and displacement. The optimization of drilling parameters under different control parameters and different narrow safe pressure margins is analyzed by case study. The optimization results indicate that the wellbore pressure profile can be optimized to adapt to the narrow pressure margins and achieve greater drilling depth. By using the optimization model, a smaller bottom-hole pressure difference can be obtained, which can increase the rate of penetration(ROP) and protect reservoirs. The dynamic wellbore pressure has been kept within safe pressure margins during optimization process, effectively avoiding the complicated underground situations caused by improper wellbore pressure.展开更多
A new linear ultrasonic phased array fixed on a cylindrical surface is designed. This kind of the cylindrical phased array can meet the specific requirements of the application in testing pipe quality inside pipes. Us...A new linear ultrasonic phased array fixed on a cylindrical surface is designed. This kind of the cylindrical phased array can meet the specific requirements of the application in testing pipe quality inside pipes. Using the transducer, we can not only avoid mechanical rotating but also test the quality of any point in a pipe by ultrasonic phase array technology. The focused acoustic field distributions in the axial, radial and tangential directions of the transducer are investigated theoretically by numerical simulation. The energy flux density, the width of the main lobe, the imaging resolution, the grating lobe elimination and other characteristics are analysed. The effect of the focal distance, effective aperture, transducer radius, number of total element, and steering angle on the acoustic field distribution is also studied.thoroughly. Many important results are obtained.展开更多
基金the National Natural Science Foundation of China,China(Grant No.52227804,52174010)Strategic Cooperation Technology Projects of CNPC and CUPB,China(Grant No.ZLZX2020-01)+1 种基金Sinopec key laboratory of drilling completion and fracturing of shale oil and gas,China(Grant No.35800000-22-ZC0699-0004)the Key Projects of Scientific Research Plan in Colleges and Universities of Xinjiang Uygur Autonomous Region,China(Grant No.XJEDU20211028)。
文摘The backreaming operation plays a significant role in safe drilling for horizontal wellbores, while it may cause severe stuck pipe accidents. To lower the risk of the stuck pipe in backreaming operations, the mechanism of cuttings transport needs to be carefully investigated. In this research, a transient cuttings transport with multiple flow patterns model is developed to predict the evolution of cuttings transported in the annulus while backreaming. The established model can provide predictions of the distribution of cuttings bed along the wellbore considering the bulldozer effect caused by large-size drilling tools(LSDTs). The sensitivity analyses of the size of LSDTs, and backreaming operating parameters are conducted in Section 4. And a new theory is proposed to explain the mechanism of cuttings transport in the backreaming operation, in which both the bit and LSDTs have the “cleaning effect” and “plugging effect”.The results demonstrate that the cuttings bed in annuli is in a state of dynamic equilibrium, but the overall trend and the distribution pattern are obvious. First, larger diameters and longer drilling tools could lead to a higher risk of the stuck pipe. Second, we find that it is not the case that the higher flow rate is always better for hole cleaning, so three flow-rate intervals are discussed separately under the given conditions. When the “dangerous flow rate”(<33 L/s in Case 4) is employed, the cuttings bed completely blocks the borehole near the step surface and causes a stuck pipe directly. If the flow rate increases to the “low flow rate” interval(33-35 L/s in Case 4), a smaller flow rate instead facilitates borehole cleaning. If the flow rate is large enough to be in the “high flow rate” interval(>35 L/s in Case 4),the higher the flow rate, the better the cleaning effect of cuttings beds. Third, an interval of tripping velocity called “dangerous velocity” is proposed, in which the cuttings bed accumulation near the LSDTs is more serious than those of other tripping velocities. As long as the applied tripping velocity is not within the “dangerous velocity”(0.4-0.5 m/s in Case 5) interval in the backreaming operation, the risk of the stuck pipe can be controlled validly. Finally, through the factors analyses of the annular geometry,particle properties, and fluid properties in Section 5, it can be found that the “low flow rate”, “high flow rate” and “dangers flow rate” tend to decrease and the “dangerous velocity” tends to increase with the conditions more favorable for hole cleaning. This study has some guiding significance for risk prediction and parameter setting of the backreaming operation.
