期刊文献+
共找到212篇文章
< 1 2 11 >
每页显示 20 50 100
Biomaterials and tissue engineering in traumatic brain injury:novel perspectives on promoting neural regeneration 被引量:2
1
作者 Shihong Zhu Xiaoyin Liu +7 位作者 Xiyue Lu Qiang Liao Huiyang Luo Yuan Tian Xu Cheng Yaxin Jiang Guangdi Liu Jing Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2157-2174,共18页
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ... Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential. 展开更多
关键词 bioactive materials BIOMATERIALS EXOSOMES neural regeneration scaffolds stem cells tissue engineering traumatic brain injury
下载PDF
The fabrication of hydroxyapatite mineralized hydrogels for bone tissue engineering
2
作者 Xiu-Mei Zhang Jin-Qiao Jia +5 位作者 Yu Cao Yan Wei Yin-Chun Hu Xiao-Jie Lian Zi-Wei Liang Di Huang 《Biomedical Engineering Communications》 2023年第2期18-27,共10页
Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and ... Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and used in bone tissue engineering.HA is majorly utilized for the treatment of bone defects because of its excellent osteoconduction and bone inductivity.Hydrogel is a three-dimensional hydrophilic network structure with similar properties to the extracellular matrix(ECM).The combination of HA and hydrogels produces a new hybrid material that could effectively promote osteointegration and accelerate the healing of bone defects.In this review,the structure and growth of bone and the common strategies used to prepare HA were briefly introduced.Importantly,we discussed the fabrication of HA mineralized hydrogels from simple blending to in situ mineralization.We hope this review can provide a reference for the development of bone repair hydrogels. 展开更多
关键词 HYDROXYAPATITE HYDROGEL MINERALIZATION bone tissue engineering
下载PDF
Automated body composition analysis system based on chest CT for evaluating content of muscle and adipose
3
作者 YANG Jie LIU Yanli +2 位作者 CHEN Xiaoyan CHEN Tianle LIU Qi 《中国医学影像技术》 CSCD 北大核心 2024年第8期1242-1248,共7页
Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were col... Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were collected(segmented dataset),and chest CT data of 984 patients were screened from the COVID 19-CT dataset(10 cases were randomly selected as whole test dataset,the remaining 974 cases were selected as layer selection dataset).T7—T8 layer was classified based on convolutional neural network(CNN)derived networks,including ResNet,ResNeXt,MobileNet,ShuffleNet,DenseNet,EfficientNet and ConvNeXt,then the accuracy,precision,recall and specificity were used to evaluate the performance of layer selection dataset.The skeletal muscle(SM),subcutaneous adipose tissue(SAT),intermuscular adipose tissue(IMAT)and visceral adipose tissue(VAT)were segmented using classical fully CNN(FCN)derived network,including FCN,SegNet,UNet,Attention UNet,UNET++,nnUNet,UNeXt and CMUNeXt,then Dice similarity coefficient(DSC),intersection over union(IoU)and 95 Hausdorff distance(HD)were used to evaluate the performance of segmented dataset.The automatic body composition analysis system was constructed based on optimal layer selection network and segmentation network,the mean absolute error(MAE),root mean squared error(RMSE)and standard deviation(SD)of MAE were used to evaluate the performance of automatic system for testing the whole test dataset.Results The accuracy,precision,recall and specificity of DenseNet network for automatically classifying T7—T8 layer from chest CT images was 95.06%,84.83%,92.27%and 95.78%,respectively,which were all higher than those of the other layer selection networks.In segmentation of SM,SAT,IMAT and overall,DSC and IoU of UNet++network were all higher,while 95HD of UNet++network were all lower than those of the other segmentation networks.Using DenseNet as the layer selection network and UNet++as the segmentation network,MAE of the automatic body composition analysis system for predicting SM,SAT,IMAT,VAT and MAE was 27.09,6.95,6.65 and 3.35 cm 2,respectively.Conclusion The body composition analysis system based on chest CT could be used to assess content of chest muscle and adipose.Among them,the UNet++network had better segmentation performance in adipose tissue than SM. 展开更多
关键词 body composition THORAX muscle skeletal adipose tissue deep learning tomography X-ray computed
下载PDF
The relationship between the high-frequency performance of supercapacitors and the type of doped nitrogen in the carbon electrode
4
作者 FAN Ya-feng YI Zong-lin +6 位作者 ZHOU Yi XIE Li-jing SUN Guo-hua WANG Zhen-bing Huang Xian-hong SU Fang-yuan CHEN Cheng-meng 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期1015-1026,共12页
Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response me... Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors. 展开更多
关键词 High-frequency supercapacitors Carbon electrodes Doped nitrogen species Adsorption energy DESCRIPTOR
下载PDF
Noninvasive Detection of Cerebral Blood Flow and Blood Oxygen Based on Inductive Sensing Technology and Near Infrared Spectroscopy
5
作者 Cheng Zhou Zexiang Lyu +6 位作者 Maoting Zhang Xin Zou Liang Wei Feng Wang Mingxin Qin Jia Xu Jian Sun 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期204-212,共9页
The synchronous monitoring of cerebral blood flow and blood oxygen levels plays a pivotal role in the prevention,diagnosis,and treatment of cerebrovascular diseases.This study introduces a novel noninvasive device uti... The synchronous monitoring of cerebral blood flow and blood oxygen levels plays a pivotal role in the prevention,diagnosis,and treatment of cerebrovascular diseases.This study introduces a novel noninvasive device utilizing inductive sensing and near-infrared spectroscopy technology to facilitate simultaneous monitoring of cerebral blood flow and blood oxygen levels.The device consists of modules for cerebral blood flow monitoring,cerebral blood oxygen monitoring,control,communication,and a host machine.Through experiments conducted on healthy subjects,it was confirmed that the device can effectively achieve synchronous monitoring and recording of cerebral blood flow and blood oxygen signals.The results demonstrate the device’s capability to accurately measure these signals simultaneously.This technology enables dynamic monitoring of cerebral blood flow and blood oxygen signals with potential clinical applications in preventing,diagnosing,treating cerebrovascular diseases while reducing their associated harm. 展开更多
关键词 cerebrovascular disease synchronous monitoring inductive sensing near infrared spec-troscopy(NIRS)
下载PDF
Initial Experience of NIR-II Fluorescence Imaging-Guided Surgery in Foot and Ankle Surgery
6
作者 Xiaoxiao Fan Jie Yang +8 位作者 Huwei Ni Qiming Xia Xiaolong Liu Tianxiang Wu Lin Li Paras N.Prasad Chao Liu Hui Lin Jun Qian 《Engineering》 SCIE EI CAS CSCD 2024年第9期19-27,共9页
Optical imaging in the second near-infrared(NIR-II;900-1880 nm)window is currently a popular research topic in the field of biomedical imaging.This study aimed to explore the application value of NIR-II fluorescence i... Optical imaging in the second near-infrared(NIR-II;900-1880 nm)window is currently a popular research topic in the field of biomedical imaging.This study aimed to explore the application value of NIR-II fluorescence imaging in foot and ankle surgeries.A lab-established NIR-II fluorescence surgical navigation system was developed and used to navigate foot and ankle surgeries which enabled obtaining more high-spatial-frequency information and a higher signal-to-background ratio(SBR)in NIR-II fluorescence images compared to NIR-I fluorescence images;our result demonstrates that NIR-II imaging could provide higher-contrast and larger-depth images to surgeons.Three types of clinical application scenarios(diabetic foot,calcaneal fracture,and lower extremity trauma)were included in this study.Using the NIR-II fluorescence imaging technique,we observed the ischemic region in the diabetic foot before morphological alterations,accurately determined the boundary of the ischemic region in the surgical incision,and fully assessed the blood supply condition of the flap.NIR-II fluorescence imaging can help surgeons precisely judge surgical margins,detect ischemic lesions early,and dynamically trace the perfusion process.We believe that portable and reliable NIR-II fluorescence imaging equipment and additional functional fluorescent probes can play crucial roles in precision surgery. 展开更多
关键词 Second near-infrared fluorescence imaging Foot and ankle surgery Indocyanine green Imaging-guided surgery
下载PDF
Ganoboninketal C from Ganoderma boninense improves the efficacy of CDDP-based chemotherapy through inhibiting translesion DNA synthesis
7
作者 Xiaolu Ma Fei Yang +11 位作者 Ke Ma Hongyan Shen Junjie Han Kai Wang Yeran Yang Jiawei Zhu Ruiyuan An Qilin Wang Tie-Shan Tang Bo Zhou Hongwei Liu Caixia Guo 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2982-2992,共11页
