Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,...Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,and putative introgression.Here we generated the first chromosome-level genome of the endangered Chinese hazelnut,Corylus chinensis,and compared the genomic signatures with its sympatric widespread C.kwechowensis-C yunnanensis complex.We found large genome rearrangements across all Corylus species and identified species-specific expanded gene families that may be involved in adaptation.Population genomics revealed that both C.chinensis and the C.kwechowensis-C.yunnanensis complex had diverged into two genetic lineages,forming a consistent pattern of southwestern-northern differentiation.Population size of the narrow southwestern lineages of both species have decreased continuously since the late Miocene,whereas the widespread northern lineages have remained stable(C.chinensis) or have even recovered from population bottlenecks(C.kwechowensis-C.yunnanensis complex) during the Quaternary.Compared with C.kwechowensis-C. yunnanensis complex,C.chinensis showed significantly lower genomic diversity and higher inbreeding level.However,C.chinensis carried significantly fewer deleterious mutations than C.kwechowensis-C. yunnanensis complex,as more effective purging selection reduced the accumulation of homozygous variants.We also detected signals of positive selection and adaptive introgression in different lineages,which facilitated the accumulation of favorable variants and formation of local adaptation.Hence,both types of selection and exogenous introgression could have mitigated inbreeding and facilitated survival and persistence of C.chinensis.Overall,our study provides critical insights into lineage differentiation,local adaptation,and the potential for future recovery of endangered trees.展开更多
Chinese wingnut(Pterocarya stenoptera)is a medicinally and economically important tree species within the family Juglandaceae.However,the lack of high-quality reference genome has hindered its in-depth research.In thi...Chinese wingnut(Pterocarya stenoptera)is a medicinally and economically important tree species within the family Juglandaceae.However,the lack of high-quality reference genome has hindered its in-depth research.In this study,we successfully assembled its chromosome-level genome and performed multiomics analyses to address its evolutionary history and synthesis of medicinal components.A thorough examination of genomes has uncovered a significant expansion in the Lateral Organ Boundaries Domain gene family among the winged group in Juglandaceae.This notable increase may be attributed to their frequent exposure to flood-prone environments.After further differentiation between Chinese wingnut and Cyclocarya paliurus,significant positive selection occurred on the genes of NADH dehydrogenase related to mitochondrial aerobic respiration in Chinese wingnut,enhancing its ability to cope with waterlogging stress.Comparative genomic analysis revealed Chinese wingnut evolved more unique genes related to arginine synthesis,potentially endowing it with a higher capacity to purify nutrient-rich water bodies.Expansion of terpene synthase families enables the production of increased quantities of terpenoid volatiles,potentially serving as an evolved defense mechanism against herbivorous insects.Through combined transcriptomic and metabolomic analysis,we identified the candidate genes involved in the synthesis of terpenoid volatiles.Our study offers essential genetic resources for Chinese wingnut,unveiling its evolutionary history and identifying key genes linked to the production of terpenoid volatiles.展开更多
A comparative study was conducted on liquid penetration of the freeze-drying and air-drying sapwood and heartwood lumber of plantation Chinese fir (Cunninghamia lanceolata). The maximum amount of dyeing solution upt...A comparative study was conducted on liquid penetration of the freeze-drying and air-drying sapwood and heartwood lumber of plantation Chinese fir (Cunninghamia lanceolata). The maximum amount of dyeing solution uptake by the capillary rise method was used to evaluate the liquid penetration properties of the treated wood. The pit aspiration ratio was determined by semithin section method. Changes in wood microstructure were investigated using scanning electron microscopy. The results showed that compared with air drying, the freeze drying had a significant effect on liquid penetration of sapwood and heartwood of Chinese fir. The liquid penetration of sapwood is significantly higher than that of the heartwood for both drying treatments. Low pit aspiration ratio and cracks of pits membrane of some bordered pits are the main reasons for increasing liquid penetration after freeze drying treatment.展开更多
Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil ...Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil aggregates have been widely studied.However,there remains elusive knowledge on the synergistic effects of changing forest stand structure on soil aggregate stability(SAS),particularly in subtropical China where soil erosion remains a critical issue.Methods:We investigated variations in the components of soil humus(HS),including humic acids(HAs),fulvic acids(FAs),and humins(HMs),under pure Chinese fir(Cunninghamia lanceolata)plantation(PP)and multilayered mixed plantation(MP)comprising C.lanceolata,Castanopsis hystrix,and Michelia hedyosperma.The state of soil aggregate stability,was determined by three separate methods,i.e.,dry-sieving,wet-sieving,and the Le Bissonnais.High-throughput sequencing was used to determine the diversity and composition of microbial communities under PP and MP.We then built partial least squares path models(PLS-PM)for assessing the responses of SAS to the variations in soil microorganisms and HS components.Results:The MP stands had significantly greater SAS(P<0.05),higher content of HAs and more rapid organic matter humification within aggregates,than the PP stands.High-throughput sequencing confirmed that the Pielou andα-diversity index values(Chao1 and Shannon)for fungi were all significantly higher under MP than under PP,while no marked difference was found in bacterialα-diversity between the two plantation types.Moreover,there were markedly greater abundance of three bacterial phyla(Verrucomicrobia,Chloroflexi,and Gemmatimonadetes)and three fungal phyla(Ascomycota,Kickxellomycota,and Glomeromycota),and significantly less abundance of two bacterial phyla(Planctomycetes and Firmicutes)and four fungal phyla(Basidiomycota,Mortierellomycota,Mucoromycota,and Rozellomycota)under MP than under PP.The Chloroflexi and Ascomycota phyla appeared to be the primary drivers of soil aggregate distribution.Our findings revealed that the promotion of SAS under MP was mainly driven by increased soil organic matter(SOM)content,which altered bacterial communities and enhanced fungal diversity,thereby increasing HAs content and the rate of organic matter humification.Conclusions:Considering the combined effects of enhanced soil quality,productivity,and relevant economic costs,introducing broadleaved tree species into Chinese fir plantations can be an effective strategy for stabilizing soil structure against erosion in subtropical China.Our study elucidated the controls on variations of SAS in Chinese fir-dominated plantations and demonstrated the benefit of converting pure Chinese fir plantation to multi-layered mixed plantations in increasing soil structural stability and improving site quality.展开更多
Forest volume, the major component of forest biomass, is an important issue in forest resource monitoring.It is estimated from tree volume tables or equations. Based on tree volume data of 1840 sample trees from Chine...Forest volume, the major component of forest biomass, is an important issue in forest resource monitoring.It is estimated from tree volume tables or equations. Based on tree volume data of 1840 sample trees from Chinese fir (Cunninghamia lanceolata) plantations in Guizhou Province in southwestern China, parallel one- and two-variable tree volume tables and tree height curves for central and other areas were constructed using an error-in-variable modeling method. The results show that, although the one-variable tree volume equations and height curves between the central and other areas were significantly different, the two-variable volume equations were sufficiently close, so that a generalized two-variable tree volume equation could be established for the entire province.展开更多
