The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important r...The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area.展开更多
The Tarim Craton is an ancient Precambrian continental block,and detailed knowledge of its thermo-tectonic history is crucial for understanding the early history of continental evolution.Abundant layered mafic rocks,w...The Tarim Craton is an ancient Precambrian continental block,and detailed knowledge of its thermo-tectonic history is crucial for understanding the early history of continental evolution.Abundant layered mafic rocks,which have commonly been regarded as basalts,occur within the Ediacaran Sugetbrak Formation(Fm.)in the Aksu region of the northwestern Tarim Craton.Clear intrusive features have now been discovered,including mafic rocks truncating Ediacaran sedimentary layers,exhibiting an intrusion-baked margin where they interact with both the overlying and bottom wall rocks,and displaying a fine-grained transition zone from their interior to their margins.The new findings demonstrate that these mafic rocks within the Aksu Ediacaran strata were not erupted basalts but instead are intrusive diabase dykes.Therefore,these mafic rocks cannot be used to constrain the timing of the Sugetbrak Fm.in the Aksu area,nor as marker layers for regional stratigraphic correlation.Furthermore,the Ediacaran thermo-tectonic evolution in this region,deduced from the assumption that the mafic rocks are lavas,needs to be revised.展开更多
The Huozhou complex in the Trans-North China Orogen exhibits two events of mafic magmatism(separated by ca.700 Ma):Neoproterozoic(920±15 Ma)Shimenyu diabase and Late Triassic(217±2.5 Ma)Xingtangsi diabase.In...The Huozhou complex in the Trans-North China Orogen exhibits two events of mafic magmatism(separated by ca.700 Ma):Neoproterozoic(920±15 Ma)Shimenyu diabase and Late Triassic(217±2.5 Ma)Xingtangsi diabase.Investigations have focused on systematic petrology,zircon U-Pb dating,Lu-Hf isotopes,and lithogeochemistry.The research findings indicate that the Late Triassic Xingtangsi diabase of the Huozhou complex can be classified as a transitional type between intermediate and mafic rocks based on their SiO_(2)content.This classification is supported by an average SiO_(2)content of 53.94%,ranging from 53.33%to 54.28%.In the Zr/TiO_(2)vs.Ce diagram,all samples lie within the range of basalt.The zircons from the Late Triassic Xingtangsi diabase have lowε_(Hf)(t)values ranging from-12.7 to-8.7,with an average of-11.1.Additionally,the single-stage model age T_(DM1)is estimated to be between 1207 and 1701 Ma.These findings suggest that the magma responsible for the dyke originated from either partial melting or an enriched mantle source inside the Meso-Proterozoic lithospheric mantle.The elevated concentrations of Th(thorium)and LREEs(light rare earth elements),as well as the Th/Yb and Th/Nb ratios,suggest the potential incorporation of subducted sediments within the magma source region.The rock displays negative Nb,Ta,Zr,Hf,and Ti anomalies.These geochemical attributes align with the distinctive traits observed in volcanic rocks found within island arcs.The formation of the Late Triassic Xingtangsi diabase is likely associated with the geological context of an arc setting,which arises from the collision between the Yangtze plate and the North China Craton.展开更多
At least 13 active fault zones have developed in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,and there have been undergone 17 MS≥7.0 earthquakes,the largest earthquake is 1950 Chayu MS 8.5 ea...At least 13 active fault zones have developed in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,and there have been undergone 17 MS≥7.0 earthquakes,the largest earthquake is 1950 Chayu MS 8.5 earthquake,which has very strong seismic activity.Therefore,carrying out engineering construction in the Sichuan-Tibet transport corridor is a huge challenge for geological technological personnel.To determining the spatial geometric distribution,activity of active faults and geological safety risk in the Sichuan-Tibet transport corridor.Based on remote sensing images,ground surveys,and chronological tests,as well as the deep geophysical and current GPS data,we investigated the geometry,segmentation,and paleoearthquake history of five major active fault zones in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,namely the Xianshuihe,Litang,Batang,Jiali-Chayu and Lulang-Yigong.The five major fault zones are all Holocene active faults,which contain strike-slip components as well as thrust or normal fault components,and contain multiple branch faults.The Selaha-Kangding segment of the Xianshuihe fault zone,the Maoyaba and Litang segment of the Litang fault zone,the middle segment(Yigong-Tongmai-Bomi)of Jiali-Chayu fault zone and Lulang-Yigong fault zone have the risk of experiencing strong earthquakes in the future,with a high possibility of the occurrence of MS≥7.0 earthquakes.The Jinsha River and the Palong-Zangbu River,which is a high-risk area for geological hazard chain risk in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor.Construction and safe operation Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,need strengthen analysis the current crustal deformation,stress distribution and fault activity patterns,clarify active faults relationship with large earthquakes,and determine the potential maximum magnitude,epicenters,and risk range.This study provides basic data for understanding the activity,seismicity,and tectonic deformation patterns of the regional faults in the Sichuan-Tibet transport corridor.展开更多
The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity ...The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.展开更多