Translesion DNA synthesis(TLS)can bypass DNA lesions caused by chemotherapeutic drugs,which usually result in drug resistance.Given its key role in mutagenesis and cell survival after DNA damage,inhibition of the TLS ... Translesion DNA synthesis(TLS)can bypass DNA lesions caused by chemotherapeutic drugs,which usually result in drug resistance.Given its key role in mutagenesis and cell survival after DNA damage,inhibition of the TLS pathway has emerged as a potential target for improving the efficacy of DNA-damaging agents such as cisplatin(CDDP),a widely used anticancer agent.Unfortunately,few suitable natural TLS inhibitors have been reported.Here,we found that a triterpenoid compound Ganoboninketal C(26-3)from Ganoderma boninense,a traditional Chinese medicine,can impair CDDP-induced TLS polymerase eta(Polη)focus formation,PCNA monoubiquitination as well as mutagenesis.Moreover,26-3 can significantly sensitize tumor cells to CDDP killing and reduce the proportion of cancer stem cells in AGS and promote apoptosis after CDDP exposure.Interestingly,26-3 can also sensitize tumor cells to Gefitinib therapy.Mechanistically,through RNA-seq analysis,we found that 26-3 could abrogate the CDDP-induced upregulation of Polηand PIDD(p53-induced protein with a death domain),2 known factors promoting TLS pathway.Furthermore,we found that activating transcription factor 3 is a potential novel TLS modulator.Taken together,we have identified a natural TLS inhibitor 26-3,which can be potentially used as an adjuvant to improve clinical efficacy. 展开更多
关键词 Ganoderma boninense Ganoboninketal C Cisplatin chemotherapy Translesion DNA synthesis
下载PDF
A Thermochromic, Viscoelastic Nacre-like Nanocomposite for the Smart Thermal Management of Planar Electronics 被引量:2
8
作者 Jiemin Wang Tairan Yang +6 位作者 Zequn Wang Xuhui Sun Meng An Dan Liu Changsheng Zhao Gang Zhang Weiwei Lei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期182-196,共15页
Cutting-edge heat spreaders for soft and planar electronics require not only high thermal conductivity and a certain degree of flexibility but also remarkable self-adhesion without thermal interface materials, elastic... Cutting-edge heat spreaders for soft and planar electronics require not only high thermal conductivity and a certain degree of flexibility but also remarkable self-adhesion without thermal interface materials, elasticity, arbitrary elongation along with soft devices, and smart properties involving thermal self-healing, thermochromism and so on. Nacre-like composites with excellent in-plane heat dissipation are ideal as heat spreaders for thin and planar electronics. However, the intrinsically poor viscoelasticity, i.e., adhesion and elasticity, prevents them from simultaneous self-adhesion and arbitrary elongation along with current flexible devices as well as incurring high interfacial thermal impedance. In this paper, we propose a soft thermochromic composite(STC) membrane with a layered structure, considerable stretchability, high in-plane thermal conductivity(~30 Wm^(-1) K^(-1)), low thermal contact resistance(~12 mm^2 KW^(-1), 4–5 times lower than that of silver paste), strong yet sustainable adhesion forces(~4607 Jm^(-2), 2220 Jm^(-2) greater than that of epoxy paste) and self-healing efficiency. As a self-adhesive heat spreader, it implements efficient cooling of various soft electronics with a temperature drop of 20℃ than the polyimide case. In addition to its self-healing function, the chameleon-like behavior of STC facilitates temperature monitoring by the naked eye, hence enabling smart thermal management. 展开更多
关键词 Boron nitride nanosheets Nacre-inspired composites VISCOELASTIC THERMOCHROMIC Smart thermal management
下载PDF
3D printing of personalized polylactic acid scaffold laden with GelMA/autologous auricle cartilage to promote ear reconstruction 被引量:1
9
作者 Xingyu Gui Zhiyu Peng +13 位作者 Ping Song Li Chen Xiujuan Xu Hairui Li Pei Tang Yixi Wang Zixuan Su Qingquan Kong Zhenyu Zhang Zhengyong Li Ying Cen Changchun Zhou Yujiang Fan Xingdong Zhang 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第4期451-463,共13页
At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional... At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction. 展开更多
关键词 MICROTIA 3D printing Polylactic acid(PLA)polymer scaffolds Gelatin methacrylamide Cartilage reconstruction
下载PDF
Efficient transfer of metallophosphor excitons via confined polaritons in organic nanocrystals
10
作者 芦文斌 陈永聪 +1 位作者 杨旭云 敖平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期503-508,共6页