Secondary xylem characteristics and horizontal variations were described in three xerophytic species, Zygophyllum xanthoxylon, Nitraria tangutorum, Tetraena mongolica of Zygophyllaceae native to western China. All the...Secondary xylem characteristics and horizontal variations were described in three xerophytic species, Zygophyllum xanthoxylon, Nitraria tangutorum, Tetraena mongolica of Zygophyllaceae native to western China. All the species have obvious growth ring boundaries except sometimes discontinuous in T. mongolica and Z xanthoxylum ring to semi-ring-porosity; simple perforation plate; alternate intervessel pitting; non-septate fibres; paratracheal confluent axial parenchyrna; helical thickenings and heterocellular rays. However the vessel arrangement and quantitative features of vessels were different. Vessel elements tend to be shorter and narrower and more frequent in T. mongolica than in other two species that are hardly different could lead to greater conductive safety. The variation of vessel element length and fibre length along radial direction showed irregular tendency. There was significant difference in both fibre length and vessel element length among-tree and within-tree. Furthermore, the relationships between anatomical features and adaptability to desert environments were also discussed.展开更多
Amaryllidaceae, a monocot plant family, consists of many important ornamental bulb flower species. Chinese narcissus (Narcissus tazetta var. chinensis Roem), its flowers developed at high temperatures and bloomed at...Amaryllidaceae, a monocot plant family, consists of many important ornamental bulb flower species. Chinese narcissus (Narcissus tazetta var. chinensis Roem), its flowers developed at high temperatures and bloomed at lower temperatures during the Chinese Spring Festival, is a traditional Chinese flower with high economic and ornamental value. To study its flower development, a full length cDNA containing MADS box domain from narcissus was isolated by a reverse transcription polymerase chain reaction (RT-PCR) with degenerate oligo-nucleotide primers derived from a conserved MADS- and K-box domain sequence. The 5' and the 3' regions of the gene were amplified using the PCR protocol for the rapid amplification of cDNA ends (RACE). The 690 bp open reading frame encodes 230 amino acid residues. A comparison of the deduced amino acid sequence of NTAG with the sequence of other MADS box proteins showed 91.3% amino acid identities with HAG (Hyacinthus orientalis). Sequence analysis and alignment showed significant similarity with other AG homologues. RNA blot analysis indicated that the narcissus NTAG gene was expressed only in reproductive organs, especially in stamens and carpels. These results indicated that the NTAG gene was an AG homologue and that the AG genes appeared to be structurally and functionally conserved between dicots and monocots.展开更多
The Chinese Egret(Egretta eulophotes)is a globally threatened bird species living on the coast and islands of Liaoning,northeastern China,mainly in summer.To further protect the breeding population of Chinese Egrets,i...The Chinese Egret(Egretta eulophotes)is a globally threatened bird species living on the coast and islands of Liaoning,northeastern China,mainly in summer.To further protect the breeding population of Chinese Egrets,it is important to understand the current protection status of their distribution sites at pre-migration period and migration routes.Thirty-three individuals were tagged with satellite transmitters at Fantuo Island in Changhai and Xingren Island in Zhuanghe,Liaoning Province,northeastern China,in July of 2016,2017,and 2018,to identify important distribution sites during the pre-migration period,as well as detailed migration routes.The results showed that coastal mudflats in Liaoning and the west coast of North Korea were important feeding and roosting sites for fledgling Chinese Egrets from August to September.The home range sizes in August were significantly larger than in September.The eastern coast from Shandong to Guangdong,as well as Taiwan,China,and Manila Bay and Galileo Islands in the Philippines,were important stopover sites during fall migration.Specifically,we found that the egrets’autumn migration could be divided into four routes,i.e.,sea-crossing migration(SCM),coastal migration(CM),inland migration(IM),and mixed migration(MM).The migration distance,timing,speed,and straightness of the four routes also differed.The SCM routes were the straightest,and had the fastest migration speed and shortest travel time,while the IM routes had the lowest straightness and speed,and the longest duration.Manila Bay and Bohol Island in the Philippines,the west coast of Tanintharyi in Myanmar,and the Zengwun River Estuary in Taiwan,China,were wintering sites.Our findings on the key distribution sites along pre-migration and fall migration routes,including some stopover sites,have important implications for the conservation of and global action plan development for the vulnerable Chinese Egret.展开更多
Tree growth traits (tree height, DBH and stem volume) and survival from two 9-year-old, open-pollinated progeny tests of Chinese fir were investigated for heri- tability, genotype × environment interaction, age...Tree growth traits (tree height, DBH and stem volume) and survival from two 9-year-old, open-pollinated progeny tests of Chinese fir were investigated for heri- tability, genotype × environment interaction, age-age genetic correlation and selection efficiency. The 97 and 79 families planted at two sites were collected from the thirdcycle seed orchard. Individual heritability was estimated between 0.05 and 0.21 for tree height, DBH, and volume and between 0.45 and 1.0 for survival. Family heritability was between 0.20 and 1.14. Significant genotype x envi- ronment interaction was observed for the three growth traits. Type B genetic correlation was between 0.41 and 0.67 with an increasing trend as tree grows. High age-age genetic correlation was observed with correlation reaching 0.9 after age 4 for height, DBH, and volume. The genetic gains were estimated at 3.26, 3.39 and 5.98 % for tree height, DBH, and volume with 10 % selection intensity. The implication for advanced tree breeding in Chinese fir is discussed.展开更多
County forestry economy is a strong power for regional green economic development,and an important way to improve farmers' income and promote living environment in urban and rural areas. According to the investiga...County forestry economy is a strong power for regional green economic development,and an important way to improve farmers' income and promote living environment in urban and rural areas. According to the investigation of ten typical counties or cities with forestry industrial advantage,this paper sums up the elementary experiences of county forestry economy,analyzes its prominent problems. Countermeasures are brought forward to improve the development of county forestry economy.展开更多
