Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ...Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.展开更多
Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and ...Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and used in bone tissue engineering.HA is majorly utilized for the treatment of bone defects because of its excellent osteoconduction and bone inductivity.Hydrogel is a three-dimensional hydrophilic network structure with similar properties to the extracellular matrix(ECM).The combination of HA and hydrogels produces a new hybrid material that could effectively promote osteointegration and accelerate the healing of bone defects.In this review,the structure and growth of bone and the common strategies used to prepare HA were briefly introduced.Importantly,we discussed the fabrication of HA mineralized hydrogels from simple blending to in situ mineralization.We hope this review can provide a reference for the development of bone repair hydrogels.展开更多
Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were col...Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were collected(segmented dataset),and chest CT data of 984 patients were screened from the COVID 19-CT dataset(10 cases were randomly selected as whole test dataset,the remaining 974 cases were selected as layer selection dataset).T7—T8 layer was classified based on convolutional neural network(CNN)derived networks,including ResNet,ResNeXt,MobileNet,ShuffleNet,DenseNet,EfficientNet and ConvNeXt,then the accuracy,precision,recall and specificity were used to evaluate the performance of layer selection dataset.The skeletal muscle(SM),subcutaneous adipose tissue(SAT),intermuscular adipose tissue(IMAT)and visceral adipose tissue(VAT)were segmented using classical fully CNN(FCN)derived network,including FCN,SegNet,UNet,Attention UNet,UNET++,nnUNet,UNeXt and CMUNeXt,then Dice similarity coefficient(DSC),intersection over union(IoU)and 95 Hausdorff distance(HD)were used to evaluate the performance of segmented dataset.The automatic body composition analysis system was constructed based on optimal layer selection network and segmentation network,the mean absolute error(MAE),root mean squared error(RMSE)and standard deviation(SD)of MAE were used to evaluate the performance of automatic system for testing the whole test dataset.Results The accuracy,precision,recall and specificity of DenseNet network for automatically classifying T7—T8 layer from chest CT images was 95.06%,84.83%,92.27%and 95.78%,respectively,which were all higher than those of the other layer selection networks.In segmentation of SM,SAT,IMAT and overall,DSC and IoU of UNet++network were all higher,while 95HD of UNet++network were all lower than those of the other segmentation networks.Using DenseNet as the layer selection network and UNet++as the segmentation network,MAE of the automatic body composition analysis system for predicting SM,SAT,IMAT,VAT and MAE was 27.09,6.95,6.65 and 3.35 cm 2,respectively.Conclusion The body composition analysis system based on chest CT could be used to assess content of chest muscle and adipose.Among them,the UNet++network had better segmentation performance in adipose tissue than SM.展开更多
Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response me...Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors.展开更多
The synchronous monitoring of cerebral blood flow and blood oxygen levels plays a pivotal role in the prevention,diagnosis,and treatment of cerebrovascular diseases.This study introduces a novel noninvasive device uti...The synchronous monitoring of cerebral blood flow and blood oxygen levels plays a pivotal role in the prevention,diagnosis,and treatment of cerebrovascular diseases.This study introduces a novel noninvasive device utilizing inductive sensing and near-infrared spectroscopy technology to facilitate simultaneous monitoring of cerebral blood flow and blood oxygen levels.The device consists of modules for cerebral blood flow monitoring,cerebral blood oxygen monitoring,control,communication,and a host machine.Through experiments conducted on healthy subjects,it was confirmed that the device can effectively achieve synchronous monitoring and recording of cerebral blood flow and blood oxygen signals.The results demonstrate the device’s capability to accurately measure these signals simultaneously.This technology enables dynamic monitoring of cerebral blood flow and blood oxygen signals with potential clinical applications in preventing,diagnosing,treating cerebrovascular diseases while reducing their associated harm.展开更多
Optical imaging in the second near-infrared(NIR-II;900-1880 nm)window is currently a popular research topic in the field of biomedical imaging.This study aimed to explore the application value of NIR-II fluorescence i...Optical imaging in the second near-infrared(NIR-II;900-1880 nm)window is currently a popular research topic in the field of biomedical imaging.This study aimed to explore the application value of NIR-II fluorescence imaging in foot and ankle surgeries.A lab-established NIR-II fluorescence surgical navigation system was developed and used to navigate foot and ankle surgeries which enabled obtaining more high-spatial-frequency information and a higher signal-to-background ratio(SBR)in NIR-II fluorescence images compared to NIR-I fluorescence images;our result demonstrates that NIR-II imaging could provide higher-contrast and larger-depth images to surgeons.Three types of clinical application scenarios(diabetic foot,calcaneal fracture,and lower extremity trauma)were included in this study.Using the NIR-II fluorescence imaging technique,we observed the ischemic region in the diabetic foot before morphological alterations,accurately determined the boundary of the ischemic region in the surgical incision,and fully assessed the blood supply condition of the flap.NIR-II fluorescence imaging can help surgeons precisely judge surgical margins,detect ischemic lesions early,and dynamically trace the perfusion process.We believe that portable and reliable NIR-II fluorescence imaging equipment and additional functional fluorescent probes can play crucial roles in precision surgery.展开更多