基金Supported by the Original Exploration Project of National Natural Science Foundation of China(5215000105)Young Teachers Fund for Higher Education Institutions of Huo Yingdong Education Foundation(171043)。
文摘A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability.
基金funded by Science and Technology Major Project of China National Offshore Oil Corporation(CNOOC-KJ 135 ZDXM36 TJ 08TJ).
文摘Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future.
基金funded by China National Science and Technology Major Project (No.2011ZX05056-001-02)
文摘The Liwan(Lw) gas field located in the northern slope of the South China Sea(SCS) is extremely complex for its seafloor topograghy, which is a huge challenge for the safety of subsea facilities. It is economically impractical to obtain parameters for risk assessment of slope stability through a large amount of sampling over the whole field. The linkage between soil shear strength and seabed peak amplitude derived from 2D/3D seismic data is helpful for understanding the regional slope-instability risk. In this paper, the relationships among seabed peak, acoustic impedance and shear strength of shallow soil in the study area were discussed based on statistical analysis results. We obtained a similar relationship to that obtained in other deep-water areas. There is a positive correlation between seabed peak amplitude and acoustic impedance and an exponential relationship between acoustic impedance and shear strength of sediment. The acoustic impedance is the key factor linking the seismic amplitude and shear strength. Infinite slope stability analysis results indicate the areas have a high potential of shallow landslide on slopes exceeding 15? when the thickness of loose sediments exceeds 8 m in the Lw gas field. Our prediction shows that they are mainly located in the heads and walls of submarine canyons.
文摘Mooring systems play an important role for semi-submersible rigs that drill in deepwater.A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater location in the South China Sea in 2009.The rig was 30 years old and had a shallow platform with a designed maximum operating water depth of 457 m.Following the mooring analysis,a mooring design was given that requires upgrading of the rig’s original mooring system.The upgrade included several innovations,such as installing eight larger anchors,i.e.replacing the original anchors and inserting an additional 600 m of steel wires with the existing chains.All this was done to enhance the mooring capability of the rig in order for the rig to be held in position to conduct drilling at a water depth of 476 m.The overall duration of the drilling was 50 days and the upgraded mooring system proved to be efficient in achieving the goal of keeping the rig stationary while it was drilling the trial well in the South China Sea.This successful campaign demonstrates that an older semi-submersible rig can take on drilling in deep water after careful design and proper upgrading and modification to the original mooring system.
文摘The Formation Evaluation Tool (FET) introduced in the paper represents a new generation of formation evaluation systems developed and manufactured by China Oilfield Services Limited (COSL), CNOOC, using a FET technology transfer from Crocker Research, Australia. The system has been applied successfully in the Bohai Sea and South China Sea. For instance, a multilayered oil and water system has been confirmed with the aid of accurate formation pressure tests, even in very thin beds and edge water reservoirs, overcoming the difficulty of determining this kind of oil-water and gas-water contacts. Moreover, the FET pumping and real-time fluid monitoring function allows acquiring a true sample of formation fluid unpolluted by drilling mud which plays an important role in determining the fluid properties of the target stratum and analyzing the fluid component. The principles and purpose of the Formation Evaluation Tool (FET) will be briefly introduced and successful examples of the application of the technology will be described in detail in this paper.
基金Supported by the National Natural Science Foundation of China(41430316)China National Science and Technology Major Project(2017ZX05008-004-008).