We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820(2018) and J. Am. Chem. Soc. 140 4269(2018)]. Neither Dexter's... We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820(2018) and J. Am. Chem. Soc. 140 4269(2018)]. Neither Dexter's nor Forster's mechanism of resonance energy transfer(RET) could account fully for the observed rates, which exceed 85% with significant temperature dependence. But there exists an alternative pathway on RET mediated by intermediate states of resonantly confined exciton–polaritons. Such a mechanism was used to analyze artificial photosynthesis in organic fluorescents [Phys.Rev. Lett. 122 257402(2019)]. For metallophosphors, the confined modes act as extended states lying between the molecular S_(1) and T_(1) states, offering a bridge for the long-lived T_(1) excitons to migrate from donors to acceptors. Population dynamics with parameters taken entirely based on experiments fits the observed lifetimes of phosphorescence across a broad range of doping and temperature. 展开更多
关键词 organic nanocrystals phosphorescent emission resonance energy transfer exciton–polariton
下载PDF
Impact of cognition-related single nucleotide polymorphisms on brain imaging phenotype in Parkinson’s disease
11
作者 Ting Shen Jia-Li Pu +7 位作者 Ya-Si Jiang Yu-Mei Yue Ting-Ting He Bo-Yi Qu Shuai Zhao Ya-Ping Yan Hsin-Yi Lai Bao-Rong Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1154-1160,共7页
Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson’s disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclea... Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson’s disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclear. The aim of this study was to investigate the potential effects of multiple single nucleotide polymorphisms on brain imaging phenotype in Parkinson’s disease. Forty-eight Parkinson’s disease patients and 39 matched healthy controls underwent genotyping and 7 T magnetic resonance imaging. A cognitive-weighted polygenic risk score model was designed, in which the effect sizes were determined individually for 36 single nucleotide polymorphisms. The correlations between polygenic risk score, neuroimaging features, and clinical data were analyzed. Furthermore, individual single nucleotide polymorphism analysis was performed to explore the main effects of genotypes and their interactive effects with Parkinson’s disease diagnosis. We found that, in Parkinson’s disease, the polygenic risk score was correlated with the neural activity of the hippocampus, parahippocampus, and fusiform gyrus, and with hippocampal-prefrontal and fusiform-temporal connectivity, as well as with gray matter alterations in the orbitofrontal cortex. In addition, we found that single nucleotide polymorphisms in α-synuclein(SNCA) were associated with white matter microstructural changes in the superior corona radiata, corpus callosum, and external capsule. A single nucleotide polymorphism in catechol-O-methyltransferase was associated with the neural activities of the lingual, fusiform, and occipital gyri, which are involved in visual cognitive dysfunction. Furthermore, DRD3 was associated with frontal and temporal lobe function and structure. In conclusion, imaging genetics is useful for providing a better understanding of the genetic pathways involved in the pathophysiologic processes underlying Parkinson’s disease. This study provides evidence of an association between genetic factors, cognitive functions, and multi-modality neuroimaging biomarkers in Parkinson’s disease. 展开更多
关键词 COGNITION imaging genetics magnetic resonance imaging MULTI-MODALITY Parkinson’s disease polygenic risk score single nucleotide polymorphism ultra-high field
下载PDF
An Optical Fiber Sensor for Simultaneous Measurement of pO2 and pH
12
作者 Baorong Fu Xianwen Zhang +1 位作者 Huimin Cao Zhushanying Zhang 《Open Journal of Applied Sciences》 CAS 2023年第4期579-590,共12页
Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An... Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications. 展开更多
关键词 Optical Fiber Sensor OXYGEN PH FLUORESCENCE
下载PDF
A Comparison of CNN and PLSR for Glucose Monitoring Using Mid-Infrared Absorption Spectroscopy
13
作者 Baorong Fu Yongji Meng +1 位作者 Xianwen Zhang Zhushanying Zhang 《Open Journal of Applied Sciences》 CAS 2023年第3期383-395,共13页