Translesion DNA synthesis(TLS)can bypass DNA lesions caused by chemotherapeutic drugs,which usually result in drug resistance.Given its key role in mutagenesis and cell survival after DNA damage,inhibition of the TLS ...Translesion DNA synthesis(TLS)can bypass DNA lesions caused by chemotherapeutic drugs,which usually result in drug resistance.Given its key role in mutagenesis and cell survival after DNA damage,inhibition of the TLS pathway has emerged as a potential target for improving the efficacy of DNA-damaging agents such as cisplatin(CDDP),a widely used anticancer agent.Unfortunately,few suitable natural TLS inhibitors have been reported.Here,we found that a triterpenoid compound Ganoboninketal C(26-3)from Ganoderma boninense,a traditional Chinese medicine,can impair CDDP-induced TLS polymerase eta(Polη)focus formation,PCNA monoubiquitination as well as mutagenesis.Moreover,26-3 can significantly sensitize tumor cells to CDDP killing and reduce the proportion of cancer stem cells in AGS and promote apoptosis after CDDP exposure.Interestingly,26-3 can also sensitize tumor cells to Gefitinib therapy.Mechanistically,through RNA-seq analysis,we found that 26-3 could abrogate the CDDP-induced upregulation of Polηand PIDD(p53-induced protein with a death domain),2 known factors promoting TLS pathway.Furthermore,we found that activating transcription factor 3 is a potential novel TLS modulator.Taken together,we have identified a natural TLS inhibitor 26-3,which can be potentially used as an adjuvant to improve clinical efficacy.展开更多
Cutting-edge heat spreaders for soft and planar electronics require not only high thermal conductivity and a certain degree of flexibility but also remarkable self-adhesion without thermal interface materials, elastic...Cutting-edge heat spreaders for soft and planar electronics require not only high thermal conductivity and a certain degree of flexibility but also remarkable self-adhesion without thermal interface materials, elasticity, arbitrary elongation along with soft devices, and smart properties involving thermal self-healing, thermochromism and so on. Nacre-like composites with excellent in-plane heat dissipation are ideal as heat spreaders for thin and planar electronics. However, the intrinsically poor viscoelasticity, i.e., adhesion and elasticity, prevents them from simultaneous self-adhesion and arbitrary elongation along with current flexible devices as well as incurring high interfacial thermal impedance. In this paper, we propose a soft thermochromic composite(STC) membrane with a layered structure, considerable stretchability, high in-plane thermal conductivity(~30 Wm^(-1) K^(-1)), low thermal contact resistance(~12 mm^2 KW^(-1), 4–5 times lower than that of silver paste), strong yet sustainable adhesion forces(~4607 Jm^(-2), 2220 Jm^(-2) greater than that of epoxy paste) and self-healing efficiency. As a self-adhesive heat spreader, it implements efficient cooling of various soft electronics with a temperature drop of 20℃ than the polyimide case. In addition to its self-healing function, the chameleon-like behavior of STC facilitates temperature monitoring by the naked eye, hence enabling smart thermal management.展开更多
At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional...At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction.展开更多
We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820(2018) and J. Am. Chem. Soc. 140 4269(2018)]. Neither Dexter's...We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820(2018) and J. Am. Chem. Soc. 140 4269(2018)]. Neither Dexter's nor Forster's mechanism of resonance energy transfer(RET) could account fully for the observed rates, which exceed 85% with significant temperature dependence. But there exists an alternative pathway on RET mediated by intermediate states of resonantly confined exciton–polaritons. Such a mechanism was used to analyze artificial photosynthesis in organic fluorescents [Phys.Rev. Lett. 122 257402(2019)]. For metallophosphors, the confined modes act as extended states lying between the molecular S_(1) and T_(1) states, offering a bridge for the long-lived T_(1) excitons to migrate from donors to acceptors. Population dynamics with parameters taken entirely based on experiments fits the observed lifetimes of phosphorescence across a broad range of doping and temperature.展开更多
Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson’s disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclea...Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson’s disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclear. The aim of this study was to investigate the potential effects of multiple single nucleotide polymorphisms on brain imaging phenotype in Parkinson’s disease. Forty-eight Parkinson’s disease patients and 39 matched healthy controls underwent genotyping and 7 T magnetic resonance imaging. A cognitive-weighted polygenic risk score model was designed, in which the effect sizes were determined individually for 36 single nucleotide polymorphisms. The correlations between polygenic risk score, neuroimaging features, and clinical data were analyzed. Furthermore, individual single nucleotide polymorphism analysis was performed to explore the main effects of genotypes and their interactive effects with Parkinson’s disease diagnosis. We found that, in Parkinson’s disease, the polygenic risk score was correlated with the neural activity of the hippocampus, parahippocampus, and fusiform gyrus, and with hippocampal-prefrontal and fusiform-temporal connectivity, as well as with gray matter alterations in the orbitofrontal cortex. In addition, we found that single nucleotide polymorphisms in α-synuclein(SNCA) were associated with white matter microstructural changes in the superior corona radiata, corpus callosum, and external capsule. A single nucleotide polymorphism in catechol-O-methyltransferase was associated with the neural activities of the lingual, fusiform, and occipital gyri, which are involved in visual cognitive dysfunction. Furthermore, DRD3 was associated with frontal and temporal lobe function and structure. In conclusion, imaging genetics is useful for providing a better understanding of the genetic pathways involved in the pathophysiologic processes underlying Parkinson’s disease. This study provides evidence of an association between genetic factors, cognitive functions, and multi-modality neuroimaging biomarkers in Parkinson’s disease.展开更多
Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An...Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications.展开更多
With the development of mid-infrared (MIR) photoelectric devices, mid-infrared spectroscopy has become one of the important methods for non-invasive detection of blood glucose. The mid-infrared region (4000 - 400 cm&l...With the development of mid-infrared (MIR) photoelectric devices, mid-infrared spectroscopy has become one of the important methods for non-invasive detection of blood glucose. The mid-infrared region (4000 - 400 cm<sup>-1</sup>) has the well-known fingerprint region (1200 - 800 cm<sup>-1</sup>) of glucose, which has clearer characteristic absorption peaks and better specificity. There is a lot of molecular information about glucose in the MIR. The non-invasive detection of blood glucose by mid-infrared spectroscopy needs to achieve certain accuracy, and the quantitative model is an important factor affecting the accuracy of glucose detection. In this paper, the samples of imitation solution containing only glucose and the samples of imitation mixed solution are taken as the research objects, and the mid-infrared spectral data of the samples are collected. The full spectrum partial least squares Regression (PLSR) model, SNV + Ctr-PLSR model, MSC + Ctr-PLSR model, and convolutional neural networks (CNN) model of 3000 - 900 cm<sup>-1</sup> band were constructed. Full spectrum PLS model and CNN model of 1200 - 900 cm<sup>-1</sup> band were constructed. The experimental results show that the optimal model of the two bands is CNN, then the correlation coefficient of prediction set (Rp) of 3000 - 900 cm<sup>-1</sup> band is 0.95, and the root mean square error of pre-diction set (RMSEP) value is 22.10. The Rp of 1200 - 900 cm<sup>-1</sup> band is 0.95, and the RMSEP value is 22.54. The research results show that CNN is a promising method, which has higher accuracy than PLSR, and is especially suitable for modeling human complex environment. In addition, the study provides a theoretical and practical basis for CNN in feature selection and model interpretation.展开更多
Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired eli...Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy.展开更多
Bioelectronics have gained substantial research attention owing to their potential applications in health monitoring and diagnose,and greatly promoted the development of biomedicine.Recently,poly(3,4-ethylenedioxythio...Bioelectronics have gained substantial research attention owing to their potential applications in health monitoring and diagnose,and greatly promoted the development of biomedicine.Recently,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)hydrogels have arose as a promising candi-date for the next-generation bioelectronic interface due to its high-conductivity,versatility,flexibility and biocompatibility.In this review,we highlight the recent advances of PEDOT:PSS hydrogels,including the gelation methods and modification strategies,and summarize their wide applications in different type of sensors and tissue engineering in detail.We expect that this work will provide valuable information regarding the functionalizations and applications of PEDOT:PSS hydrogels.展开更多
Fluorescence imaging in the second near-infrared window(NIR-II,900–1880 nm)with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imagi...Fluorescence imaging in the second near-infrared window(NIR-II,900–1880 nm)with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imaging with high spatial resolution.However,the traditional NIR-IIfluorescence confocal microscope with separate excitation focus and detection pinhole makes it possess low confocal e±ciency,as well as di±cultly to adjust.Two types of upgraded NIR-IIfluorescence confocal microscopes,sharing the same pinhole by excitation and emission focus,leading to higher confocal e±ciency,are built in this work.One type is-ber-pinhole-based confocal microscope applicable to CW laser excitation.It is constructed forfluorescence intensity imaging with large depth,high stabilization and low cost,which could replace multiphotonfluorescence microscopy in some applications(e.g.,cerebrovascular and hepatocellular imaging).The other type is air-pinhole-based confocal microscope applicable to femtosecond(fs)laser excitation.It can be employed not only for NIR-IIfluorescence intensity imaging,but also for multi-channelfluorescence lifetime imaging to recognize different structures with similarfluorescence spectrum.Moreover,it can be facilely combined with multiphotonfluorescence microscopy.A single fs pulsed laser is utilized to achieve up-conversion(visible multiphotonfluorescence)and down-conversion(NIR-II one-photonfluorescence)excitation simultaneously,extending imaging spectral channels,and thus facilitates multi-structure and multi-functional observation.展开更多