文摘Organic reef reservoirs in the platform margin of Kaijiang-Liangping trough in Damaoping area, Sichuan Basin are thin in single layer, fast in lateral variation, and have small P-impedance difference from the surrounding rock, it is difficult to identify and predict the reservoirs and fluid properties by conventional post-stack inversion. Through correlation analysis of core test data and logging P-S wave velocity, this work proposed a formula to calculate the shear wave velocity in different porosity ranges, and solved the issue that some wells in the study area have no S-wave data. AVO forward analysis reveals that formation porosity is the main factor affecting the variation of AVO type, the change of water saturation cannot affect the AVO type, but it has an effect on the change range of AVO. Through cross-plotting analysis of elastic parameters, it is found that fluid factor is a parameter sensitive to gas-bearing property of organic reef reservoir in the study area. By comparing results of post-stack impedance inversion, post-stack high frequency attenuation property, pre-stack simultaneous inversion and AVO anomaly analysis of angle gathers, it is found that the gas-bearing prediction of organic reef reservoirs by using fluid factor derived from simultaneous pre-stack inversion had the highest coincidence rate with actual drilling data. At last, according to the characteristics of fluid factor distribution, the favorable gas-bearing area of the organic reef reservoir in Changxing Formation was predicted, and the organic reef trap at the top of Changxing Formation in Block A of Damaoping area was sorted out as the next exploration target.
基金supported by the National Natural Science Foundation of China (21975136,22102076)the Fundamental Research Funds for the Central Universities (63185015)+2 种基金the Shenzhen Science,Technology and Innovation Committee (JCYJ20190808151603654,JCYJ20210324121002007)the Open Funds from National Engineering Lab for Mobile Source Emission Control Technology (NELMS2020A12)the Open Fund for Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response (RZH2021-KF-03)。
文摘The development of highly efficient OER catalysts with superior durability for seawater electrolysis and Zn-air battery is important but challenging.Herein,the vacancy-modified heterostructured bimetallic Fe Mo S_(x)/Co Ni P_(x)OER electrocatalyst is exploited.Benefiting from the electron redistribution and reaction kinetics modulation resulting from vacancy introduction and heterojunction formation,it yields ultralow OER overpotentials of 196,276,303 m V in 1 M KOH and 197,318,348 m V in 1 M KOH+seawater at 10,500,1000 m A cm^(-2),respectively,surviving 600 h at 800 m A cm^(-2)without obvious decay.Further,FeMoS_(x)/CoNiP_(x)-based Zn-air battery not only affords the high peak power density of 214.5 m W cm^(-2)but also exhibits the small voltage gap of 0.698 V and long lifetime of 500 h at 10 m A cm^(-2),overmatching overwhelming majority of reported advanced catalysts.It is revealed experimentally that the OER process on rationally designed Fe Mo S_(x)/Co Ni P_(x)follows the adsorbate evolution mechanism and the ratedetermining step shifts from^(*)OOH formation in individual building blocks to^(*)OOH deprotonation process in FeMoS_(x)/CoNiP_(x),providing the directly proof of how the vacancy introduction and heterojunction formation affect the reaction kinetics.
文摘A 2.5D finite-difference(FD)algorithm for the modeling of the electromagnetic(EM)logging-whiledrilling(LWD)tool in anisotropic media is presented.The FD algorithm is based on the Lebedev grid,which allows for the discretization of the frequency-domain Maxwell's equations in the anisotropic media in 2.5D scenarios without interpolation.This leads to a system of linear equations that is solved using the multifrontal direct solver which enables the simulation of multi-sources at nearly the cost of simulating a single source for each frequency.In addition,near-optimal quadrature derived from an optimized integration path in the complex plane is employed to implement the fast inverse Fourier Transform(IFT).The algorithm is then validated by both analytic and 3D solutions.Numerical results show that two Lebedev subgrid sets are sufficient for TI medium,which is common in geosteering environments.The number of quadrature points is greatly reduced by using the near-optimal quadrature method.