With the development of mid-infrared (MIR) photoelectric devices, mid-infrared spectroscopy has become one of the important methods for non-invasive detection of blood glucose. The mid-infrared region (4000 - 400 cm&l... With the development of mid-infrared (MIR) photoelectric devices, mid-infrared spectroscopy has become one of the important methods for non-invasive detection of blood glucose. The mid-infrared region (4000 - 400 cm<sup>-1</sup>) has the well-known fingerprint region (1200 - 800 cm<sup>-1</sup>) of glucose, which has clearer characteristic absorption peaks and better specificity. There is a lot of molecular information about glucose in the MIR. The non-invasive detection of blood glucose by mid-infrared spectroscopy needs to achieve certain accuracy, and the quantitative model is an important factor affecting the accuracy of glucose detection. In this paper, the samples of imitation solution containing only glucose and the samples of imitation mixed solution are taken as the research objects, and the mid-infrared spectral data of the samples are collected. The full spectrum partial least squares Regression (PLSR) model, SNV + Ctr-PLSR model, MSC + Ctr-PLSR model, and convolutional neural networks (CNN) model of 3000 - 900 cm<sup>-1</sup> band were constructed. Full spectrum PLS model and CNN model of 1200 - 900 cm<sup>-1</sup> band were constructed. The experimental results show that the optimal model of the two bands is CNN, then the correlation coefficient of prediction set (Rp) of 3000 - 900 cm<sup>-1</sup> band is 0.95, and the root mean square error of pre-diction set (RMSEP) value is 22.10. The Rp of 1200 - 900 cm<sup>-1</sup> band is 0.95, and the RMSEP value is 22.54. The research results show that CNN is a promising method, which has higher accuracy than PLSR, and is especially suitable for modeling human complex environment. In addition, the study provides a theoretical and practical basis for CNN in feature selection and model interpretation. 展开更多
关键词 MID-INFRARED Convolutional Neural Networks (CNN) Partial Least Square Regression (PLSR) GLUCOSE
下载PDF
Interplay between the glymphatic system and neurotoxic proteins in Parkinson’s disease and related disorders:current knowledge and future directions 被引量:1
14
作者 Yumei Yue Xiaodan Zhang +2 位作者 Wen Lv Hsin-Yi Lai Ting Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1973-1980,共8页
Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired eli... Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy. 展开更多
关键词 atypical parkinsonism glymphatic system magnetic resonance imaging neurotoxic proteins Parkinson’s disease
下载PDF
Recentprogress in thebiomedical application of PEDOT:PSS hydrogels
15
作者 Binhan Zhao Zheng Li +5 位作者 Lan Zheng Zhichao Ye Yuyang Yuan Shanshan Zhang Bo Liang Tianyu Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第10期13-27,共15页
Bioelectronics have gained substantial research attention owing to their potential applications in health monitoring and diagnose,and greatly promoted the development of biomedicine.Recently,poly(3,4-ethylenedioxythio... Bioelectronics have gained substantial research attention owing to their potential applications in health monitoring and diagnose,and greatly promoted the development of biomedicine.Recently,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)hydrogels have arose as a promising candi-date for the next-generation bioelectronic interface due to its high-conductivity,versatility,flexibility and biocompatibility.In this review,we highlight the recent advances of PEDOT:PSS hydrogels,including the gelation methods and modification strategies,and summarize their wide applications in different type of sensors and tissue engineering in detail.We expect that this work will provide valuable information regarding the functionalizations and applications of PEDOT:PSS hydrogels. 展开更多
关键词 Conductingpolymer PEDOT:PSS hydrogels Conjugatedpolymer Gelation methods Biomedicalapplication
原文传递
Self-confocal NIR-II fluorescence microscopy for multifunctional in vivo imaging
16
作者 Jing Zhou Tianxiang Wu +5 位作者 Runze Chen Liang Zhu Hequn Zhang Yifei Li Liying Chen Jun Qian 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期105-119,共15页
Fluorescence imaging in the second near-infrared window(NIR-II,900–1880 nm)with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imagi... Fluorescence imaging in the second near-infrared window(NIR-II,900–1880 nm)with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imaging with high spatial resolution.However,the traditional NIR-IIfluorescence confocal microscope with separate excitation focus and detection pinhole makes it possess low confocal e±ciency,as well as di±cultly to adjust.Two types of upgraded NIR-IIfluorescence confocal microscopes,sharing the same pinhole by excitation and emission focus,leading to higher confocal e±ciency,are built in this work.One type is-ber-pinhole-based confocal microscope applicable to CW laser excitation.It is constructed forfluorescence intensity imaging with large depth,high stabilization and low cost,which could replace multiphotonfluorescence microscopy in some applications(e.g.,cerebrovascular and hepatocellular imaging).The other type is air-pinhole-based confocal microscope applicable to femtosecond(fs)laser excitation.It can be employed not only for NIR-IIfluorescence intensity imaging,but also for multi-channelfluorescence lifetime imaging to recognize different structures with similarfluorescence spectrum.Moreover,it can be facilely combined with multiphotonfluorescence microscopy.A single fs pulsed laser is utilized to achieve up-conversion(visible multiphotonfluorescence)and down-conversion(NIR-II one-photonfluorescence)excitation simultaneously,extending imaging spectral channels,and thus facilitates multi-structure and multi-functional observation. 展开更多