The Jiangchuan Biota from the Jiucheng Member(Mb.)of the Dengying Formation(Fm.),discovered in Jiangchuan,eastern Yunnan,China,is marked by copious macrofossils at the apex of the Ediacaran strata.This fauna features ...The Jiangchuan Biota from the Jiucheng Member(Mb.)of the Dengying Formation(Fm.),discovered in Jiangchuan,eastern Yunnan,China,is marked by copious macrofossils at the apex of the Ediacaran strata.This fauna features benthic algae with varied holdfasts and other fossils of indeterminate taxonomic affinity and is compositionally unique compared to the Shibantan and Gaojiashan biotas of the Dengying Fm.and the Miaohe and Wenghui biotas of the Doushantuo Fm.,elsewhere in China.One novel benthic saccular macroalgal fossil,named here Houjiashania yuxiensis gen.and sp.nov.,from the Jiangchuan Biota is based on fossils that are sausage-shaped,elongate,tubular,ranging from 0.3 to 4 cm in length,and up to 0.8 cm in diameter.One terminus is blunt and rounded to an obtuse angle,the other is bent with a spread-out surface resembling a holdfast,suggesting a three-dimensional thallus.Thin,stipe-shaped outgrowths,likely vestiges of sessile saccular life forms,are prevalent in macroalgal fossils of analogous size and shape,as well as present brown algae Scytosiphonaceae,such as Colpomenia and Dactylosiphon.The new findings augment the diversity of benthic algae,such as those known from the Early Neoproterozoic Longfengshan Biota in North China.The benthic algal macrofossils in the Jiucheng Mb.add to knowledge of Late Ediacaran metaphyte diversification and offer more clues about the evolutionary positioning of primitive macroalgae.The co-occurrence of numerous planktonic and benthic multicellular algae and planktonic microbes might have facilitated ecologically the more extensive later Cambrian explosion evidenced by the Chengjiang Biota in Yunnan.展开更多
The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Ce...The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Cenozoic Indian-Asian collision.However,there are limited reports on the tectonic deformation and initiation of Triassic intracontinental deformation in the Tianshan range.Understanding this structural context is crucial for interpreting the early intracontinental deformation history of the Eurasian continent during the early Mesozoic.Growth strata and syn-tectonic sediments provide a rich source of information on tectonic activities and have been extensively used in the studies of orogenic belts.Based on detail fieldwork conducted in this study,the middle-late Triassic Kelamayi Formation of the northern Kuqa Depression in the southern Tianshan fold-thrust belt has been identified as the typical syn-tectonic growth strata.The youngest detrital zircon component in two lithic sandstone samples from the bottom and top of the Kelamayi growth strata yielded U-Pb ages of 223.4±3.1 and 215.5±2.9 Ma,respectively,indicating that the maximum depositional age of the bottom and top of the Kelamayi growth strata is 226-220 and 218-212 Ma.The geochronological distribution of detrital samples from the Early-Middle Triassic and Late Triassic revealed abrupt changes,suggesting a new source supply resulting from tectonic activation in the Tianshan range.The coupling relationship between the syn-tectonic sedimentation of the Kelamayi Formation and the South Tianshan fold-thrust system provides robust evidence that the Triassic intracontinental deformation of the South Tianshan range began at approximately 226-220 Ma(during the Late Triassic)and ended at approximately 218-212 Ma.These findings provide crucial constraints for understanding the intraplate deformation in the Tianshan range during the Triassic.展开更多
In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-...In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).展开更多
The Duobaoshan ore concentration area, located in Nenjiang County of Heilongjiang Province, is an important porphyry Cu-Mo ore concentration area in China, which is characterized by complex magmatic activities and mul...The Duobaoshan ore concentration area, located in Nenjiang County of Heilongjiang Province, is an important porphyry Cu-Mo ore concentration area in China, which is characterized by complex magmatic activities and multi-phase overprinting metallogenesis. On the basis of field geological observation, systematic sampling, in-lab analysis and the metallogenic regularity in the Xiang'an- Mongolian metallogenic belt, this work carried out high-precision dating and geochemical analysis on the Yuejin, 173-kilometer and Wolihedingzi rock bodies. These rock bodies are renamed monzonitic granite and their consistent age (238 Ma) show that they were formed not in Variscan but in Indosinian. Therefore, it is inferred that the ore spots formed in the potassium silicate and sericite alteration zones of the rock mass also belong to Indosinian. In addition, we collected granodiorite from the Tongshan mining pit, and its zircon age is 223.1+2.8 Ma and the Cu content of the sample is high. The Tongshan mineralization is inferred to undergo the superimposition of Indosinian diagenetic mineralization. The age of the granodiorite porphyry related to copper-molybdenum mineralization in the Xiaoduobaoshan area is 222.1~5.5 Ma, and the earlier age of granodiorite is 471.8^-7.4 Ma, indicating that the initial magmatic activities belong to the Duobaoshan porphyry system in the Caledonian period. The geochemical characteristics of the Indosinian rock samples show continental arc features, with reference to tectonic-magmatic activities of the whole Daxing'anling area. We consider that the magmatic activities and mineralization of the Indosinian period are affected by the southward subduction of Okhotsk Ocean since Late Permian. By combining the mineralization rules of Daxinganling area and the structural systems of Duobaoshan ore concentration area, we divide two rock-mineralization belts in this area including the Yuejin-Duobaoshan-Tongshan belt and 173-kilometer-Xiaoduobaoshan-Wolihedingzi belt, which are distributed nearly parallel along the NW-trending fractures and show similar geotectonic settings and the timing of the magmatic activities. It is favorable for discovering porphyry Cu-Mo deposits in these two metallogenic belts, especially in the Yuejin, 173-kilometer and Wolihedingzi areas where less research work has been made.展开更多
The Triassic was a crucial period in the tectonic evolution of the South China Block.Research on tectonic deformation during this period provides information on intracontinental orogenic mechanisms in South China.In t...The Triassic was a crucial period in the tectonic evolution of the South China Block.Research on tectonic deformation during this period provides information on intracontinental orogenic mechanisms in South China.In this study,alongside thermochronological analyses,we examine the macroscopic and microscopic structural features of the Rongxian ductile shear zone,located south of the Darongshan granite in the southeastern part of Guangxi Province,on the southern margin of South China.Sinistral shear is indicated by the characteristics of rotatedσ-type feldspar porphyroclasts,stretching lineations defined by elongated quartz grains and the orientations of quartz c-axes.LA-ICP-MS U-Pb dating of zircons from two samples of granitic mylonite and one of granite yielded ages of ca.256 Ma.Furthermore,two samples of granitic mylonite yield muscovite^(40)Ar/^(39)Ar plateau ages of 249-246 Ma.These results indicate that the Rongxian ductile shear zone resulted from Early Triassic deformation of the late Permian Darongshan granite.This deformation was likely related to the closure of the eastern Paleo-Tethys Ocean and the subsequent collision of the South China and Indochina blocks,during the early stage of the Indosinian orogeny.展开更多