The nano intercalation compounding of wood and MMT has important implications for the modification of wood and for the development of new materials. With water-soluble phenol formaldehyde resin as an intermediary, the...The nano intercalation compounding of wood and MMT has important implications for the modification of wood and for the development of new materials. With water-soluble phenol formaldehyde resin as an intermediary, the nanocomposites of Chinese fir (Cunningharnia lanceolata) wood and montmorillonite (MMT) were prepared via three impregnation methods, i.e. normal pressure, once and twice vacuum methods. Based on the weight percent gain (WPG) of impregnated wood, the effects of compounding wood and MMT in terms of concentration, impregnating temperature and time, wood moisture content and wood extraction treatments, on sapwood and heartwood are discussed. Results show that: 1) the optimum MMT concentration in the impregnation solution is 3% for sapwood and 5% for heartwood; 2) room temperature is suitable in practice; 3) treatment pressure should be set at a high enough value in order to ensure sufficient permeation; 4) the effects of different impregnation methods on sapwood and heartwood are different, the heartwood extractives affect WPG significantly; cell wall permeability of sapwood is better than that of heartwood; 5) the cold water, hot water and benzene-ethanol solution extractions can all greatly improve the permeability of heartwood, hot water can dissolve some hemicellulose of low aggregation and hot water extraction improves wood cell wall permeability; 6) with an increase in wood moisture content, the permeable space in wood is reduced, but with a certain amount of water, instantaneous spaces are created and the permeation dynamic increases. This effect is especially apparent for difficult impregnating situations in heartwood and impregnation under normal pressure.展开更多
Background:Solar radiation(SR)plays critical roles in plant physiological processes and ecosystems functions.However,the exploration of SR influences on the biogeochemical cycles of forest ecosystems is still in a slo...Background:Solar radiation(SR)plays critical roles in plant physiological processes and ecosystems functions.However,the exploration of SR influences on the biogeochemical cycles of forest ecosystems is still in a slow progress,and has important implications for the understanding of plant adaption strategy under future environmental changes.Herein,this research was aimed to explore the influences of SR on plant nutrient characteristics,and provided theoretical basis for introducing SR into the establishment of biochemical models of forest ecosystems in the future researches.Methods:We measured leaf nitrogen(N)and phosphorus(P)stoichiometry in 19 Chinese fir plantations across subtropical China by a field investigation.The direct and indirect effects of SR,including global radiation(Global R),direct radiation(Direct R)and diffuse radiation(Diffuse R)on the leaf N and P stoichiometry were investigated.Results:The linear regression analysis showed that leaf N concentration had no association with SR,while leaf P concentration and N:P ratio were negatively and positively related to SR,respectively.Partial least squares path model(PLS-PM)demonstrated that SR(e.g.Direct R and Diffuse R),as a latent variable,exhibited direct correlations with leaf N and P stoichiometry as well as the indirect correlation mediated by soil P content.The direct associations(path coefficient=−0.518)were markedly greater than indirect associations(path coefficient=−0.087).The covariance-based structural equation modeling(CB-SEM)indicated that SR had direct effects on leaf P concentration(path coefficient=−0.481),and weak effects on leaf N concentration.The high SR level elevated two temperature indexes(mean annual temperature,MAT;≥10°C annual accumulated temperature,≥10℃ AAT)and one hydrological index(mean annual evapotranspiration,MAE),but lowered the soil P content.MAT,MAE and soil P content could affect the leaf P concentration,which cause the indirect effect of SR on leaf P concentration(path coefficient=0.004).Soil N content had positive effect on the leaf N concentration,which was positively and negatively regulated by MAP and≥10℃ AAT,respectively.Conclusions:These results confirmed that SR had negatively direct and indirect impacts on plant nutrient status of Chinese fir based on a regional investigation,and the direct associations were greater than the indirect associations.Such findings shed light on the guideline of taking SR into account for the establishment of global biogeochemical models of forest ecosystems in the future studies.展开更多
Chinese hickory (Carya cathayensis Sarg.) is one of the most productive woody oil-bearing plant in China. Four different extraction methods were explored and supercritical CO2 was selected as green and non-toxic solve...Chinese hickory (Carya cathayensis Sarg.) is one of the most productive woody oil-bearing plant in China. Four different extraction methods were explored and supercritical CO2 was selected as green and non-toxic solvent to extract Chinese kernel oil. Four experiment factors, particles size, extraction time, extraction temperature and extraction pressure, were selected to carry out the single factor experiments. According to the results of orthogonal experiments design, the condition of B3C2A2D2 was the optimum reaction parameters. When the experiments were carried out at the optimum parameters, the yield of Chinese hickory kernel oil was 74.5%. The oil fatty acids profiles were analyzed, the results showed that total unsaturated fatty acids were 93.05%. Among them, oleic acid was 66.5 ± 0.44 as the main component. Saturated fatty acids were 6.92 ± 0.21.展开更多
Assessing the changes in forest carbon stocks over time is critical for monitoring carbon dynamics,estimating the balance between carbon uptake and release from forests,and providing key insights into climate change m...Assessing the changes in forest carbon stocks over time is critical for monitoring carbon dynamics,estimating the balance between carbon uptake and release from forests,and providing key insights into climate change mitigation.In this study,we quantitatively characterized spatiotemporal variations in aboveground carbon density(ACD)in boreal natural forests in the Greater Khingan Mountains(GKM)region using bi-temporal discrete aerial laser scanning(ALS)data acquired in 2012 and 2016.Moreover,we evaluated the transferability of the proposed design model using forest field plot data and produced a wall-to-wall map of ACD changes for the entire study area from 2012 to 2016 at a grid size of 30 m.In addition,we investigated the relationships between carbon dynamics and the dominant tree species,age groups,and topography of undisturbed forested areas to better understand ACD variations by employing heterogeneous forest canopy structural characteristics.The results showed that the performance of the temporally transferable model(R^(2)=0.87,rRMSE=18.25%),which included stable variables,was statistically equivalent to that obtained from the model fitted directly by the 2016 field plots(R^(2)=0.87,rRMSE=17.47%).The average rate of change in carbon sequestration across the entire study region was 1.35 Mg⋅ha^(-1)⋅year^(-1) based on the changes in ALS-based ACD values over the course of four years.The relative change rates of ACD decreased as the elevation increased,with the highest and lowest ACD growth rates occurring in the middle-aged and mature forest stands,respectively.The Gini coefficient,which represents forest canopy surface structure heterogeneity,is sensitive to carbon dynamics and is a reliable predictor of the relative change rate of ACD.This study demonstrated the applicability of bi-temporal ALS for predicting forest carbon dynamics and fine-scale spatial change patterns.Our research contributed to a better understanding of the in-fluence of remote sensing-derived environmental variables on forest carbon dynamic patterns and the development of context-specific management approaches to increase forest carbon stocks.展开更多