In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhance...In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhanced activation in Broadmann areas 5, 6, 7, 18, 19, 24, 32, the hypothalamic inferior lobe, the mamiilary body, and the ventral posterolateral nucleus of the left hemisphere, and Broadmann areas 4, 6, 7, 18, 19 and 32 of the right hemisphere, but attenuated activation of Broadmann area 13, the hypothalamic inferior lobe, the posterior lobe of the tonsil of cerebellum, and the culmen of the anterior lobe of hypophysis, in the left hemisphere and Broadmann area 13 in the right hemisphere. In ischemic stroke subjects, a number of deactivated brain areas were enhanced, including Broadmann areas 6, 11,20, 22, 37, and 47, the culmen of the anterior lobe of hypophysis, alae lingulae cerebella, and the posterior lobe of the tonsil of cerebellum of the left hemisphere, and Broadmann areas 8, 37, 45 and 47, the culmen of the anterior lobe of hypophysis, pars tuberalis adenohypophyseos, inferior border of lentiform nucleus, lateral globus pallidus, inferior temporal gyrus, and the parahippocampal gyrus of the right hemisphere. These subjects also exhibited attenuation of a number of deactivated brain areas, including Broadmann area 7. These data suggest that acupuncture at Waiguan specifically alters brain function in regions associated with sensation, vision, and motion in ischemic stroke patients. By contrast, in normal individuals, acupuncture at Waiguan generally activates brain areas associated with insomnia and other functions.展开更多
The study illustrates that graphene oxide nanosheets can endow materials with continuous electrical conductivity for up to 4 weeks. Conductive nerve scaffolds can bridge a sciatic nerve injury and guide the growth of ...The study illustrates that graphene oxide nanosheets can endow materials with continuous electrical conductivity for up to 4 weeks. Conductive nerve scaffolds can bridge a sciatic nerve injury and guide the growth of neurons;however, whether the scaffolds can be used for the repair of spinal cord nerve injuries remains to be explored. In this study, a conductive graphene oxide composited chitosan scaffold was fabricated by genipin crosslinking and lyophilization. The prepared chitosan-graphene oxide scaffold presented a porous structure with an inner diameter of 18–87 μm, and a conductivity that reached 2.83 mS/cm because of good distribution of the graphene oxide nanosheets, which could be degraded by peroxidase. The chitosan-graphene oxide scaffold was transplanted into a T9 total resected rat spinal cord. The results show that the chitosan-graphene oxide scaffold induces nerve cells to grow into the pores between chitosan molecular chains, inducing angiogenesis in regenerated tissue, and promote neuron migration and neural tissue regeneration in the pores of the scaffold, thereby promoting the repair of damaged nerve tissue. The behavioral and electrophysiological results suggest that the chitosan-graphene oxide scaffold could significantly restore the neurological function of rats. Moreover, the functional recovery of rats treated with chitosangraphene oxide scaffold was better than that treated with chitosan scaffold. The results show that graphene oxide could have a positive role in the recovery of neurological function after spinal cord injury by promoting the degradation of the scaffold, adhesion, and migration of nerve cells to the scaffold. This study was approved by the Ethics Committee of Animal Research at the First Affiliated Hospital of Third Military Medical University(Army Medical University)(approval No. AMUWEC20191327) on August 30, 2019.展开更多
A number of studies have been reported on the applications of supercritical fluids to polymeric processes. The presence of volatiles can affect the end-use properties of polymer materials. Therefore, these volatiles m...A number of studies have been reported on the applications of supercritical fluids to polymeric processes. The presence of volatiles can affect the end-use properties of polymer materials. Therefore, these volatiles must be reduced to a level below the maximum permissible limit. Conventional heat-relevant techniques for polymer devolatilization sometimes have limited effectiveness. Devolatilization with supercritical fluids, however, can enhance removal of volatiles from polymers. A model for diffusion-limited extraction is used to characterize dynamic supercritical fluid devolatilization of spherical polymer particles. The rate of supercritical fluid devolailization for styrene/polystyrene system is measured at 343 K and 18 MPa and at CO2 flow rate of 1.93, 3.27 and 5.62 L·min^-1, respectively. The model analysis, which is consistent with experimental results, indicates that the supercritical fluid devolatilization is not solubility-limited but diffusion-limited when CO2 flow rate is above 4.00 L·min^-1.展开更多
Obesity-induced insulin resistance is the hallmark of metabolic syndrome,and chronic,low-grade tissue inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells.Current...Obesity-induced insulin resistance is the hallmark of metabolic syndrome,and chronic,low-grade tissue inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells.Current therapeutic approaches lack efficacy and immunomodulatory capacity.Thus,a new therapeutic approach is needed to prevent chronic inflammation and alleviate insulin resistance.Here,we synthesized a tetrahedral framework nucleic acid(tFNA)nanoparticle that carried resveratrol(RSV)to inhibit tissue inflammation and improve insulin sensitivity in obese mice.The prepared nanoparticles,namely tFNAs-RSV,possessed the characteristics of simple synthesis,stable properties,good water solubility,and superior biocompatibility.The tFNA-based delivery ameliorated the lability of RSV and enhanced its therapeutic efficacy.In high-fat diet(HFD)-fed mice,the administration of tFNAs-RSV ameliorated insulin resistance by alleviating inflammation status.tFNAs-RSV could reverse M1 phenotype macrophages in tissues to M2 phenotype macrophages.As for adaptive immunity,the prepared nanoparticles could repress the activation of Th1 and Th17 and promote Th2 and Treg,leading to the alleviation of insulin resistance.Furthermore,this study is the first to demonstrate that tFNAs,a nucleic acid material,possess immunomodulatory capacity.Collectively,our findings demonstrate that tFNAs-RSV alleviate insulin resistance and ameliorate inflammation in HFD mice,suggesting that nucleic acid materials or nucleic acid-based delivery systems may be a potential agent for the treatment of insulin resistance and obesity-related metabolic diseases.展开更多
基金supported by the Sichuan Science and Technology Program,No.2023YFS0164 (to JC)。
文摘Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.