Rubidium(Rb)deposits mostly occur in the South China and Central Asia orogenic belts and are often closely associated with highly differentiated granites.This study investigates a newly-discovered giant Rb deposit at ...Rubidium(Rb)deposits mostly occur in the South China and Central Asia orogenic belts and are often closely associated with highly differentiated granites.This study investigates a newly-discovered giant Rb deposit at Gariatong in the Central Lhasa terrane in Tibet.Detailed field studies and logging data revealed that the Rb mineralization mainly occurs in monzogranite and is related to greisenization.LA-ICP-MS U-Pb dating of zircon yielded ages of 19.1±0.2 Ma and 19.0±0.2 Ma for greisenized monzogranite and fresh monzogranite,respectively.The monzogranites are characterized as strongly peraluminous,with high contents of SiO2,Al2O3,K2O and Na2O as well as a high differentiation index.They are enriched in light rare earth and large ion lithophile elements with significant negative Eu anomalies and depleted high fieldstrength elements.Petrological and geochemical features of these ore-related monzogranites suggest that they are highly fractionated S-type granites,derived from remelting of crustal materials in a post-collisional setting.The geochemistry of zircon and apatite points to a low oxygen fugacity of the ore-related monzogranite during the magma’s evolution.The discovery of the Gariatong Rb deposit suggests that the Central Lhasa terrane may be an important region for rare metal mineralization.展开更多
Rockburst are often encountered in tunnel construction due to the complex geological conditions.To study the influence of unloading rate on rockburst,gneiss rockburst experiments were conducted under three groups of u...Rockburst are often encountered in tunnel construction due to the complex geological conditions.To study the influence of unloading rate on rockburst,gneiss rockburst experiments were conducted under three groups of unloading rates.A high-speed photography system and acoustic emission(AE)system were used to monitor the entire process of rockburst process in real-time.The results show that the intensity of gneiss rockburst decreases with decrease of unloading rate,which is manifested as the reduction of AE energy and fragments ejection velocity.The mechanisms are proposed to explain this effect:(i)The reduction of unloading rate changes the crack propagation mechanism in the process of rockburst.This makes the rockbursts change from the tensile failure mechanism at high unloading rate to the tension-shear mixed failure mechanism at low unloading rate,and more energy released in the form of shear crack propagation.Then,less strain energy is converted into kinetic energy of fragments ejection.(ii)Less plate cracking degree of gneiss has taken shape due to decrease of unloading rate,resulting in the destruction of rockburst incubation process.The enlightenments of reducing the unloading rate for the project are also described quantitatively.The rockburst magnitude is reduced from the medium magnitude at the unloading rate of 0.1 MPa/s to the slight magnitude at the unloading rate of 0.025 MPa/s,which was judged by the ejection velocity.展开更多
Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES te...Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.展开更多
The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff...The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.展开更多
The continental Asia is mainly composed of three major tectonic regimes,the Tethys,Paleo Asian Ocean,and West Pacific.It underwent multi-stage plate convergences,ocean-continent transformations,and subductions,collisi...The continental Asia is mainly composed of three major tectonic regimes,the Tethys,Paleo Asian Ocean,and West Pacific.It underwent multi-stage plate convergences,ocean-continent transformations,and subductions,collisions and/or collages,and post collisional(orogenic)extensions in Phanerozoic.Tectonic evolution of the Asia brings up a unique fault system and tectonic geomorphological features in the China's Mainland.Also,it provides a geodynamic background for the formation and evolution of metallogeneses and mineral systems,resulting in nonuniform distribution of tectono-metallogenic systems and metallogenic belts.The spatiotemporal distribution of mineral deposits in China and adjacent areas exhibits periodic variation under controlling of the full life Wilson cycle and tectonic evolution,forming the plate convergence-related mineral system in East Asia.Porphyry Cu deposits are mainly related to compressional systems in Paleozoic and early Mesozoic,and more closely related to post-collision extensional settings in late Mesozoic and Cenozoic.Orogenic Au deposits mainly formed in post-orogeny extensional setting.Alkaline rock related rare earth element deposits formed mainly at margins of the North China and Yangtze cratons.Granite-pegmatite Li and other rare metal deposits formed mainly in early Mesozoic,related to Indosinian post-orogeny extension.Tectono-metallogenic systems provide important basis for the prospecting of mineral resources.展开更多
Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137....Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137.7±1.3 Ma zircon age and T0907 dyke with 142±1.4 Ma zircon age reported by Wang YY et al.(2016),indicating coeval formation time.Taking all the four diabase dykes into consideration,two different types,OIB-type and weak enriched-type,can be summarized.The“OIB-type”samples,including T1193-A and T0907 dykes,show OIB-like geochemical features and have initial Sr-Nd isotopic values similar with most mafic products in Comei Large Igneous Provinces(LIP),suggesting that they represent melts directly generated from the Kerguelen mantle plume.The“weak enriched-type”samples,including T1194-A and T0902 dykes,have REEs and trace element patterns showing withinplate affinity but have obvious Nb-Ta-Ti negative anomalies.They show uniform lowerεNd(t)values(−6‒−2)and higher 87Sr/86Sr(t)values(0.706‒0.709)independent of their MgO variation,indicating one enriched mantle source.Considering their closely spatial and temporal relationship with the widespread Comei LIP magmatic products in Tethyan Himalaya,these“weak enriched-type”samples are consistent with mixing of melts from mantle plume and the above ancient Tethyan Himalaya subcontinental lithospheric mantle(SCLM)in different proportions.These weak enriched mafic rocks in Comei LIP form one special rock group and most likely suggest large scale hot mantle plume-continental lithosphere interaction.This process may lead to strong modification of the Tethyan Himalaya lithosphere in the Early Cretaceous.展开更多
Lop Nur is located at the eastmost end of the Tarim Basin in Xinjiang,Northwestern China.This study reviews the hydrochemical characteristics and evolution of underground brine in Lop Nur,based on analytical data from...Lop Nur is located at the eastmost end of the Tarim Basin in Xinjiang,Northwestern China.This study reviews the hydrochemical characteristics and evolution of underground brine in Lop Nur,based on analytical data from 429 water samples(mainly brine).It is found that in the NE-SW direction,from the periphery to the Luobei sub-depression,while the hydrochemical type varies from the sodium sulfate subtype(S)to the magnesium sulfate subtype(M),the corresponding brine in the phase diagram transfers from the thenardite phase(Then)area,through the bloedite phase(Blo),epsomite phase(Eps),picromerite phase(Picro),finally reaching the sylvite phase(Syl)area.As for the degree of evolution,the sequence is the periphery<Luobei horizontally and the overlying glauberite brine<the underlying clastic brine vertically.It is concluded that the oxygen and hydrogen isotopic compositions of the brine have evidently been affected through the effects of evaporation and altitude,as well as the changes in local water circulation in recent years.Boron and chloride isotopic compositions show that the glauberite brine is formed under more arid conditions than the clastic one.The strontium isotopic composition indicates that the Lop Nur brine primarily originates from surface water;however,deep recharge may also be involved in the evolution of the brine,according to previous noble gas studies.It is confirmed that the brine in Lop Nur has become enriched with potassium prior to halite precipitation over the full course of the salt lake's evolution.Based on chemical compositions of brine from drillhole LDK01 and previous lithological studies,the evolution of the salt lake can be divided into three stages and it is inferred that the brine in Lop Nur may have undergone at least two significant concentration-dilution periods.展开更多
To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and correspo...To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and corresponding subsoil samples)were collected from the five representative land-use patterns.Inductively coupled plasma mass spectrometry(ICP-MS),Atomic fluorescence spectrometry(AFS),and Inductively coupled plasma optical emission spectrometry(ICP-OES)were used to determine the content of PTEs(As,Cd,Hg,Cu,Cr,Ni,Pb,Zn,Co,Mo,Sb,and V).Correlation analysis and factor analysis were used to determine the source of PTEs.Geo-accumulation index(I_(geo)),hazard quotient(HQ),and total carcinogenic risk index(TR)were used to measure the PTEs contamination and its relative health impacts.Results showed that the average values of 12 PTEs in topsoil were higher than the Hainan soil geochemical baseline,showing different degrees of PTEs accumulation effect.The concentration of PTEs in the topsoil was lower than those in the subsoil except for Cd and Hg.The I_(geo)revealed that the major accumulated element in soils was As followed by Mo.Source apportionment suggested that parent materials and agricultural practices were the dominant factors for PTEs accumulation in the topsoil.Noncarcinogenic risks of soil samples from five land-use patterns presented a trend of paddy field>dry field>woodland>orchard>garden plot.However,the HQ values of 12 PTEs were less than the recommended limit of HQ=1,representing that there are no non-carcinogenic risks of PTEs for children and adults in the study area.The TR values are within 6.95×10^(-6)-1.38×10^(-5),which corresponds to the low level.Therefore the PTEs in the agricultural soil of the study area show little influence on the health status of the local population.展开更多
China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and t...China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area.展开更多
A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 m...A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.展开更多
基金funded by the shale oil and gas geological survey project in Quemoco sag,Qiangtang Basin of China Geological Survey(DD20221855,DD20230315).
文摘The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area.
基金supported by funding from the National Key Research and Development Program of China(Grant No.2022YFF0800100)National Natural Science Foundation of China and the China Geological Survey(Grant No.U2244210)。
文摘The Tarim Craton is an ancient Precambrian continental block,and detailed knowledge of its thermo-tectonic history is crucial for understanding the early history of continental evolution.Abundant layered mafic rocks,which have commonly been regarded as basalts,occur within the Ediacaran Sugetbrak Formation(Fm.)in the Aksu region of the northwestern Tarim Craton.Clear intrusive features have now been discovered,including mafic rocks truncating Ediacaran sedimentary layers,exhibiting an intrusion-baked margin where they interact with both the overlying and bottom wall rocks,and displaying a fine-grained transition zone from their interior to their margins.The new findings demonstrate that these mafic rocks within the Aksu Ediacaran strata were not erupted basalts but instead are intrusive diabase dykes.Therefore,these mafic rocks cannot be used to constrain the timing of the Sugetbrak Fm.in the Aksu area,nor as marker layers for regional stratigraphic correlation.Furthermore,the Ediacaran thermo-tectonic evolution in this region,deduced from the assumption that the mafic rocks are lavas,needs to be revised.