关键词 Self-confocal fiber-pinhole air-pinhole multi-channe fluorescence lifetime imaging multi-color imaging
下载PDF
Acupuncture at Waiguan (TE5) influences activation/deactivation of functional brain areas in ischemic stroke patients and healthy people A functional MRI study 被引量:10
17
作者 Junqi Chen Yong Huang +6 位作者 Xinsheng Lai Chunzhi Tang Junjun Yang Hua Chen Tongjun Zeng Junxian Wu Shanshan Qu 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第3期226-232,共7页
In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhance... In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhanced activation in Broadmann areas 5, 6, 7, 18, 19, 24, 32, the hypothalamic inferior lobe, the mamiilary body, and the ventral posterolateral nucleus of the left hemisphere, and Broadmann areas 4, 6, 7, 18, 19 and 32 of the right hemisphere, but attenuated activation of Broadmann area 13, the hypothalamic inferior lobe, the posterior lobe of the tonsil of cerebellum, and the culmen of the anterior lobe of hypophysis, in the left hemisphere and Broadmann area 13 in the right hemisphere. In ischemic stroke subjects, a number of deactivated brain areas were enhanced, including Broadmann areas 6, 11,20, 22, 37, and 47, the culmen of the anterior lobe of hypophysis, alae lingulae cerebella, and the posterior lobe of the tonsil of cerebellum of the left hemisphere, and Broadmann areas 8, 37, 45 and 47, the culmen of the anterior lobe of hypophysis, pars tuberalis adenohypophyseos, inferior border of lentiform nucleus, lateral globus pallidus, inferior temporal gyrus, and the parahippocampal gyrus of the right hemisphere. These subjects also exhibited attenuation of a number of deactivated brain areas, including Broadmann area 7. These data suggest that acupuncture at Waiguan specifically alters brain function in regions associated with sensation, vision, and motion in ischemic stroke patients. By contrast, in normal individuals, acupuncture at Waiguan generally activates brain areas associated with insomnia and other functions. 展开更多
关键词 neural regeneration acupuncture and moxibustion Waiguan (TE5) ischemic stroke specificity ofacupoints functional MRI cerebral function imaging ACUPUNCTURE motion brain areas grants-supported paper photographs-containing paper NEUROREGENERATION
下载PDF
Graphene oxide-composited chitosan scaffold contributes to functional recovery of injured spinal cord in rats 被引量:3
18
作者 Bing Yang Pang-Bo Wang +9 位作者 Ning Mu Kang Ma Shi Wang Chuan-Yan Yang Zhong-Bing Huang Ying Lai Hua Feng Guang-Fu Yin Tu-Nan Chen Chen-Shi Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第9期1829-1835,共7页
The study illustrates that graphene oxide nanosheets can endow materials with continuous electrical conductivity for up to 4 weeks. Conductive nerve scaffolds can bridge a sciatic nerve injury and guide the growth of ... The study illustrates that graphene oxide nanosheets can endow materials with continuous electrical conductivity for up to 4 weeks. Conductive nerve scaffolds can bridge a sciatic nerve injury and guide the growth of neurons;however, whether the scaffolds can be used for the repair of spinal cord nerve injuries remains to be explored. In this study, a conductive graphene oxide composited chitosan scaffold was fabricated by genipin crosslinking and lyophilization. The prepared chitosan-graphene oxide scaffold presented a porous structure with an inner diameter of 18–87 μm, and a conductivity that reached 2.83 mS/cm because of good distribution of the graphene oxide nanosheets, which could be degraded by peroxidase. The chitosan-graphene oxide scaffold was transplanted into a T9 total resected rat spinal cord. The results show that the chitosan-graphene oxide scaffold induces nerve cells to grow into the pores between chitosan molecular chains, inducing angiogenesis in regenerated tissue, and promote neuron migration and neural tissue regeneration in the pores of the scaffold, thereby promoting the repair of damaged nerve tissue. The behavioral