基金Supported by the National Natural Science Foundation of China (20506016, 20676145, U0633003), the National High Technology Research and Development Program of China (2006AA09A208), Program for New Century Excellent Talents in Uni versity of the State Ministry of Education (NCET-07-0842), and the Foundation for the Authors of National Excellent Doc toral Dissertation of the People's Republic of China (200447).
文摘The dissociation rates of methane hydrates formed with and without the presence of sodium dodecyl sulfate (methane-SDS hydrates), were measured under atmospheric pressure and temperatures below ice point to investigate the influence of the hydrate production conditions and manners upon its dissociation kinetic behavior. The experimental results demonstrated that the dissociation rate of methane hydrate below ice point is strongly dependent on the manners of hydrate formation and processing. The dissociation rate of hydrate formed quiescently was lower than that of hydrate formed with stirring; the dissociation rate of hydrate formed at lower pressure was higher than that of hydrate formed at higher oressure; the comoaction of hydrate after its formation lowered its stability, i.e., increased'its dissociation rate.The stability of hydrate could beincreased by prolonging the time period for which hydrate was held at formation temperature and pressure before it was cooled down, or by prolonging the time period for which hydrate was held at dissociation temperature and formation pressure before it was depressurized to atmospheric pressure. It was found that the dissociation rate of methane hydrate varied with the temperature (ranging from 245.2 to 272.2 K) anomalously as reported on the dissociation of methane hydrate without the presence of surfactant as kinetic promoter. The dissociation rate at 268 K was found to be the lowest when the manners and conditions at which hydrates were formed and processed were fixed.
文摘A composite gel was prepared for plugging CO2 channeling, which is a serious problem for enhanced oil recovery with CO2. A composite gel which is one of the materials for successful control of CO2 channeling during CO2 injection process was studied in this paper. SEM and nano particle size analysis were used to describe this material’s microstructure. Its effect on CO2 channeling control was evaluated with core flow experiments. Both the rheological test and core plugging experiments indicated that both acrylamide monomer concentration and reaction pressure had positive influences on gel properties. The gel system with an acrylamide monomer concentration of 2% and 5% sodium silicate was proved to have excellent strength, elastic and plugging efficiency, which confirmed huge development potential and wide application of the composite gel system. The high-pressure acid environment arising from the CO2 injection not only reacts with solid silicate to form silicic acid gel, but also facilitates efficient polymerization.
文摘Highly precise acoustic impedance inversion is a key technology for pre-drilling prediction by VSP data. In this paper, based on the facts that VSP data has high resolution, high signal to noise ratio, and the downgoing and upgoing waves can be accurately separated, we propose a method of predicting the impedance below the borehole in front of the bit using VSP data. First, the method of nonlinear iterative inversion is adopted to invert for impedance using the VSP corridor stack. Then, by modifying the damping factor in the iteration and using the preconditioned conjugate gradient method to solve the equations, the stability and convergence of the inversion results can be enhanced. The results of theoretical models and actual data demonstrate that the method is effective for pre-drilling prediction using VSP data.
基金financially supported by the National Key R&D Program of China(2018YFA0702504)the Fundamental Research Funds for the Central Universities(2462019QNXZ03)+1 种基金the National Natural Science Foundation of China(42174152 and 41974140)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX 2020-03)。
文摘Manually picking regularly and densely distributed first breaks(FBs)are critical for shallow velocitymodel building in seismic data processing.However,it is time consuming.We employ the fullyconvolutional Seg Net to address this issue and present a fast automatic seismic waveform classification method to pick densely-sampled FBs directly from common-shot gathers with sparsely distributed traces.Through feeding a large number of representative shot gathers with missing traces and the corresponding binary labels segmented by manually interpreted fully-sampled FBs,we can obtain a welltrained Seg Net model.When any unseen gather including the one with irregular trace spacing is inputted,the Seg Net can output the probability distribution of different categories for waveform classification.Then FBs can be picked by locating the boundaries between one class on post-FBs data and the other on pre-FBs background.Two land datasets with each over 2000 shots are adopted to illustrate that one well-trained 25-layer Seg Net can favorably classify waveform and further pick fully-sampled FBs verified by the manually-derived ones,even when the proportion of randomly missing traces reaches50%,21 traces are missing consecutively,or traces are missing regularly.