基金the 2023 Shanxi Province Higher Education Science and Technology Innovation Project(award number 2023L161)the Science and Technology Department of Shanxi Province(award number 202303021212158)+6 种基金the open fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural ResourcesInstitute of GeologyChinese Academy of Geological Sciences(award number J1901-16)the teaching reform project“Geographic Modeling,Simulation and Visualization”established by Shanxi Normal University(award number 2019JGXM-39)“The Research Start-up Fund of Shanxi Normal University for Dr.Peng Chong in 2016”(award number 0505/02070438)“The Research Start-up Fund of Shanxi Normal University for Dr.Liu Haiyan in 2017”(award numberumber 0505/02070458)“The Research Fund for Outstanding Doctor in 2017”(award number 0503/02010168),established by the Education Department of Shanxi Province for Dr.Liu Haiyan。
文摘The Huozhou complex in the Trans-North China Orogen exhibits two events of mafic magmatism(separated by ca.700 Ma):Neoproterozoic(920±15 Ma)Shimenyu diabase and Late Triassic(217±2.5 Ma)Xingtangsi diabase.Investigations have focused on systematic petrology,zircon U-Pb dating,Lu-Hf isotopes,and lithogeochemistry.The research findings indicate that the Late Triassic Xingtangsi diabase of the Huozhou complex can be classified as a transitional type between intermediate and mafic rocks based on their SiO_(2)content.This classification is supported by an average SiO_(2)content of 53.94%,ranging from 53.33%to 54.28%.In the Zr/TiO_(2)vs.Ce diagram,all samples lie within the range of basalt.The zircons from the Late Triassic Xingtangsi diabase have lowε_(Hf)(t)values ranging from-12.7 to-8.7,with an average of-11.1.Additionally,the single-stage model age T_(DM1)is estimated to be between 1207 and 1701 Ma.These findings suggest that the magma responsible for the dyke originated from either partial melting or an enriched mantle source inside the Meso-Proterozoic lithospheric mantle.The elevated concentrations of Th(thorium)and LREEs(light rare earth elements),as well as the Th/Yb and Th/Nb ratios,suggest the potential incorporation of subducted sediments within the magma source region.The rock displays negative Nb,Ta,Zr,Hf,and Ti anomalies.These geochemical attributes align with the distinctive traits observed in volcanic rocks found within island arcs.The formation of the Late Triassic Xingtangsi diabase is likely associated with the geological context of an arc setting,which arises from the collision between the Yangtze plate and the North China Craton.
基金supported by the National Natural Science Foundation of China(42177184)the Balance Research Funds of the Chinese Academy of Geological Sciences(60)the China Geological Survey(DD20221816)。
文摘At least 13 active fault zones have developed in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,and there have been undergone 17 MS≥7.0 earthquakes,the largest earthquake is 1950 Chayu MS 8.5 earthquake,which has very strong seismic activity.Therefore,carrying out engineering construction in the Sichuan-Tibet transport corridor is a huge challenge for geological technological personnel.To determining the spatial geometric distribution,activity of active faults and geological safety risk in the Sichuan-Tibet transport corridor.Based on remote sensing images,ground surveys,and chronological tests,as well as the deep geophysical and current GPS data,we investigated the geometry,segmentation,and paleoearthquake history of five major active fault zones in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,namely the Xianshuihe,Litang,Batang,Jiali-Chayu and Lulang-Yigong.The five major fault zones are all Holocene active faults,which contain strike-slip components as well as thrust or normal fault components,and contain multiple branch faults.The Selaha-Kangding segment of the Xianshuihe fault zone,the Maoyaba and Litang segment of the Litang fault zone,the middle segment(Yigong-Tongmai-Bomi)of Jiali-Chayu fault zone and Lulang-Yigong fault zone have the risk of experiencing strong earthquakes in the future,with a high possibility of the occurrence of MS≥7.0 earthquakes.The Jinsha River and the Palong-Zangbu River,which is a high-risk area for geological hazard chain risk in the Ya'an-Linzhi section of the Sichuan-Tibet transport corridor.Construction and safe operation Ya'an-Linzhi section of the Sichuan-Tibet transport corridor,need strengthen analysis the current crustal deformation,stress distribution and fault activity patterns,clarify active faults relationship with large earthquakes,and determine the potential maximum magnitude,epicenters,and risk range.This study provides basic data for understanding the activity,seismicity,and tectonic deformation patterns of the regional faults in the Sichuan-Tibet transport corridor.
基金The National Natural Science Foundation of China under contract No.41806048the Open Fund of the Hubei Key Laboratory of Marine Geological Resources under contract No.MGR202009+2 种基金the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resource,Institute of Geology,Chinese Academy of Geological Sciences under contract No.J1901-16the Aoshan Science and Technology Innovation Project of Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2015ASKJ03-Seabed Resourcesthe Fund from the Korea Institute of Ocean Science and Technology(KIOST)under contract No.PE99741.
文摘The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.
基金supported by the National Natural Science Foundation of China(Grant Nos.42172035,42062005 and 41572024)the China Geological Survey(Grant No.DD20221648)+1 种基金Yunnan Province Science and Technology Department(Grant No.202305AD160031,202401AT070012)the project entitled 1:50000 Regional Geological Survey of Dazhuang,Fabiao,Ditu,and Dianzhong Sheets in Yunnan Province(Grant No.D202207).
文摘The Jiangchuan Biota from the Jiucheng Member(Mb.)of the Dengying Formation(Fm.),discovered in Jiangchuan,eastern Yunnan,China,is marked by copious macrofossils at the apex of the Ediacaran strata.This fauna features benthic algae with varied holdfasts and other fossils of indeterminate taxonomic affinity and is compositionally unique compared to the Shibantan and Gaojiashan biotas of the Dengying Fm.and the Miaohe and Wenghui biotas of the Doushantuo Fm.,elsewhere in China.One novel benthic saccular macroalgal fossil,named here Houjiashania yuxiensis gen.and sp.nov.,from the Jiangchuan Biota is based on fossils that are sausage-shaped,elongate,tubular,ranging from 0.3 to 4 cm in length,and up to 0.8 cm in diameter.One terminus is blunt and rounded to an obtuse angle,the other is bent with a spread-out surface resembling a holdfast,suggesting a three-dimensional thallus.Thin,stipe-shaped outgrowths,likely vestiges of sessile saccular life forms,are prevalent in macroalgal fossils of analogous size and shape,as well as present brown algae Scytosiphonaceae,such as Colpomenia and Dactylosiphon.The new findings augment the diversity of benthic algae,such as those known from the Early Neoproterozoic Longfengshan Biota in North China.The benthic algal macrofossils in the Jiucheng Mb.add to knowledge of Late Ediacaran metaphyte diversification and offer more clues about the evolutionary positioning of primitive macroalgae.The co-occurrence of numerous planktonic and benthic multicellular algae and planktonic microbes might have facilitated ecologically the more extensive later Cambrian explosion evidenced by the Chengjiang Biota in Yunnan.