and electrophysiological results suggest that the chitosan-graphene oxide scaffold could significantly restore the neurological function of rats. Moreover, the functional recovery of rats treated with chitosangraphene oxide scaffold was better than that treated with chitosan scaffold. The results show that graphene oxide could have a positive role in the recovery of neurological function after spinal cord injury by promoting the degradation of the scaffold, adhesion, and migration of nerve cells to the scaffold. This study was approved by the Ethics Committee of Animal Research at the First Affiliated Hospital of Third Military Medical University(Army Medical University)(approval No. AMUWEC20191327) on August 30, 2019. 展开更多
关键词 angiogenesis chitosan electrical conduction graphene oxide regeneration repair SCAFFOLD spinal cord injury
下载PDF
Dynamic Supercritical Fluid Devolatilization of Polymers 被引量:3
19
作者 叶树明 蒋凯 +1 位作者 蒋春跃 潘勤敏 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第6期732-735,共4页
A number of studies have been reported on the applications of supercritical fluids to polymeric processes. The presence of volatiles can affect the end-use properties of polymer materials. Therefore, these volatiles m... A number of studies have been reported on the applications of supercritical fluids to polymeric processes. The presence of volatiles can affect the end-use properties of polymer materials. Therefore, these volatiles must be reduced to a level below the maximum permissible limit. Conventional heat-relevant techniques for polymer devolatilization sometimes have limited effectiveness. Devolatilization with supercritical fluids, however, can enhance removal of volatiles from polymers. A model for diffusion-limited extraction is used to characterize dynamic supercritical fluid devolatilization of spherical polymer particles. The rate of supercritical fluid devolailization for styrene/polystyrene system is measured at 343 K and 18 MPa and at CO2 flow rate of 1.93, 3.27 and 5.62 L·min^-1, respectively. The model analysis, which is consistent with experimental results, indicates that the supercritical fluid devolatilization is not solubility-limited but diffusion-limited when CO2 flow rate is above 4.00 L·min^-1. 展开更多
关键词 supercritical fluid devolatilization supercritical CO2 diffusion coefficient STYRENE POLYSTYRENE
下载PDF
Tetrahedral Framework Nucleic Acid-Based Delivery of Resveratrol Alleviates Insulin Resistance:From Innate to Adaptive Immunity 被引量:4
20
作者 Yanjing Li Shaojingya Gao +5 位作者 Sirong Shi Dexuan Xiao Shuanglin Peng Yang Gao Ying Zhu Yunfeng Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期1-16,共16页
Obesity-induced insulin resistance is the hallmark of metabolic syndrome,and chronic,low-grade tissue inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells.Current... Obesity-induced insulin resistance is the hallmark of metabolic syndrome,and chronic,low-grade tissue inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells.Current therapeutic approaches lack efficacy and immunomodulatory capacity.Thus,a new therapeutic approach is needed to prevent chronic inflammation and alleviate insulin resistance.Here,we synthesized a tetrahedral framework nucleic acid(tFNA)nanoparticle that carried resveratrol(RSV)to inhibit tissue inflammation and improve insulin sensitivity in obese mice.The prepared nanoparticles,namely tFNAs-RSV,possessed the characteristics of simple synthesis,stable properties,good water solubility,and superior biocompatibility.The tFNA-based delivery ameliorated the lability of RSV and enhanced its therapeutic efficacy.In high-fat diet(HFD)-fed mice,the administration of tFNAs-RSV ameliorated insulin resistance by alleviating inflammation status.tFNAs-RSV could reverse M1 phenotype macrophages in tissues to M2 phenotype macrophages.As for adaptive immunity,the prepared nanoparticles could repress the activation of Th1 and Th17 and promote Th2 and Treg,leading to the alleviation of insulin resistance.Furthermore,this study is the first to demonstrate that tFNAs,a nucleic acid material,possess immunomodulatory capacity.Collectively,our findings demonstrate that tFNAs-RSV alleviate insulin resistance and ameliorate inflammation in HFD mice,suggesting that nucleic acid materials or nucleic acid-based delivery systems may be a potential agent for the treatment of insulin resistance and obesity-related metabolic diseases. 展开更多
关键词 Tetrahedral framework nucleic acid RESVERATROL Insulin resistance INFLAMMATION Innate immunity Adaptive immunity
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部