基金supported by the National Natural Science Foundation of China(Grant no:12272253)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Grant no:2021SX-AT008,2021SX-AT009).
文摘Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and used in bone tissue engineering.HA is majorly utilized for the treatment of bone defects because of its excellent osteoconduction and bone inductivity.Hydrogel is a three-dimensional hydrophilic network structure with similar properties to the extracellular matrix(ECM).The combination of HA and hydrogels produces a new hybrid material that could effectively promote osteointegration and accelerate the healing of bone defects.In this review,the structure and growth of bone and the common strategies used to prepare HA were briefly introduced.Importantly,we discussed the fabrication of HA mineralized hydrogels from simple blending to in situ mineralization.We hope this review can provide a reference for the development of bone repair hydrogels.
文摘Objective To establish a body composition analysis system based on chest CT,and to observe its value for evaluating content of chest muscle and adipose.Methods T7—T8 layer CT images of 108 pneumonia patients were collected(segmented dataset),and chest CT data of 984 patients were screened from the COVID 19-CT dataset(10 cases were randomly selected as whole test dataset,the remaining 974 cases were selected as layer selection dataset).T7—T8 layer was classified based on convolutional neural network(CNN)derived networks,including ResNet,ResNeXt,MobileNet,ShuffleNet,DenseNet,EfficientNet and ConvNeXt,then the accuracy,precision,recall and specificity were used to evaluate the performance of layer selection dataset.The skeletal muscle(SM),subcutaneous adipose tissue(SAT),intermuscular adipose tissue(IMAT)and visceral adipose tissue(VAT)were segmented using classical fully CNN(FCN)derived network,including FCN,SegNet,UNet,Attention UNet,UNET++,nnUNet,UNeXt and CMUNeXt,then Dice similarity coefficient(DSC),intersection over union(IoU)and 95 Hausdorff distance(HD)were used to evaluate the performance of segmented dataset.The automatic body composition analysis system was constructed based on optimal layer selection network and segmentation network,the mean absolute error(MAE),root mean squared error(RMSE)and standard deviation(SD)of MAE were used to evaluate the performance of automatic system for testing the whole test dataset.Results The accuracy,precision,recall and specificity of DenseNet network for automatically classifying T7—T8 layer from chest CT images was 95.06%,84.83%,92.27%and 95.78%,respectively,which were all higher than those of the other layer selection networks.In segmentation of SM,SAT,IMAT and overall,DSC and IoU of UNet++network were all higher,while 95HD of UNet++network were all lower than those of the other segmentation networks.Using DenseNet as the layer selection network and UNet++as the segmentation network,MAE of the automatic body composition analysis system for predicting SM,SAT,IMAT,VAT and MAE was 27.09,6.95,6.65 and 3.35 cm 2,respectively.Conclusion The body composition analysis system based on chest CT could be used to assess content of chest muscle and adipose.Among them,the UNet++network had better segmentation performance in adipose tissue than SM.
文摘Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors.
基金National Natural Science Foundation of China(No.51977214)Science and Technology Research Project of Chongqing Education Commission(No.KJQN202212805)Special funding project of Army Medical University(No.2021XJS08)。
文摘The synchronous monitoring of cerebral blood flow and blood oxygen levels plays a pivotal role in the prevention,diagnosis,and treatment of cerebrovascular diseases.This study introduces a novel noninvasive device utilizing inductive sensing and near-infrared spectroscopy technology to facilitate simultaneous monitoring of cerebral blood flow and blood oxygen levels.The device consists of modules for cerebral blood flow monitoring,cerebral blood oxygen monitoring,control,communication,and a host machine.Through experiments conducted on healthy subjects,it was confirmed that the device can effectively achieve synchronous monitoring and recording of cerebral blood flow and blood oxygen signals.The results demonstrate the device’s capability to accurately measure these signals simultaneously.This technology enables dynamic monitoring of cerebral blood flow and blood oxygen signals with potential clinical applications in preventing,diagnosing,treating cerebrovascular diseases while reducing their associated harm.