基金supported by the National Key Research and Development Project(Grant No.2018YFC0603700)research grants from the China Geological Survey(Grant Nos.DD20230408,DD20190011,DD20191011 and DD20221824)+1 种基金the Fundamental Research Funds from the Chinese Academy of Geological Sciences(Grant No.JKY202011)the Key Laboratory of Airborne Geophysics and Remote Sensing Geology Ministry of Natural Resources(Grant No.2023YFL23)。
文摘The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Cenozoic Indian-Asian collision.However,there are limited reports on the tectonic deformation and initiation of Triassic intracontinental deformation in the Tianshan range.Understanding this structural context is crucial for interpreting the early intracontinental deformation history of the Eurasian continent during the early Mesozoic.Growth strata and syn-tectonic sediments provide a rich source of information on tectonic activities and have been extensively used in the studies of orogenic belts.Based on detail fieldwork conducted in this study,the middle-late Triassic Kelamayi Formation of the northern Kuqa Depression in the southern Tianshan fold-thrust belt has been identified as the typical syn-tectonic growth strata.The youngest detrital zircon component in two lithic sandstone samples from the bottom and top of the Kelamayi growth strata yielded U-Pb ages of 223.4±3.1 and 215.5±2.9 Ma,respectively,indicating that the maximum depositional age of the bottom and top of the Kelamayi growth strata is 226-220 and 218-212 Ma.The geochronological distribution of detrital samples from the Early-Middle Triassic and Late Triassic revealed abrupt changes,suggesting a new source supply resulting from tectonic activation in the Tianshan range.The coupling relationship between the syn-tectonic sedimentation of the Kelamayi Formation and the South Tianshan fold-thrust system provides robust evidence that the Triassic intracontinental deformation of the South Tianshan range began at approximately 226-220 Ma(during the Late Triassic)and ended at approximately 218-212 Ma.These findings provide crucial constraints for understanding the intraplate deformation in the Tianshan range during the Triassic.
基金the National Natural Science Foundation of China(Grant Nos.91955206,41603038)Second Tibetan Plateau Scientific Expedition and Research program(Grant No.2019QZKK0803)+2 种基金Scientific Research Foundation for Advanced ScholarsWest Yunnan University of Applied Sciences(Grant No.2022RCKY0004)Yunnan Fundamental Research Projects(Grant No.202301AT070012).
文摘In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).
基金funded by the National Basic Research Program (973 Program, grant No.2013CB429805)the National Key Research and Development Plan (grant No.2017YFC0601303)
文摘The Duobaoshan ore concentration area, located in Nenjiang County of Heilongjiang Province, is an important porphyry Cu-Mo ore concentration area in China, which is characterized by complex magmatic activities and multi-phase overprinting metallogenesis. On the basis of field geological observation, systematic sampling, in-lab analysis and the metallogenic regularity in the Xiang'an- Mongolian metallogenic belt, this work carried out high-precision dating and geochemical analysis on the Yuejin, 173-kilometer and Wolihedingzi rock bodies. These rock bodies are renamed monzonitic granite and their consistent age (238 Ma) show that they were formed not in Variscan but in Indosinian. Therefore, it is inferred that the ore spots formed in the potassium silicate and sericite alteration zones of the rock mass also belong to Indosinian. In addition, we collected granodiorite from the Tongshan mining pit, and its zircon age is 223.1+2.8 Ma and the Cu content of the sample is high. The Tongshan mineralization is inferred to undergo the superimposition of Indosinian diagenetic mineralization. The age of the granodiorite porphyry related to copper-molybdenum mineralization in the Xiaoduobaoshan area is 222.1~5.5 Ma, and the earlier age of granodiorite is 471.8^-7.4 Ma, indicating that the initial magmatic activities belong to the Duobaoshan porphyry system in the Caledonian period. The geochemical characteristics of the Indosinian rock samples show continental arc features, with reference to tectonic-magmatic activities of the whole Daxing'anling area. We consider that the magmatic activities and mineralization of the Indosinian period are affected by the southward subduction of Okhotsk Ocean since Late Permian. By combining the mineralization rules of Daxinganling area and the structural systems of Duobaoshan ore concentration area, we divide two rock-mineralization belts in this area including the Yuejin-Duobaoshan-Tongshan belt and 173-kilometer-Xiaoduobaoshan-Wolihedingzi belt, which are distributed nearly parallel along the NW-trending fractures and show similar geotectonic settings and the timing of the magmatic activities. It is favorable for discovering porphyry Cu-Mo deposits in these two metallogenic belts, especially in the Yuejin, 173-kilometer and Wolihedingzi areas where less research work has been made.
基金supported by the National Natural Science Foundation of China(Grant Nos.42262026,42072259).