Chinese fir(Cunninghamia lanceolata(Lamb.)Hook),a fast-growing and economically important timber tree species in China,is widely used in construction,furniture,and paper manufacture but has a long breeding cycle.Chemi...Chinese fir(Cunninghamia lanceolata(Lamb.)Hook),a fast-growing and economically important timber tree species in China,is widely used in construction,furniture,and paper manufacture but has a long breeding cycle.Chemical mutagens,such as ethyl methane sulfonate(EMS)and sodium azide(SA),are widely used in crops such as rice,wheat,cotton,soybean and sugarcane but their utility for tree breeding is unknown.In this study we examined the effects of EMS and S A on Chinese fir seed germination and growth.Chinese fir seeds were treated with the two chemical mutagens;were planted in Jiangle County,Fujian Province,China;and their heights were measured from 2011 to2017.The concentrations and durations of treatment with the two chemical mutagens were significantly associated with the Chinese fir seedling and mortality rates,as well as with the heights of trees from the seedling stage to 3 years old.We also generated 127 mutants with abnormal branches and reproductive growth.We report here the effects of two chemical mutagens on Chinese fir breeding;our data will contribute to knowledge of the utility of EMS and SA in forestry.展开更多
Nutrient loading in the fall is a practical way to improve seedling quality and has been proven to increase nutrient accumulation,translocation and utilization.Few studies have reported on the variation in free amino ...Nutrient loading in the fall is a practical way to improve seedling quality and has been proven to increase nutrient accumulation,translocation and utilization.Few studies have reported on the variation in free amino acids as a result of fall fertilization,especially for diff erent seasonal needle habits(evergreen,deciduous).Therefore,a balanced two-factor factorial design with one fall fertilization treatment(10 mg N/seedling)and Chinese pine(Pinus tabulaeformis Carr.)and Prince Rupprecht’s larch(Larix principis-rupprechtii Mayr.)seedlings was used to examine growth response over one nursery season.Associated changes between fall fertilization,N storage and free amino acids were analyzed.Results showed that:(1)stem height,diameter and biomass for both species were similar between controls and fall fertilization treatments;(2)compared to controls,fall fertilization increased Chinese pine needle and root N by 17.7%and 36.9%,respectively.For Prince Rupprecht’s larch,fall fertilization resulted in 26.3%and 34.54%more N in stem and roots,respectively,than controls;(3)the three main amino acids in control and fertilization treatments in Prince Rupprecht’s larch seedlings were glutamine,arginine and proline,and in Chinese pine seedlings were glutamine,arginine andγ-amino butyric acid;(4)total amino acid contents were not signifi cantly increased by fall fertilization,but glutamine in Chinese pine and Prince Rupprecht’s larch increased by 64.2%and 35.2%,respectively.Aboveground biomass of Prince Rupprecht’s larch had higher proline contents than Chinese pine,which suggests that the stress resistance of the aboveground tissue may be higher for Prince Rupprecht’s larch.The results indicate that diff erent plant organs with various response are well adapted to nitrogen loading for nutrient storage in evergreen and deciduous conifer seedlings.展开更多
With Shift-Share Method, the study implemented an empirical analysis of Beijing's forestry industrial structure and its regional competitiveness around China from 2002 to 2011.The results indicated that the develo...With Shift-Share Method, the study implemented an empirical analysis of Beijing's forestry industrial structure and its regional competitiveness around China from 2002 to 2011.The results indicated that the development tendency of forestry industry structure will be gradually transferred from "primarysecondary –tertiary industry" into "tertiary-secondary-primary industry". As the study suggested that the basic position of the primary forestry industry should be strengthened and promoted, deep processing capacity and resources utilization of the secondary industry should be further developed, and the leading role of the tertiary industry should be further enhanced in accordance with the low carbon concept.展开更多
In this study, in situ investigation was conducted on Chinese chastetree(Vitex negundo var. heterophylla)and spine jujube(Ziziphus jujuba var. spinosa) during early, developed, and closing succession stages. Monthly d...In this study, in situ investigation was conducted on Chinese chastetree(Vitex negundo var. heterophylla)and spine jujube(Ziziphus jujuba var. spinosa) during early, developed, and closing succession stages. Monthly data were recorded for foliar δ^(13)C values and foliar N, P,and K concentrations from May to October. Foliar δ^(13)C values declined with time and differences by succession stage varied by species. Older spine jujube displayed higher foliar N concentration while foliar P concentration was inversely related with N. Chinese chastetree had lower foliar K concentration than spine jujube. Foliar C/N ratio declined during the dry season and increased in the wet season. Foliar N/P ratio increased during the dry season and declined to its initial level until October, when it increased again. Foliar δ^(13)C value was positively correlated with foliar N concentration. Foliar P and K concentrations were positively correlated to each other. In conclusion, the two shrubs had contrasting strategies of water use efficiency during their succession, but water use efficiency of both species was promoted by N availability and limited by P availability.展开更多
Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF pos...Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF possesses high active furan structure with hydroxymethyl and aldehyde group for production of various bio-chemicals and materials, meanwhile, which suffer from low stability and poor yield during the industrial biorefinery process. Hence, selective production of 5-HMF with high-yield and low-cost has attracted extensive attention from scientific and industrial researchers. This review sorted and described the latest advanced research on solvent and catalyst system, as well as energy field effect for production of 5-HMF with different feedstock in detail, emphatically discussing the solvent effect and its synergistic effect with other aspects. Besides, the future prospects and challenges for production of 5-HMF from carbohydrates were also presented, which provide a profound insight into industrial 5-HMF process with economic and environmental feature.展开更多
There is a consensus that sediment delivery ratio in the Chinese Loess Plateau is close to 1at the inter-annual timescale. However, little information is available about the sediment delivery at finer timescales. We e...There is a consensus that sediment delivery ratio in the Chinese Loess Plateau is close to 1at the inter-annual timescale. However, little information is available about the sediment delivery at finer timescales. We evaluated the sediment delivery from plots to watersheds at the event or intra-annual, annual, and inter-annual timescales within the Wudinghe river basin, a 30,261 km2 basin in the Loess Plateau. We calculated the ratio of sediment output to sediment input and presented the temporal change of the channel morphology to determine whether sediment deposition occurs.Although a single flood event frequently has a sediment yield exceeding 10,000 t km-2, sediment deposition rarely occurs except during some small runoff events(sediment yield < 5000 t km-2) or dry years(sediment yield < 10,000 t km-2) when moving from slopes up to the main channels of the Wudinghe River. This observation suggests a sediment delivery ratio close to 1 even at the event or intra-annual and the annual timescales, but not necessarily at the interannual timescale. Such a high sediment delivery ratio can be related to hyper-concentrated flows, which have very strong sediment transport capacity even at low flow strength. Because hyper-concentrated flows are well-developed in the whole Loess Plateau, a sediment delivery ratio close to 1 below the interannual timescale possibly remains true for other rivers in the Loess Plateau.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.32101541)the National Key R&D Program of China(Grant No.2022YFD2200400).