基金supported by the Fundamental Research Fund for the Central Universities(K20220220)the National Key Research and Development Program of China(2018YFC1005003,2018YFE0190200,and 2022YFB3206000)+4 种基金the National Natural Science Foundation of China(U23A20487,82001874,61975172,and 82102105)the Zhejiang Engineering Research Center of Cognitive Healthcare(2017E10011)the Natural Science Foundation of Zhejiang Province(LQ22H160017)the Zhejiang Province Science and Technology Plan Project(2022C03134)the Science and Technology Innovation 2030 Plan Project(2022ZD0160703).
文摘Optical imaging in the second near-infrared(NIR-II;900-1880 nm)window is currently a popular research topic in the field of biomedical imaging.This study aimed to explore the application value of NIR-II fluorescence imaging in foot and ankle surgeries.A lab-established NIR-II fluorescence surgical navigation system was developed and used to navigate foot and ankle surgeries which enabled obtaining more high-spatial-frequency information and a higher signal-to-background ratio(SBR)in NIR-II fluorescence images compared to NIR-I fluorescence images;our result demonstrates that NIR-II imaging could provide higher-contrast and larger-depth images to surgeons.Three types of clinical application scenarios(diabetic foot,calcaneal fracture,and lower extremity trauma)were included in this study.Using the NIR-II fluorescence imaging technique,we observed the ischemic region in the diabetic foot before morphological alterations,accurately determined the boundary of the ischemic region in the surgical incision,and fully assessed the blood supply condition of the flap.NIR-II fluorescence imaging can help surgeons precisely judge surgical margins,detect ischemic lesions early,and dynamically trace the perfusion process.We believe that portable and reliable NIR-II fluorescence imaging equipment and additional functional fluorescent probes can play crucial roles in precision surgery.
基金supported by National Key Research and Development Program of China(2018YFA0108500)NSFC82341006,81673334,31970740,31801144,31800684 and 31701227+3 种基金Natural Science Foundation of Beijing(IS23071)Postdoctoral Research Foundation of China(2021M703206)Natural Science Foundation of Shanxi Province(202203021211155)the State Key Laboratory of Membrane Biology.
文摘Translesion DNA synthesis(TLS)can bypass DNA lesions caused by chemotherapeutic drugs,which usually result in drug resistance.Given its key role in mutagenesis and cell survival after DNA damage,inhibition of the TLS pathway has emerged as a potential target for improving the efficacy of DNA-damaging agents such as cisplatin(CDDP),a widely used anticancer agent.Unfortunately,few suitable natural TLS inhibitors have been reported.Here,we found that a triterpenoid compound Ganoboninketal C(26-3)from Ganoderma boninense,a traditional Chinese medicine,can impair CDDP-induced TLS polymerase eta(Polη)focus formation,PCNA monoubiquitination as well as mutagenesis.Moreover,26-3 can significantly sensitize tumor cells to CDDP killing and reduce the proportion of cancer stem cells in AGS and promote apoptosis after CDDP exposure.Interestingly,26-3 can also sensitize tumor cells to Gefitinib therapy.Mechanistically,through RNA-seq analysis,we found that 26-3 could abrogate the CDDP-induced upregulation of Polηand PIDD(p53-induced protein with a death domain),2 known factors promoting TLS pathway.Furthermore,we found that activating transcription factor 3 is a potential novel TLS modulator.Taken together,we have identified a natural TLS inhibitor 26-3,which can be potentially used as an adjuvant to improve clinical efficacy.
基金the financial support from the National Science Foundation of China (NSFC) (No.52103178)Science and Technology Project of Sichuan Province (No. 2023NSFSC0997)+2 种基金Sixth Two-hundred Talent B plan of Sichuan Universitysupport by the Australian Research Council Discovery Program (DP190103290)Australian Research Council Future Fellowships (FT200100730, FT210100804)。
文摘Cutting-edge heat spreaders for soft and planar electronics require not only high thermal conductivity and a certain degree of flexibility but also remarkable self-adhesion without thermal interface materials, elasticity, arbitrary elongation along with soft devices, and smart properties involving thermal self-healing, thermochromism and so on. Nacre-like composites with excellent in-plane heat dissipation are ideal as heat spreaders for thin and planar electronics. However, the intrinsically poor viscoelasticity, i.e., adhesion and elasticity, prevents them from simultaneous self-adhesion and arbitrary elongation along with current flexible devices as well as incurring high interfacial thermal impedance. In this paper, we propose a soft thermochromic composite(STC) membrane with a layered structure, considerable stretchability, high in-plane thermal conductivity(~30 Wm^(-1) K^(-1)), low thermal contact resistance(~12 mm^2 KW^(-1), 4–5 times lower than that of silver paste), strong yet sustainable adhesion forces(~4607 Jm^(-2), 2220 Jm^(-2) greater than that of epoxy paste) and self-healing efficiency. As a self-adhesive heat spreader, it implements efficient cooling of various soft electronics with a temperature drop of 20℃ than the polyimide case. In addition to its self-healing function, the chameleon-like behavior of STC facilitates temperature monitoring by the naked eye, hence enabling smart thermal management.