文摘The Triassic was a crucial period in the tectonic evolution of the South China Block.Research on tectonic deformation during this period provides information on intracontinental orogenic mechanisms in South China.In this study,alongside thermochronological analyses,we examine the macroscopic and microscopic structural features of the Rongxian ductile shear zone,located south of the Darongshan granite in the southeastern part of Guangxi Province,on the southern margin of South China.Sinistral shear is indicated by the characteristics of rotatedσ-type feldspar porphyroclasts,stretching lineations defined by elongated quartz grains and the orientations of quartz c-axes.LA-ICP-MS U-Pb dating of zircons from two samples of granitic mylonite and one of granite yielded ages of ca.256 Ma.Furthermore,two samples of granitic mylonite yield muscovite^(40)Ar/^(39)Ar plateau ages of 249-246 Ma.These results indicate that the Rongxian ductile shear zone resulted from Early Triassic deformation of the late Permian Darongshan granite.This deformation was likely related to the closure of the eastern Paleo-Tethys Ocean and the subsequent collision of the South China and Indochina blocks,during the early stage of the Indosinian orogeny.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC2905001)the National Natural Science Foundation of China(Grant Nos.42272093,42230813)+1 种基金the Basic Research Fund of the Chinese Academy of Geological Sciences(Grant Nos.JKYZD202316,KK2116)the China Scholarship Council project and the Geological Survey project(Grant No.DD20230054).
文摘Rubidium(Rb)deposits mostly occur in the South China and Central Asia orogenic belts and are often closely associated with highly differentiated granites.This study investigates a newly-discovered giant Rb deposit at Gariatong in the Central Lhasa terrane in Tibet.Detailed field studies and logging data revealed that the Rb mineralization mainly occurs in monzogranite and is related to greisenization.LA-ICP-MS U-Pb dating of zircon yielded ages of 19.1±0.2 Ma and 19.0±0.2 Ma for greisenized monzogranite and fresh monzogranite,respectively.The monzogranites are characterized as strongly peraluminous,with high contents of SiO2,Al2O3,K2O and Na2O as well as a high differentiation index.They are enriched in light rare earth and large ion lithophile elements with significant negative Eu anomalies and depleted high fieldstrength elements.Petrological and geochemical features of these ore-related monzogranites suggest that they are highly fractionated S-type granites,derived from remelting of crustal materials in a post-collisional setting.The geochemistry of zircon and apatite points to a low oxygen fugacity of the ore-related monzogranite during the magma’s evolution.The discovery of the Gariatong Rb deposit suggests that the Central Lhasa terrane may be an important region for rare metal mineralization.
基金The financial support from the National Natural Science Foundation of China(Grant Nos.41941018 and 52074299)the Fundamental Research Funds for the Central Universities of China(Grant No.2023JCCXSB02)。
文摘Rockburst are often encountered in tunnel construction due to the complex geological conditions.To study the influence of unloading rate on rockburst,gneiss rockburst experiments were conducted under three groups of unloading rates.A high-speed photography system and acoustic emission(AE)system were used to monitor the entire process of rockburst process in real-time.The results show that the intensity of gneiss rockburst decreases with decrease of unloading rate,which is manifested as the reduction of AE energy and fragments ejection velocity.The mechanisms are proposed to explain this effect:(i)The reduction of unloading rate changes the crack propagation mechanism in the process of rockburst.This makes the rockbursts change from the tensile failure mechanism at high unloading rate to the tension-shear mixed failure mechanism at low unloading rate,and more energy released in the form of shear crack propagation.Then,less strain energy is converted into kinetic energy of fragments ejection.(ii)Less plate cracking degree of gneiss has taken shape due to decrease of unloading rate,resulting in the destruction of rockburst incubation process.The enlightenments of reducing the unloading rate for the project are also described quantitatively.The rockburst magnitude is reduced from the medium magnitude at the unloading rate of 0.1 MPa/s to the slight magnitude at the unloading rate of 0.025 MPa/s,which was judged by the ejection velocity.
基金supported by the National Nature Science Foundation of China under grant No.42272350the Foundation of Shanxi Key Laboratory for Exploration and Exploitation of Geothermal Resources under grant No.SX202202.
文摘Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.
基金Funded by the“Investigation and Evaluation of the Hot Dry Rock Resources in the Guide-Dalianhai Area of the Gonghe Basin,Qinghai”(DD20211336,DD20211337,DD20211338)“Hot Dry Rock Resources Exploration and Production Demonstration Project”(DD20230018)of the China Geological Survey。
文摘The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.
基金funded by the Deep Geological Survey Project of the China Geological Survey(Grant Nos.DD20230229,DD20230008,DD20160083 and DD20190011)the DREAM―Deep Resource Exploration and Advanced Mining of the National Key Research and Development Program of China(Grant No.2018YFC0603701)。
文摘The continental Asia is mainly composed of three major tectonic regimes,the Tethys,Paleo Asian Ocean,and West Pacific.It underwent multi-stage plate convergences,ocean-continent transformations,and subductions,collisions and/or collages,and post collisional(orogenic)extensions in Phanerozoic.Tectonic evolution of the Asia brings up a unique fault system and tectonic geomorphological features in the China's Mainland.Also,it provides a geodynamic background for the formation and evolution of metallogeneses and mineral systems,resulting in nonuniform distribution of tectono-metallogenic systems and metallogenic belts.The spatiotemporal distribution of mineral deposits in China and adjacent areas exhibits periodic variation under controlling of the full life Wilson cycle and tectonic evolution,forming the plate convergence-related mineral system in East Asia.Porphyry Cu deposits are mainly related to compressional systems in Paleozoic and early Mesozoic,and more closely related to post-collision extensional settings in late Mesozoic and Cenozoic.Orogenic Au deposits mainly formed in post-orogeny extensional setting.Alkaline rock related rare earth element deposits formed mainly at margins of the North China and Yangtze cratons.Granite-pegmatite Li and other rare metal deposits formed mainly in early Mesozoic,related to Indosinian post-orogeny extension.Tectono-metallogenic systems provide important basis for the prospecting of mineral resources.
