Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to...Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are –3.78% and –1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.展开更多
This paper investigates the equivalent model for the friction boundary condition between blank and holder during sheet metal forming simulation, and proposes an equivalent algorithm, the thickness threshold value algo...This paper investigates the equivalent model for the friction boundary condition between blank and holder during sheet metal forming simulation, and proposes an equivalent algorithm, the thickness threshold value algorithm, for the first time based on thickness weighting. This algorithm assumes that the holder clearance is uniform during sheet metal forming; and the main reason for the unevenness of friction force distribution under the holder is that the uneven deformation of the blank leads to its uneven thickness distribution, which makes the local pressure on the blank distributed unevenly. The algorithm proposed in this paper can effectively simulate the influence of the unevenness on the forming process. Validity of this algorithm is verified by a comparison between the simulation results and the experimental ones for the drawing process of a car spring base.展开更多
The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the ...The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the untreated joints, based on which, primary study on the process and principle of mechanical surface hardening was carried out. The results shows that: Grain size of HAZ increases greatly and mechanical properties of welded joint decrease obviously compared with those of base martial, but grain size in the surface layer of HAZ can be refined (the grain size is about 100 nm or so) and mechanical properties of welded joints can be improved greatly by mechanical surface hardening.展开更多
The working principle of a kind of compositive emission control system is inquired into, which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic conver...The working principle of a kind of compositive emission control system is inquired into, which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic converter, etc. The purification effect of CO, HC and NOx emission of the gasoline spark ignite (S.I.) engine is studied. The entire vehicle driving cycle tests based on the national emission standard and a series of the gasoline engine-testing bench tests including full load characteristic experiment, load characteristic experiment and idle speed experiment are done. The results show that the system has a very good emission control effect to CO, HC and NOx of gasoline engine. The construction of the system is very simple and can be mounted on the exhaust pipe conveniently without any alteration of the vehicle-use gasoline engine.展开更多
An experimental and theoretical study of steam reforming of dimethyl ether was carried out in a processor for fuel cell vehicles to explore the effect of temperature gradient and hydrogen content of the processor.A st...An experimental and theoretical study of steam reforming of dimethyl ether was carried out in a processor for fuel cell vehicles to explore the effect of temperature gradient and hydrogen content of the processor.A steady-state,laminar,two-dimensional axi-symmetric model was proposed to investigate the fluid flow,heat transfer and chemical reactions in the dimethyl ether steam reforming processor using porous medium approach.The numerical model was established with Star-CD program using SIMPLE algorithm and finite volume method.Experimental verification of the two-dimensional mathematical model was conducted.The numerical results coincided well with the experimental data.The effects of the parameters on the temperature gradient and hydrogen content of the processor were studied using the numerical model.展开更多
基金Supported by National High Technology Research and Development Program of China (Grant No.2011AA11A265)National Natural Science Foundation of China (Grant Nos.50875173,51105241)Shanghai Municipal Natural Science Foundation of China (Grant No.11ZR1414700)
文摘Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are –3.78% and –1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.
基金Project supported by Project 985-Automotive Engineering of Jilin University.
文摘This paper investigates the equivalent model for the friction boundary condition between blank and holder during sheet metal forming simulation, and proposes an equivalent algorithm, the thickness threshold value algorithm, for the first time based on thickness weighting. This algorithm assumes that the holder clearance is uniform during sheet metal forming; and the main reason for the unevenness of friction force distribution under the holder is that the uneven deformation of the blank leads to its uneven thickness distribution, which makes the local pressure on the blank distributed unevenly. The algorithm proposed in this paper can effectively simulate the influence of the unevenness on the forming process. Validity of this algorithm is verified by a comparison between the simulation results and the experimental ones for the drawing process of a car spring base.
文摘The welded joints of 400 MPa ultra fine grained steel in manual arc welding were treated by mechanical surface hardening. Microstructure and mechanical properties of the treated joints were compared with those of the untreated joints, based on which, primary study on the process and principle of mechanical surface hardening was carried out. The results shows that: Grain size of HAZ increases greatly and mechanical properties of welded joint decrease obviously compared with those of base martial, but grain size in the surface layer of HAZ can be refined (the grain size is about 100 nm or so) and mechanical properties of welded joints can be improved greatly by mechanical surface hardening.
基金This project is supported by Provincial Natural Science Foundation of Guangdong, China and Provincial Environmental Protection Science Foundation of Guangdong, China(No.320-D38000).
文摘The working principle of a kind of compositive emission control system is inquired into, which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic converter, etc. The purification effect of CO, HC and NOx emission of the gasoline spark ignite (S.I.) engine is studied. The entire vehicle driving cycle tests based on the national emission standard and a series of the gasoline engine-testing bench tests including full load characteristic experiment, load characteristic experiment and idle speed experiment are done. The results show that the system has a very good emission control effect to CO, HC and NOx of gasoline engine. The construction of the system is very simple and can be mounted on the exhaust pipe conveniently without any alteration of the vehicle-use gasoline engine.
基金supported by the National Natural Science Foundation of China (50975169)Shanghai Science Technology Committee (620210029)
文摘An experimental and theoretical study of steam reforming of dimethyl ether was carried out in a processor for fuel cell vehicles to explore the effect of temperature gradient and hydrogen content of the processor.A steady-state,laminar,two-dimensional axi-symmetric model was proposed to investigate the fluid flow,heat transfer and chemical reactions in the dimethyl ether steam reforming processor using porous medium approach.The numerical model was established with Star-CD program using SIMPLE algorithm and finite volume method.Experimental verification of the two-dimensional mathematical model was conducted.The numerical results coincided well with the experimental data.The effects of the parameters on the temperature gradient and hydrogen content of the processor were studied using the numerical model.