文摘Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,and putative introgression.Here we generated the first chromosome-level genome of the endangered Chinese hazelnut,Corylus chinensis,and compared the genomic signatures with its sympatric widespread C.kwechowensis-C yunnanensis complex.We found large genome rearrangements across all Corylus species and identified species-specific expanded gene families that may be involved in adaptation.Population genomics revealed that both C.chinensis and the C.kwechowensis-C.yunnanensis complex had diverged into two genetic lineages,forming a consistent pattern of southwestern-northern differentiation.Population size of the narrow southwestern lineages of both species have decreased continuously since the late Miocene,whereas the widespread northern lineages have remained stable(C.chinensis) or have even recovered from population bottlenecks(C.kwechowensis-C.yunnanensis complex) during the Quaternary.Compared with C.kwechowensis-C. yunnanensis complex,C.chinensis showed significantly lower genomic diversity and higher inbreeding level.However,C.chinensis carried significantly fewer deleterious mutations than C.kwechowensis-C. yunnanensis complex,as more effective purging selection reduced the accumulation of homozygous variants.We also detected signals of positive selection and adaptive introgression in different lineages,which facilitated the accumulation of favorable variants and formation of local adaptation.Hence,both types of selection and exogenous introgression could have mitigated inbreeding and facilitated survival and persistence of C.chinensis.Overall,our study provides critical insights into lineage differentiation,local adaptation,and the potential for future recovery of endangered trees.
基金supported by National Natural Science Foundation of China(32360307)the Natural Science Foundation of Inner Mongolia(2023MS03031)+1 种基金Inner Mongolia Grassland Talents Project(3211002406)the Open Fund of State Key Laboratory of Tree Genetics and Breeding(Chinese Academy of Forestry)(Grant No.TGB2021004).
文摘Chinese wingnut(Pterocarya stenoptera)is a medicinally and economically important tree species within the family Juglandaceae.However,the lack of high-quality reference genome has hindered its in-depth research.In this study,we successfully assembled its chromosome-level genome and performed multiomics analyses to address its evolutionary history and synthesis of medicinal components.A thorough examination of genomes has uncovered a significant expansion in the Lateral Organ Boundaries Domain gene family among the winged group in Juglandaceae.This notable increase may be attributed to their frequent exposure to flood-prone environments.After further differentiation between Chinese wingnut and Cyclocarya paliurus,significant positive selection occurred on the genes of NADH dehydrogenase related to mitochondrial aerobic respiration in Chinese wingnut,enhancing its ability to cope with waterlogging stress.Comparative genomic analysis revealed Chinese wingnut evolved more unique genes related to arginine synthesis,potentially endowing it with a higher capacity to purify nutrient-rich water bodies.Expansion of terpene synthase families enables the production of increased quantities of terpenoid volatiles,potentially serving as an evolved defense mechanism against herbivorous insects.Through combined transcriptomic and metabolomic analysis,we identified the candidate genes involved in the synthesis of terpenoid volatiles.Our study offers essential genetic resources for Chinese wingnut,unveiling its evolutionary history and identifying key genes linked to the production of terpenoid volatiles.
基金This paper was supported by the National Natural Science Foundation of China (No. 30271053)
文摘A comparative study was conducted on liquid penetration of the freeze-drying and air-drying sapwood and heartwood lumber of plantation Chinese fir (Cunninghamia lanceolata). The maximum amount of dyeing solution uptake by the capillary rise method was used to evaluate the liquid penetration properties of the treated wood. The pit aspiration ratio was determined by semithin section method. Changes in wood microstructure were investigated using scanning electron microscopy. The results showed that compared with air drying, the freeze drying had a significant effect on liquid penetration of sapwood and heartwood of Chinese fir. The liquid penetration of sapwood is significantly higher than that of the heartwood for both drying treatments. Low pit aspiration ratio and cracks of pits membrane of some bordered pits are the main reasons for increasing liquid penetration after freeze drying treatment.
基金the National Natural Science Foundation of China(Nos.31960240 and 32171755)the Guangxi Natural Science Foundation(No.2019GXNSFAA185023)the Scientific Research Capacity Building Project for Youyiguan Forest Ecosystem Observation and Research Station of Guangxi under Grant No.2203513003。
文摘Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil aggregates have been widely studied.However,there remains elusive knowledge on the synergistic effects of changing forest stand structure on soil aggregate stability(SAS),particularly in subtropical China where soil erosion remains a critical issue.Methods:We investigated variations in the components of soil humus(HS),including humic acids(HAs),fulvic acids(FAs),and humins(HMs),under pure Chinese fir(Cunninghamia lanceolata)plantation(PP)and multilayered mixed plantation(MP)comprising C.lanceolata,Castanopsis hystrix,and Michelia hedyosperma.The state of soil aggregate stability,was determined by three separate methods,i.e.,dry-sieving,wet-sieving,and the Le Bissonnais.High-throughput sequencing was used to determine the diversity and composition of microbial communities under PP and MP.We then built partial least squares path models(PLS-PM)for assessing the responses of SAS to the variations in soil microorganisms and HS components.Results:The MP stands had significantly greater SAS(P<0.05),higher content of HAs and more rapid organic matter humification within aggregates,than the PP stands.High-throughput sequencing confirmed that the Pielou andα-diversity index values(Chao1 and Shannon)for fungi were all significantly higher under MP than under PP,while no marked difference was found in bacterialα-diversity between the two plantation types.Moreover,there were markedly greater abundance of three bacterial phyla(Verrucomicrobia,Chloroflexi,and Gemmatimonadetes)and three fungal phyla(Ascomycota,Kickxellomycota,and Glomeromycota),and significantly less abundance of two bacterial phyla(Planctomycetes and Firmicutes)and four fungal phyla(Basidiomycota,Mortierellomycota,Mucoromycota,and Rozellomycota)under MP than under PP.The Chloroflexi and Ascomycota phyla appeared to be the primary drivers of soil aggregate distribution.Our findings revealed that the promotion of SAS under MP was mainly driven by increased soil organic matter(SOM)content,which altered bacterial communities and enhanced fungal diversity,thereby increasing HAs content and the rate of organic matter humification.Conclusions:Considering the combined effects of enhanced soil quality,productivity,and relevant economic costs,introducing broadleaved tree species into Chinese fir plantations can be an effective strategy for stabilizing soil structure against erosion in subtropical China.Our study elucidated the controls on variations of SAS in Chinese fir-dominated plantations and demonstrated the benefit of converting pure Chinese fir plantation to multi-layered mixed plantations in increasing soil structural stability and improving site quality.