基金supported by National Science Foundation of China(42102059 and 92055202)the China Geological Survey(DD20221817 and DD20190057)+1 种基金the basic scientific research funding in CAGS(J2204)the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0702).
文摘Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137.7±1.3 Ma zircon age and T0907 dyke with 142±1.4 Ma zircon age reported by Wang YY et al.(2016),indicating coeval formation time.Taking all the four diabase dykes into consideration,two different types,OIB-type and weak enriched-type,can be summarized.The“OIB-type”samples,including T1193-A and T0907 dykes,show OIB-like geochemical features and have initial Sr-Nd isotopic values similar with most mafic products in Comei Large Igneous Provinces(LIP),suggesting that they represent melts directly generated from the Kerguelen mantle plume.The“weak enriched-type”samples,including T1194-A and T0902 dykes,have REEs and trace element patterns showing withinplate affinity but have obvious Nb-Ta-Ti negative anomalies.They show uniform lowerεNd(t)values(−6‒−2)and higher 87Sr/86Sr(t)values(0.706‒0.709)independent of their MgO variation,indicating one enriched mantle source.Considering their closely spatial and temporal relationship with the widespread Comei LIP magmatic products in Tethyan Himalaya,these“weak enriched-type”samples are consistent with mixing of melts from mantle plume and the above ancient Tethyan Himalaya subcontinental lithospheric mantle(SCLM)in different proportions.These weak enriched mafic rocks in Comei LIP form one special rock group and most likely suggest large scale hot mantle plume-continental lithosphere interaction.This process may lead to strong modification of the Tethyan Himalaya lithosphere in the Early Cretaceous.
基金The Major Projects of Xinjiang Uyghur Autonomous Region of China(Grant Nos.2020A03005-2 and 2022A03009-2)from the Chinese governmentthe National Natural Science Foundation of China(Grant No.40830420)provided the funding for this study。
文摘Lop Nur is located at the eastmost end of the Tarim Basin in Xinjiang,Northwestern China.This study reviews the hydrochemical characteristics and evolution of underground brine in Lop Nur,based on analytical data from 429 water samples(mainly brine).It is found that in the NE-SW direction,from the periphery to the Luobei sub-depression,while the hydrochemical type varies from the sodium sulfate subtype(S)to the magnesium sulfate subtype(M),the corresponding brine in the phase diagram transfers from the thenardite phase(Then)area,through the bloedite phase(Blo),epsomite phase(Eps),picromerite phase(Picro),finally reaching the sylvite phase(Syl)area.As for the degree of evolution,the sequence is the periphery<Luobei horizontally and the overlying glauberite brine<the underlying clastic brine vertically.It is concluded that the oxygen and hydrogen isotopic compositions of the brine have evidently been affected through the effects of evaporation and altitude,as well as the changes in local water circulation in recent years.Boron and chloride isotopic compositions show that the glauberite brine is formed under more arid conditions than the clastic one.The strontium isotopic composition indicates that the Lop Nur brine primarily originates from surface water;however,deep recharge may also be involved in the evolution of the brine,according to previous noble gas studies.It is confirmed that the brine in Lop Nur has become enriched with potassium prior to halite precipitation over the full course of the salt lake's evolution.Based on chemical compositions of brine from drillhole LDK01 and previous lithological studies,the evolution of the salt lake can be divided into three stages and it is inferred that the brine in Lop Nur may have undergone at least two significant concentration-dilution periods.
基金supported by Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements(No.2023KFKTB001)the Science&Technology Fundamental Resources Investigation Program(2022FY101800)+2 种基金the National Nonprofit Institute Research Grant of IGGE(AS2023D01)the projects of the China Geological Survey(DD20230309 and DD20190305)the National Natural Science Foundation of China(42002105)。
文摘To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and corresponding subsoil samples)were collected from the five representative land-use patterns.Inductively coupled plasma mass spectrometry(ICP-MS),Atomic fluorescence spectrometry(AFS),and Inductively coupled plasma optical emission spectrometry(ICP-OES)were used to determine the content of PTEs(As,Cd,Hg,Cu,Cr,Ni,Pb,Zn,Co,Mo,Sb,and V).Correlation analysis and factor analysis were used to determine the source of PTEs.Geo-accumulation index(I_(geo)),hazard quotient(HQ),and total carcinogenic risk index(TR)were used to measure the PTEs contamination and its relative health impacts.Results showed that the average values of 12 PTEs in topsoil were higher than the Hainan soil geochemical baseline,showing different degrees of PTEs accumulation effect.The concentration of PTEs in the topsoil was lower than those in the subsoil except for Cd and Hg.The I_(geo)revealed that the major accumulated element in soils was As followed by Mo.Source apportionment suggested that parent materials and agricultural practices were the dominant factors for PTEs accumulation in the topsoil.Noncarcinogenic risks of soil samples from five land-use patterns presented a trend of paddy field>dry field>woodland>orchard>garden plot.However,the HQ values of 12 PTEs were less than the recommended limit of HQ=1,representing that there are no non-carcinogenic risks of PTEs for children and adults in the study area.The TR values are within 6.95×10^(-6)-1.38×10^(-5),which corresponds to the low level.Therefore the PTEs in the agricultural soil of the study area show little influence on the health status of the local population.
基金supported by two projects initialed China Geological Survey: “Evaluation on Soil and Water Quality and Geological Survey in Xiong’an New Area (DD20189122)” and “Monitoring and Evaluation on Carrying Capacity of Resource and Environment in BeijingTianjin-Hebei Coordinated Development Zone and Xiong’an New Area (DD20221727)”
文摘China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area.
基金supported by the China Geological Survey Project(Grant No.DD20211314)the Fundamental Research Funds for Chinese Academy of Geological Science(No.JKY202122).
文摘A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.