The integration of the photocatalytic effect into solar steam is highly desirable for addressing freshwater shortages and water pollution.Here,a ternary film structure for the adsorption and photothermal and photocata...The integration of the photocatalytic effect into solar steam is highly desirable for addressing freshwater shortages and water pollution.Here,a ternary film structure for the adsorption and photothermal and photocatalytic treatment of wastewater was designed by combining the technique of self-assembled carbon nano paper with a nitrogen composite titanium dioxide(N-TiO_(2))deposited on the surface of carbon nanotubes(CNT)using polyvinylidene fluoride(PVDF)as a substrate.The photogeneration of reactive oxygen species can be promoted by rapid oxygen diffusion at the three-phase interface,whereas the interfacial photothermal effect promotes subsequent free radical reactions for the degradation of rhodamine B(93%).The freshwater evaporation rate is 1.35 kg·m^(-2)·h^(-1)and the solar-to-water evaporation efficiency is 94%.Importantly,the N-TiO_(2)/CNT/PVDF(N-TCP)film not only effectively resists mechanical damage from the environment and maintains structural integrity,but can also be made into a large film for outdoor experiments in a large solar energy conversion device to collect fresh water from polluted water and degrade organic dyes in source water simultaneously,opening the way for applications in energy conversion and storage.展开更多
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac...Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.展开更多
Thermoelectric(TE)textiles which can harvest thermal energy from the human body,are highly desirable and vital to the charging of wearable electronics owing to their stable and long-term power output.The typical carbo...Thermoelectric(TE)textiles which can harvest thermal energy from the human body,are highly desirable and vital to the charging of wearable electronics owing to their stable and long-term power output.The typical carbon nanotube(CNT)yarns or bismuth telluride(Bi2Te3)based inorganic TE materials used hitherto limit the development of TE textiles,because of their high cost and rareness.In this work,scalable and high-TE performance carbon nanotube composite yarns(CNTYs)are developed using p-and n-type tuneable multi-wall CNTs and single-wall CNTs as TE materials and waterborne polyurethane(WPU)as the binder.The mechanical properties of the CNTYs are tuned and improved considerably by adding a small amount of WPU.Furthermore,TE yarns with p-and n-type segmented structures are prepared by treating CNTYs with poly(3,4-ethylene dioxythiophene):polystyrene sulfonate solution and n-type dopant polyetherimide,respectively.Based on the prepared p-and n-type segmented TE yarns,a TE textile with 75 p-n pairs that achieve outstanding TE output is fabricated.The TE textile can generate a high power density of 95.74μW m^(−2)with a voltage density of 3.76 V m^(−2)at a temperature difference of 32 K.It provides an output voltage of~37 mV outdoors(~12℃)when worn on the arm and demonstrates potential application to electronic devices after amplification.The fabrication method used in this study is not only a low-cost,scalable for preparing high-performance TE yarns but also realizes the body heat harvesting and temperature sensing of yarn-based TE textiles.展开更多
基金Scientific Research Fund of Zhejiang Provincial Education Department(Y202250501)SRT Research Project of Jiaxing Nanhu University。
文摘The integration of the photocatalytic effect into solar steam is highly desirable for addressing freshwater shortages and water pollution.Here,a ternary film structure for the adsorption and photothermal and photocatalytic treatment of wastewater was designed by combining the technique of self-assembled carbon nano paper with a nitrogen composite titanium dioxide(N-TiO_(2))deposited on the surface of carbon nanotubes(CNT)using polyvinylidene fluoride(PVDF)as a substrate.The photogeneration of reactive oxygen species can be promoted by rapid oxygen diffusion at the three-phase interface,whereas the interfacial photothermal effect promotes subsequent free radical reactions for the degradation of rhodamine B(93%).The freshwater evaporation rate is 1.35 kg·m^(-2)·h^(-1)and the solar-to-water evaporation efficiency is 94%.Importantly,the N-TiO_(2)/CNT/PVDF(N-TCP)film not only effectively resists mechanical damage from the environment and maintains structural integrity,but can also be made into a large film for outdoor experiments in a large solar energy conversion device to collect fresh water from polluted water and degrade organic dyes in source water simultaneously,opening the way for applications in energy conversion and storage.
基金Project(ZCLTGS24B0101)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(Y202250501)supported by Scientific Research Fund of Zhejiang Provincial Education Department,ChinaProject supported by SRT Research Project of Jiaxing Nanhu University,China。
文摘Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.
基金Project(2020AD10010) supported by the Public Welfare Research Project of Jiaxing city,ChinaProject(LQ19B030005) supported by the Natural Science Foundation of Zhejiang Province,China。
基金funded by the Natural Science Foundation for Key Program of the Jiangsu Higher Education Institutions grant number 17KJA540002Nantong Science and Technology Bureau,grant number JC2021043Natural Science Foundation of China,grant number 51603135,51873134.
文摘Thermoelectric(TE)textiles which can harvest thermal energy from the human body,are highly desirable and vital to the charging of wearable electronics owing to their stable and long-term power output.The typical carbon nanotube(CNT)yarns or bismuth telluride(Bi2Te3)based inorganic TE materials used hitherto limit the development of TE textiles,because of their high cost and rareness.In this work,scalable and high-TE performance carbon nanotube composite yarns(CNTYs)are developed using p-and n-type tuneable multi-wall CNTs and single-wall CNTs as TE materials and waterborne polyurethane(WPU)as the binder.The mechanical properties of the CNTYs are tuned and improved considerably by adding a small amount of WPU.Furthermore,TE yarns with p-and n-type segmented structures are prepared by treating CNTYs with poly(3,4-ethylene dioxythiophene):polystyrene sulfonate solution and n-type dopant polyetherimide,respectively.Based on the prepared p-and n-type segmented TE yarns,a TE textile with 75 p-n pairs that achieve outstanding TE output is fabricated.The TE textile can generate a high power density of 95.74μW m^(−2)with a voltage density of 3.76 V m^(−2)at a temperature difference of 32 K.It provides an output voltage of~37 mV outdoors(~12℃)when worn on the arm and demonstrates potential application to electronic devices after amplification.The fabrication method used in this study is not only a low-cost,scalable for preparing high-performance TE yarns but also realizes the body heat harvesting and temperature sensing of yarn-based TE textiles.