基金supported by the Agricultural Science and Technique Foundation of Guizhou Province, China (No. 2008-3059)the Research Funds of Forestry Administration of Guizhou Province, China (Nos. 2010-01-08, 2010-01, 200625)
文摘Forest volume, the major component of forest biomass, is an important issue in forest resource monitoring.It is estimated from tree volume tables or equations. Based on tree volume data of 1840 sample trees from Chinese fir (Cunninghamia lanceolata) plantations in Guizhou Province in southwestern China, parallel one- and two-variable tree volume tables and tree height curves for central and other areas were constructed using an error-in-variable modeling method. The results show that, although the one-variable tree volume equations and height curves between the central and other areas were significantly different, the two-variable volume equations were sufficiently close, so that a generalized two-variable tree volume equation could be established for the entire province.
文摘Secondary xylem characteristics and horizontal variations were described in three xerophytic species, Zygophyllum xanthoxylon, Nitraria tangutorum, Tetraena mongolica of Zygophyllaceae native to western China. All the species have obvious growth ring boundaries except sometimes discontinuous in T. mongolica and Z xanthoxylum ring to semi-ring-porosity; simple perforation plate; alternate intervessel pitting; non-septate fibres; paratracheal confluent axial parenchyrna; helical thickenings and heterocellular rays. However the vessel arrangement and quantitative features of vessels were different. Vessel elements tend to be shorter and narrower and more frequent in T. mongolica than in other two species that are hardly different could lead to greater conductive safety. The variation of vessel element length and fibre length along radial direction showed irregular tendency. There was significant difference in both fibre length and vessel element length among-tree and within-tree. Furthermore, the relationships between anatomical features and adaptability to desert environments were also discussed.
文摘Amaryllidaceae, a monocot plant family, consists of many important ornamental bulb flower species. Chinese narcissus (Narcissus tazetta var. chinensis Roem), its flowers developed at high temperatures and bloomed at lower temperatures during the Chinese Spring Festival, is a traditional Chinese flower with high economic and ornamental value. To study its flower development, a full length cDNA containing MADS box domain from narcissus was isolated by a reverse transcription polymerase chain reaction (RT-PCR) with degenerate oligo-nucleotide primers derived from a conserved MADS- and K-box domain sequence. The 5' and the 3' regions of the gene were amplified using the PCR protocol for the rapid amplification of cDNA ends (RACE). The 690 bp open reading frame encodes 230 amino acid residues. A comparison of the deduced amino acid sequence of NTAG with the sequence of other MADS box proteins showed 91.3% amino acid identities with HAG (Hyacinthus orientalis). Sequence analysis and alignment showed significant similarity with other AG homologues. RNA blot analysis indicated that the narcissus NTAG gene was expressed only in reproductive organs, especially in stamens and carpels. These results indicated that the NTAG gene was an AG homologue and that the AG genes appeared to be structurally and functionally conserved between dicots and monocots.
基金supported by the National Key Research and Development Program of China (No. 2019YFA0607103)Program of National Forestry and Grassland Administration (No.213023721203)
文摘The Chinese Egret(Egretta eulophotes)is a globally threatened bird species living on the coast and islands of Liaoning,northeastern China,mainly in summer.To further protect the breeding population of Chinese Egrets,it is important to understand the current protection status of their distribution sites at pre-migration period and migration routes.Thirty-three individuals were tagged with satellite transmitters at Fantuo Island in Changhai and Xingren Island in Zhuanghe,Liaoning Province,northeastern China,in July of 2016,2017,and 2018,to identify important distribution sites during the pre-migration period,as well as detailed migration routes.The results showed that coastal mudflats in Liaoning and the west coast of North Korea were important feeding and roosting sites for fledgling Chinese Egrets from August to September.The home range sizes in August were significantly larger than in September.The eastern coast from Shandong to Guangdong,as well as Taiwan,China,and Manila Bay and Galileo Islands in the Philippines,were important stopover sites during fall migration.Specifically,we found that the egrets’autumn migration could be divided into four routes,i.e.,sea-crossing migration(SCM),coastal migration(CM),inland migration(IM),and mixed migration(MM).The migration distance,timing,speed,and straightness of the four routes also differed.The SCM routes were the straightest,and had the fastest migration speed and shortest travel time,while the IM routes had the lowest straightness and speed,and the longest duration.Manila Bay and Bohol Island in the Philippines,the west coast of Tanintharyi in Myanmar,and the Zengwun River Estuary in Taiwan,China,were wintering sites.Our findings on the key distribution sites along pre-migration and fall migration routes,including some stopover sites,have important implications for the conservation of and global action plan development for the vulnerable Chinese Egret.
基金funded by the Fujian Province Science and Technology Research funding for the Tree Breeding Program of Chinese fir(Min Lin 2009-4 and Min Lin Ke2013-1)Twelfth Five Year Plan in areas like national science and technology plan project(2012BAD01B0201)the Innovative Research Team of the Educational Department of China and the Innovative Research Team of the Universities of Jiangsu Province
文摘Tree growth traits (tree height, DBH and stem volume) and survival from two 9-year-old, open-pollinated progeny tests of Chinese fir were investigated for heri- tability, genotype × environment interaction, age-age genetic correlation and selection efficiency. The 97 and 79 families planted at two sites were collected from the thirdcycle seed orchard. Individual heritability was estimated between 0.05 and 0.21 for tree height, DBH, and volume and between 0.45 and 1.0 for survival. Family heritability was between 0.20 and 1.14. Significant genotype x envi- ronment interaction was observed for the three growth traits. Type B genetic correlation was between 0.41 and 0.67 with an increasing trend as tree grows. High age-age genetic correlation was observed with correlation reaching 0.9 after age 4 for height, DBH, and volume. The genetic gains were estimated at 3.26, 3.39 and 5.98 % for tree height, DBH, and volume with 10 % selection intensity. The implication for advanced tree breeding in Chinese fir is discussed.
文摘County forestry economy is a strong power for regional green economic development,and an important way to improve farmers' income and promote living environment in urban and rural areas. According to the investigation of ten typical counties or cities with forestry industrial advantage,this paper sums up the elementary experiences of county forestry economy,analyzes its prominent problems. Countermeasures are brought forward to improve the development of county forestry economy.
基金This study was financially supported by the National Natural Science Foundation of China (Grant No. 30271055).