基金supported by the China National OffshoreOil Corporation under the High Speed Logging Transmission Network based on OFDM and Ethernet Programsupported by the UESTC-COSL Joint Laboratory of Electrical Logging.
文摘Long delays and poor real-time transmission are disadvantageous to well logging networks consisting of multiple subnets. In this paper, we proposed a time-driven transmission method (TDTM) to improve the efficiency and precision of logging networks. Using TDTM, we obtained well logging curves by fusing the depth acquired on the surface, and the data acquired in downhole instruments based on the synchronization timestamp. For the TDTM, the precision of time synchronization and the data fusion algorithm were two main factors influencing system errors. A piecewise fractal interpolation was proposed to fast fuse data in each interval of the logging curves. Intervals with similar characteristics in curves were extracted based on the change in the histogram of the interval. The TDTM is evaluated with a sonic curve, as an example. Experimental results showed that the fused data had little error, and the TDTM was effective and suitable for the logging networks.
文摘At present, mud pulse transmission systems are widely used in downhole data transmission. But the systems are very low in transmission efficiency, only 5-10 bits/s, with very large anti-inter-symbol-interference (ISI). It cannot meet high requirements for high-speed transmission of modern logging system. The development of communication technology has laid some foundation for this requirement. For this purpose, the Orthogonal Frequency Division Multiplexing (OFDM) Wireless Downhole Transmission Systems are proposed for the first time because of their high transmission rate, anti-inter-symbol-interference (ISI), and high spectral efficiency, etc. Due to non-linear power amplifier (PA) of logging systems with limited dynamic range, the drawbacks of high peak-average power ratio (PAPR) may outweigh all the potential benefits of OFDM wireless downhole transmission systems. Selective mapping (SLM) method can reduce the PAPR of OFDM logging signals without distortion. But at the receiver, the conventional SLM method needs exact bits of side information (SI) to recover the data signal. The probability of erroneous SI detection has a significant influence on the error performance of the system. And individual transmissions of SI result in the reduction of bandwidth efficiency. To restore the exact data signal, our scheme codes the SI bits by linear block codes (LBC), and is easily decoded by syndrome decoding. And then the coding SI bits are superimposed onto the logging signals to omit SI bits transmission. The theory and simulation results show that the proposed method has better performance than the conventional one. Accordingly, the OFDM wireless downhole transmission systems can tackle the high PAPR problem, and highten the transmission rate of logging signals.
基金Supported by the National Natural Science Foundation of China(Grant No.52076087).
文摘The advent of transformation thermotics has seen a boom in development of thermal metamaterials with a variety of thermal functionalities,including phenomena such as thermal cloaking and camouflage.However,most thermal metamaterials-based camouflage devices only tune in-plane heat conduction,which may fail to conceal a target from out-of-plane detection.We propose an adaptive radiative thermal camouflage via tuning out-ofplane transient heat conduction,and it is validated by both simulation and experiment.The physics underlying the performance of our adaptive thermal camouflage is based on real-time synchronous heat conduction through the camouflage device and the background plate,respectively.The proposed concept and device represent a promising new approach to fabrication of conductive thermal metamaterials,providing a feasible and effective way to achieve adaptive thermal camouflage.