基金supported by the National Natural Science Foundation of China(No.81171731)the Project of Chengdu Science and Technology Bureau(Nos.2021-YF05-01619-SN and 2021-RC05-00022-CG)+2 种基金the Science and Technology Project of Tibet Autonomous Region(Nos.XZ202202YD0013C and XZ201901-GB-08)the Sichuan Science and Technology Program(No.2022YFG0066)the 1·3·5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(Nos.ZYJC21026,ZYGD21001 and ZYJC21077).
文摘At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction.
基金Project supported by the National Natural Science Foundation of China (Grant No. 16Z103060007) (PA)。
文摘We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820(2018) and J. Am. Chem. Soc. 140 4269(2018)]. Neither Dexter's nor Forster's mechanism of resonance energy transfer(RET) could account fully for the observed rates, which exceed 85% with significant temperature dependence. But there exists an alternative pathway on RET mediated by intermediate states of resonantly confined exciton–polaritons. Such a mechanism was used to analyze artificial photosynthesis in organic fluorescents [Phys.Rev. Lett. 122 257402(2019)]. For metallophosphors, the confined modes act as extended states lying between the molecular S_(1) and T_(1) states, offering a bridge for the long-lived T_(1) excitons to migrate from donors to acceptors. Population dynamics with parameters taken entirely based on experiments fits the observed lifetimes of phosphorescence across a broad range of doping and temperature.
基金supported by grants from the National Natural Science Foundation of China,Nos. 81771216 (to JLP), 81520108010 (to BRZ),and 82101323 (to TS)the National Key R&D Program of China,No. 2018YFA0701400 (to HYL)+3 种基金the Primary Research and Development Plan of Zhejiang Province,No. 2020C03020 (to BRZ)the Key Project of Zhejiang Laboratory,No. 2018EB0ZX01 (to HYL)the Fundamental Research Funds for the Central Universities,No. 2019XZZX001-01-21 (to HYL)Preferred Foundation of Zhejiang Postdoctors,No. ZJ2021152 (to TS)。
文摘Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson’s disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclear. The aim of this study was to investigate the potential effects of multiple single nucleotide polymorphisms on brain imaging phenotype in Parkinson’s disease. Forty-eight Parkinson’s disease patients and 39 matched healthy controls underwent genotyping and 7 T magnetic resonance imaging. A cognitive-weighted polygenic risk score model was designed, in which the effect sizes were determined individually for 36 single nucleotide polymorphisms. The correlations between polygenic risk score, neuroimaging features, and clinical data were analyzed. Furthermore, individual single nucleotide polymorphism analysis was performed to explore the main effects of genotypes and their interactive effects with Parkinson’s disease diagnosis. We found that, in Parkinson’s disease, the polygenic risk score was correlated with the neural activity of the hippocampus, parahippocampus, and fusiform gyrus, and with hippocampal-prefrontal and fusiform-temporal connectivity, as well as with gray matter alterations in the orbitofrontal cortex. In addition, we found that single nucleotide polymorphisms in α-synuclein(SNCA) were associated with white matter microstructural changes in the superior corona radiata, corpus callosum, and external capsule. A single nucleotide polymorphism in catechol-O-methyltransferase was associated with the neural activities of the lingual, fusiform, and occipital gyri, which are involved in visual cognitive dysfunction. Furthermore, DRD3 was associated with frontal and temporal lobe function and structure. In conclusion, imaging genetics is useful for providing a better understanding of the genetic pathways involved in the pathophysiologic processes underlying Parkinson’s disease. This study provides evidence of an association between genetic factors, cognitive functions, and multi-modality neuroimaging biomarkers in Parkinson’s disease.
文摘Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications.
文摘With the development of mid-infrared (MIR) photoelectric devices, mid-infrared spectroscopy has become one of the important methods for non-invasive detection of blood glucose. The mid-infrared region (4000 - 400 cm<sup>-1</sup>) has the well-known fingerprint region (1200 - 800 cm<sup>-1</sup>) of glucose, which has clearer characteristic absorption peaks and better specificity. There is a lot of molecular information about glucose in the MIR. The non-invasive detection of blood glucose by mid-infrared spectroscopy needs to achieve certain accuracy, and the quantitative model is an important factor affecting the accuracy of glucose detection. In this paper, the samples of imitation solution containing only glucose and the samples of imitation mixed solution are taken as the research objects, and the mid-infrared spectral data of the samples are collected. The full spectrum partial least squares Regression (PLSR) model, SNV + Ctr-PLSR model, MSC + Ctr-PLSR model, and convolutional neural networks (CNN) model of 3000 - 900 cm<sup>-1</sup> band were constructed. Full spectrum PLS model and CNN model of 1200 - 900 cm<sup>-1</sup> band were constructed. The experimental results show that the optimal model of the two bands is CNN, then the correlation coefficient of prediction set (Rp) of 3000 - 900 cm<sup>-1</sup> band is 0.95, and the root mean square error of pre-diction set (RMSEP) value is 22.10. The Rp of 1200 - 900 cm<sup>-1</sup> band is 0.95, and the RMSEP value is 22.54. The research results show that CNN is a promising method, which has higher accuracy than PLSR, and is especially suitable for modeling human complex environment. In addition, the study provides a theoretical and practical basis for CNN in feature selection and model interpretation.