文摘The nano intercalation compounding of wood and MMT has important implications for the modification of wood and for the development of new materials. With water-soluble phenol formaldehyde resin as an intermediary, the nanocomposites of Chinese fir (Cunningharnia lanceolata) wood and montmorillonite (MMT) were prepared via three impregnation methods, i.e. normal pressure, once and twice vacuum methods. Based on the weight percent gain (WPG) of impregnated wood, the effects of compounding wood and MMT in terms of concentration, impregnating temperature and time, wood moisture content and wood extraction treatments, on sapwood and heartwood are discussed. Results show that: 1) the optimum MMT concentration in the impregnation solution is 3% for sapwood and 5% for heartwood; 2) room temperature is suitable in practice; 3) treatment pressure should be set at a high enough value in order to ensure sufficient permeation; 4) the effects of different impregnation methods on sapwood and heartwood are different, the heartwood extractives affect WPG significantly; cell wall permeability of sapwood is better than that of heartwood; 5) the cold water, hot water and benzene-ethanol solution extractions can all greatly improve the permeability of heartwood, hot water can dissolve some hemicellulose of low aggregation and hot water extraction improves wood cell wall permeability; 6) with an increase in wood moisture content, the permeable space in wood is reduced, but with a certain amount of water, instantaneous spaces are created and the permeation dynamic increases. This effect is especially apparent for difficult impregnating situations in heartwood and impregnation under normal pressure.
基金funded by the National Key Research and Development Program of China(No.2016YFD0600202-4)the Fundamental Research Funds for the Central Non-profit Research Institution of Chinese fir Academy of Forestry(Nos.CAFYBB2017ZX002-2 and CAFYBB2020ZE001).
文摘Background:Solar radiation(SR)plays critical roles in plant physiological processes and ecosystems functions.However,the exploration of SR influences on the biogeochemical cycles of forest ecosystems is still in a slow progress,and has important implications for the understanding of plant adaption strategy under future environmental changes.Herein,this research was aimed to explore the influences of SR on plant nutrient characteristics,and provided theoretical basis for introducing SR into the establishment of biochemical models of forest ecosystems in the future researches.Methods:We measured leaf nitrogen(N)and phosphorus(P)stoichiometry in 19 Chinese fir plantations across subtropical China by a field investigation.The direct and indirect effects of SR,including global radiation(Global R),direct radiation(Direct R)and diffuse radiation(Diffuse R)on the leaf N and P stoichiometry were investigated.Results:The linear regression analysis showed that leaf N concentration had no association with SR,while leaf P concentration and N:P ratio were negatively and positively related to SR,respectively.Partial least squares path model(PLS-PM)demonstrated that SR(e.g.Direct R and Diffuse R),as a latent variable,exhibited direct correlations with leaf N and P stoichiometry as well as the indirect correlation mediated by soil P content.The direct associations(path coefficient=−0.518)were markedly greater than indirect associations(path coefficient=−0.087).The covariance-based structural equation modeling(CB-SEM)indicated that SR had direct effects on leaf P concentration(path coefficient=−0.481),and weak effects on leaf N concentration.The high SR level elevated two temperature indexes(mean annual temperature,MAT;≥10°C annual accumulated temperature,≥10℃ AAT)and one hydrological index(mean annual evapotranspiration,MAE),but lowered the soil P content.MAT,MAE and soil P content could affect the leaf P concentration,which cause the indirect effect of SR on leaf P concentration(path coefficient=0.004).Soil N content had positive effect on the leaf N concentration,which was positively and negatively regulated by MAP and≥10℃ AAT,respectively.Conclusions:These results confirmed that SR had negatively direct and indirect impacts on plant nutrient status of Chinese fir based on a regional investigation,and the direct associations were greater than the indirect associations.Such findings shed light on the guideline of taking SR into account for the establishment of global biogeochemical models of forest ecosystems in the future studies.
文摘Chinese hickory (Carya cathayensis Sarg.) is one of the most productive woody oil-bearing plant in China. Four different extraction methods were explored and supercritical CO2 was selected as green and non-toxic solvent to extract Chinese kernel oil. Four experiment factors, particles size, extraction time, extraction temperature and extraction pressure, were selected to carry out the single factor experiments. According to the results of orthogonal experiments design, the condition of B3C2A2D2 was the optimum reaction parameters. When the experiments were carried out at the optimum parameters, the yield of Chinese hickory kernel oil was 74.5%. The oil fatty acids profiles were analyzed, the results showed that total unsaturated fatty acids were 93.05%. Among them, oleic acid was 66.5 ± 0.44 as the main component. Saturated fatty acids were 6.92 ± 0.21.
基金We acknowledge grants from the National Key R&D Program of China(Project Number:2020YFE0200800)National Science and Technology Major Project of China's High Resolution Earth Observation System(Project Number:21-Y20B01-9001-19/22-1).
文摘Assessing the changes in forest carbon stocks over time is critical for monitoring carbon dynamics,estimating the balance between carbon uptake and release from forests,and providing key insights into climate change mitigation.In this study,we quantitatively characterized spatiotemporal variations in aboveground carbon density(ACD)in boreal natural forests in the Greater Khingan Mountains(GKM)region using bi-temporal discrete aerial laser scanning(ALS)data acquired in 2012 and 2016.Moreover,we evaluated the transferability of the proposed design model using forest field plot data and produced a wall-to-wall map of ACD changes for the entire study area from 2012 to 2016 at a grid size of 30 m.In addition,we investigated the relationships between carbon dynamics and the dominant tree species,age groups,and topography of undisturbed forested areas to better understand ACD variations by employing heterogeneous forest canopy structural characteristics.The results showed that the performance of the temporally transferable model(R^(2)=0.87,rRMSE=18.25%),which included stable variables,was statistically equivalent to that obtained from the model fitted directly by the 2016 field plots(R^(2)=0.87,rRMSE=17.47%).The average rate of change in carbon sequestration across the entire study region was 1.35 Mg⋅ha^(-1)⋅year^(-1) based on the changes in ALS-based ACD values over the course of four years.The relative change rates of ACD decreased as the elevation increased,with the highest and lowest ACD growth rates occurring in the middle-aged and mature forest stands,respectively.The Gini coefficient,which represents forest canopy surface structure heterogeneity,is sensitive to carbon dynamics and is a reliable predictor of the relative change rate of ACD.This study demonstrated the applicability of bi-temporal ALS for predicting forest carbon dynamics and fine-scale spatial change patterns.Our research contributed to a better understanding of the in-fluence of remote sensing-derived environmental variables on forest carbon dynamic patterns and the development of context-specific management approaches to increase forest carbon stocks.
基金supported by grants from the Guangdong Provincial Science and Technology Plan Project(2016B020201002)the Science and Technology Research Project of Beijing Forestry University(2018WS01)+2 种基金the Research and Development Project of Beijing Forestry University(2016BLPX13)the National Natural Science Foundation of China(31700581)the Key Project of the National Forestry Bureau(2012–06)。
文摘Chinese fir(Cunninghamia lanceolata(Lamb.)Hook),a fast-growing and economically important timber tree species in China,is widely used in construction,furniture,and paper manufacture but has a long breeding cycle.Chemical mutagens,such as ethyl methane sulfonate(EMS)and sodium azide(SA),are widely used in crops such as rice,wheat,cotton,soybean and sugarcane but their utility for tree breeding is unknown.In this study we examined the effects of EMS and S A on Chinese fir seed germination and growth.Chinese fir seeds were treated with the two chemical mutagens;were planted in Jiangle County,Fujian Province,China;and their heights were measured from 2011 to2017.The concentrations and durations of treatment with the two chemical mutagens were significantly associated with the Chinese fir seedling and mortality rates,as well as with the heights of trees from the seedling stage to 3 years old.We also generated 127 mutants with abnormal branches and reproductive growth.We report here the effects of two chemical mutagens on Chinese fir breeding;our data will contribute to knowledge of the utility of EMS and SA in forestry.