基金supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2008AA092701-3)
文摘Jack-up units are extensively playing a successful role in drilling engineering around the world, and their safety and efficiency take more and more attraction in both research and engineering practice. An accurate prediction of the spudcan penetration depth is quite instrumental in deciding on whether a jack-up unit is feasible to operate at the site. The prediction of a too large penetration depth may lead to the hesitation or even rejection of a site due to potential difficulties in the subsequent extraction process; the same is true of a too small depth prediction due to the problem of possible instability during operation. However, a deviation between predictive results and final field data usually exists, especially when a strong-over-soft soil is included in the strata. The ultimate decision sometimes to a great extent depends on the practical experience, not the predictive results given by the guideline. It is somewhat risky, but no choice. Therefore, a feasible predictive method for the spudcan penetration depth, especially in strata with strong-over-soft soil profile, is urgently needed by the jack-up industry. In view of this, a comprehensive investigation on methods of predicting spudcan penetration is executed. For types of different soil profiles, predictive methods for spudcan penetration depth are proposed, and the corresponding experiment is also conducted to validate these methods. In addition, to further verify the feasibility of the proposed methods, a practical engineering case encountered in the South China Sea is also presented, and the corresponding numerical and experimental results are also presented and discussed.
基金funded by National Natural Science Foundation of China No.51874316 and 51274211National Key Scientific and Technological Project(Grant No.2017ZX05009-004)。
文摘The goal of the research was to investigate the profile control and oil displacement characteristics of the polymer nanoparticles after high temperature swelling.The displacement parameters showed considerable influence on the plugging effect of the high-temperature swelled polymer nanoparticles,such as the core permeability,concentration of nanoparticles in the suspension,swelling time and swelling temperature,which makes it flexible to control the plugging effect by controlling displacement experiments conditions.Experimental results show that polymer nanoparticles dispersion system with a concentration of 500 mg/L is suitable for cores plugging with a permeability of 30×10^(-3)-150×10^(-3)μm^(2),even after aging at 150℃ for three months.The shunt flow experiments show that when the displacement factors are optimal values,the polymer nanoparticles after high temperature swelling to plug the high-permeability layer selectivity and almost do not clog the low-permeability layer.Oil recovery of homogeneous artificial core displacement experiment and a heterogeneous double-tube cores model are increased by 20%and 10.4%on the basis of water flooding.The polymer nanoparticles can be a great help for petroleum engineers to better apply this deep profile control and flooding technology.
基金Supported by the Key Program of National Natural Science Foundation of China(51734010)
文摘To ensure safe drilling with narrow pressure margins in deepwater, a new deepwater dual-gradient drilling method based on downhole separation was designed. A laboratory experiment was conducted to verify the effectiveness of downhole separation and the feasibility of realizing dual-gradient in wellbore. The calculation of dynamic wellbore pressure during drilling was conducted. Then, an optimization model for drilling parameters was established for this drilling method, including separator position, separation efficiency, injection volume fraction, density of drilling fluid, wellhead back pressure and displacement. The optimization of drilling parameters under different control parameters and different narrow safe pressure margins is analyzed by case study. The optimization results indicate that the wellbore pressure profile can be optimized to adapt to the narrow pressure margins and achieve greater drilling depth. By using the optimization model, a smaller bottom-hole pressure difference can be obtained, which can increase the rate of penetration(ROP) and protect reservoirs. The dynamic wellbore pressure has been kept within safe pressure margins during optimization process, effectively avoiding the complicated underground situations caused by improper wellbore pressure.
基金Supported by the National Natural Science Foundation of China under Grant No 10374098.
文摘A new linear ultrasonic phased array fixed on a cylindrical surface is designed. This kind of the cylindrical phased array can meet the specific requirements of the application in testing pipe quality inside pipes. Using the transducer, we can not only avoid mechanical rotating but also test the quality of any point in a pipe by ultrasonic phase array technology. The focused acoustic field distributions in the axial, radial and tangential directions of the transducer are investigated theoretically by numerical simulation. The energy flux density, the width of the main lobe, the imaging resolution, the grating lobe elimination and other characteristics are analysed. The effect of the focal distance, effective aperture, transducer radius, number of total element, and steering angle on the acoustic field distribution is also studied.thoroughly. Many important results are obtained.