基金We gratefully acknowledge the reviewers and many other members from the Beijing Forestry University for their insightful comments of the manuscript.
文摘Nutrient loading in the fall is a practical way to improve seedling quality and has been proven to increase nutrient accumulation,translocation and utilization.Few studies have reported on the variation in free amino acids as a result of fall fertilization,especially for diff erent seasonal needle habits(evergreen,deciduous).Therefore,a balanced two-factor factorial design with one fall fertilization treatment(10 mg N/seedling)and Chinese pine(Pinus tabulaeformis Carr.)and Prince Rupprecht’s larch(Larix principis-rupprechtii Mayr.)seedlings was used to examine growth response over one nursery season.Associated changes between fall fertilization,N storage and free amino acids were analyzed.Results showed that:(1)stem height,diameter and biomass for both species were similar between controls and fall fertilization treatments;(2)compared to controls,fall fertilization increased Chinese pine needle and root N by 17.7%and 36.9%,respectively.For Prince Rupprecht’s larch,fall fertilization resulted in 26.3%and 34.54%more N in stem and roots,respectively,than controls;(3)the three main amino acids in control and fertilization treatments in Prince Rupprecht’s larch seedlings were glutamine,arginine and proline,and in Chinese pine seedlings were glutamine,arginine andγ-amino butyric acid;(4)total amino acid contents were not signifi cantly increased by fall fertilization,but glutamine in Chinese pine and Prince Rupprecht’s larch increased by 64.2%and 35.2%,respectively.Aboveground biomass of Prince Rupprecht’s larch had higher proline contents than Chinese pine,which suggests that the stress resistance of the aboveground tissue may be higher for Prince Rupprecht’s larch.The results indicate that diff erent plant organs with various response are well adapted to nitrogen loading for nutrient storage in evergreen and deciduous conifer seedlings.
基金supported by the Chinese Academy of Forestry (Grant No. CAFYBB2014MB001)
文摘With Shift-Share Method, the study implemented an empirical analysis of Beijing's forestry industrial structure and its regional competitiveness around China from 2002 to 2011.The results indicated that the development tendency of forestry industry structure will be gradually transferred from "primarysecondary –tertiary industry" into "tertiary-secondary-primary industry". As the study suggested that the basic position of the primary forestry industry should be strengthened and promoted, deep processing capacity and resources utilization of the secondary industry should be further developed, and the leading role of the tertiary industry should be further enhanced in accordance with the low carbon concept.
基金supported by the financial assistance provided by the National Natural Science Foundation of China(No.31400385)the National Key Technologies R&D Program of China(No.2015BAD07B0202)+1 种基金the Specialized Research Fund for Young Scholars of the Research Institute of Forestry,Chinese Academy of Forestry(No.RIF2013-08)the Fundamental Research Funds for the Central Non-profit Research Institution of CAF(No.CAFYBB2014QB027)
文摘In this study, in situ investigation was conducted on Chinese chastetree(Vitex negundo var. heterophylla)and spine jujube(Ziziphus jujuba var. spinosa) during early, developed, and closing succession stages. Monthly data were recorded for foliar δ^(13)C values and foliar N, P,and K concentrations from May to October. Foliar δ^(13)C values declined with time and differences by succession stage varied by species. Older spine jujube displayed higher foliar N concentration while foliar P concentration was inversely related with N. Chinese chastetree had lower foliar K concentration than spine jujube. Foliar C/N ratio declined during the dry season and increased in the wet season. Foliar N/P ratio increased during the dry season and declined to its initial level until October, when it increased again. Foliar δ^(13)C value was positively correlated with foliar N concentration. Foliar P and K concentrations were positively correlated to each other. In conclusion, the two shrubs had contrasting strategies of water use efficiency during their succession, but water use efficiency of both species was promoted by N availability and limited by P availability.
基金supported by the National Nature Science Foundation of China (32222058, 32001274)the Youth Talent Support Program for Science & Technology Innovation of National Forestry and Grassland (2019132603) for financial support。
文摘Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF possesses high active furan structure with hydroxymethyl and aldehyde group for production of various bio-chemicals and materials, meanwhile, which suffer from low stability and poor yield during the industrial biorefinery process. Hence, selective production of 5-HMF with high-yield and low-cost has attracted extensive attention from scientific and industrial researchers. This review sorted and described the latest advanced research on solvent and catalyst system, as well as energy field effect for production of 5-HMF with different feedstock in detail, emphatically discussing the solvent effect and its synergistic effect with other aspects. Besides, the future prospects and challenges for production of 5-HMF from carbohydrates were also presented, which provide a profound insight into industrial 5-HMF process with economic and environmental feature.
基金funded by National Natural Science Foundation of China (Grant Nos. 41230746, 41271306)the National Key Technology Research and Development Program (Grant No. 2012BAC09B03)the Open-fund Project of Jiangxi Provincial Key Laboratory of Soil Erosion and Prevention (Grant No. JXSB201301)
文摘There is a consensus that sediment delivery ratio in the Chinese Loess Plateau is close to 1at the inter-annual timescale. However, little information is available about the sediment delivery at finer timescales. We evaluated the sediment delivery from plots to watersheds at the event or intra-annual, annual, and inter-annual timescales within the Wudinghe river basin, a 30,261 km2 basin in the Loess Plateau. We calculated the ratio of sediment output to sediment input and presented the temporal change of the channel morphology to determine whether sediment deposition occurs.Although a single flood event frequently has a sediment yield exceeding 10,000 t km-2, sediment deposition rarely occurs except during some small runoff events(sediment yield < 5000 t km-2) or dry years(sediment yield < 10,000 t km-2) when moving from slopes up to the main channels of the Wudinghe River. This observation suggests a sediment delivery ratio close to 1 even at the event or intra-annual and the annual timescales, but not necessarily at the interannual timescale. Such a high sediment delivery ratio can be related to hyper-concentrated flows, which have very strong sediment transport capacity even at low flow strength. Because hyper-concentrated flows are well-developed in the whole Loess Plateau, a sediment delivery ratio close to 1 below the interannual timescale possibly remains true for other rivers in the Loess Plateau.