基金supported by the National Key R&D Program of China,No.2021YFF0702203(to HYL)the National Natural Science Foundation of China,No.82101323(to TS)Preferred Foundation of Zhejiang Postdoctors,No.ZJ2021152(to TS).
文摘Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy.
基金National Natural Science Foundation of China (No. 82272120)Natural Science Foundation of Zhejiang Province, China (Nos. LQ20F010011, LY18H180006)+2 种基金Key Research and Development Program of Zhejiang Province, China (No. 2022C03002)supported by MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University (No. 2022MSF**)the open research fund of Guangdong Provincial Key Laboratory of Advanced Biomaterials.
文摘Bioelectronics have gained substantial research attention owing to their potential applications in health monitoring and diagnose,and greatly promoted the development of biomedicine.Recently,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)hydrogels have arose as a promising candi-date for the next-generation bioelectronic interface due to its high-conductivity,versatility,flexibility and biocompatibility.In this review,we highlight the recent advances of PEDOT:PSS hydrogels,including the gelation methods and modification strategies,and summarize their wide applications in different type of sensors and tissue engineering in detail.We expect that this work will provide valuable information regarding the functionalizations and applications of PEDOT:PSS hydrogels.
基金supported by National Natural Science Foundation of China(61975172,82001874 and 61735016).
文摘Fluorescence imaging in the second near-infrared window(NIR-II,900–1880 nm)with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imaging with high spatial resolution.However,the traditional NIR-IIfluorescence confocal microscope with separate excitation focus and detection pinhole makes it possess low confocal e±ciency,as well as di±cultly to adjust.Two types of upgraded NIR-IIfluorescence confocal microscopes,sharing the same pinhole by excitation and emission focus,leading to higher confocal e±ciency,are built in this work.One type is-ber-pinhole-based confocal microscope applicable to CW laser excitation.It is constructed forfluorescence intensity imaging with large depth,high stabilization and low cost,which could replace multiphotonfluorescence microscopy in some applications(e.g.,cerebrovascular and hepatocellular imaging).The other type is air-pinhole-based confocal microscope applicable to femtosecond(fs)laser excitation.It can be employed not only for NIR-IIfluorescence intensity imaging,but also for multi-channelfluorescence lifetime imaging to recognize different structures with similarfluorescence spectrum.Moreover,it can be facilely combined with multiphotonfluorescence microscopy.A single fs pulsed laser is utilized to achieve up-conversion(visible multiphotonfluorescence)and down-conversion(NIR-II one-photonfluorescence)excitation simultaneously,extending imaging spectral channels,and thus facilitates multi-structure and multi-functional observation.
基金supported by the National Basic Research Program of China(973 Program),No.2006CB504505,2012CB518504the Third Key Construction Program of "211 Project" of Guangdong Province
文摘In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhanced activation in Broadmann areas 5, 6, 7, 18, 19, 24, 32, the hypothalamic inferior lobe, the mamiilary body, and the ventral posterolateral nucleus of the left hemisphere, and Broadmann areas 4, 6, 7, 18, 19 and 32 of the right hemisphere, but attenuated activation of Broadmann area 13, the hypothalamic inferior lobe, the posterior lobe of the tonsil of cerebellum, and the culmen of the anterior lobe of hypophysis, in the left hemisphere and Broadmann area 13 in the right hemisphere. In ischemic stroke subjects, a number of deactivated brain areas were enhanced, including Broadmann areas 6, 11,20, 22, 37, and 47, the culmen of the anterior lobe of hypophysis, alae lingulae cerebella, and the posterior lobe of the tonsil of cerebellum of the left hemisphere, and Broadmann areas 8, 37, 45 and 47, the culmen of the anterior lobe of hypophysis, pars tuberalis adenohypophyseos, inferior border of lentiform nucleus, lateral globus pallidus, inferior temporal gyrus, and the parahippocampal gyrus of the right hemisphere. These subjects also exhibited attenuation of a number of deactivated brain areas, including Broadmann area 7. These data suggest that acupuncture at Waiguan specifically alters brain function in regions associated with sensation, vision, and motion in ischemic stroke patients. By contrast, in normal individuals, acupuncture at Waiguan generally activates brain areas associated with insomnia and other functions.
基金supported by the National Key Research and Development Program of China,No.2018YFC1106800(to ZBH and GFY)Sichuan Science and Technology Project of China,No.2018JY0535(to ZBH)+1 种基金Talents Training Program of Army Medical University of China,No.2019MPRC021/SWH2018QNWQ-05(to TNC)Research on Key Technologies of Photoelectromagnetic Acoustic Intensity Brain of China,No.AWS16J025(to HF)。
文摘The study illustrates that graphene oxide nanosheets can endow materials with continuous electrical conductivity for up to 4 weeks. Conductive nerve scaffolds can bridge a sciatic nerve injury and guide the growth of neurons;however, whether the scaffolds can be used for the repair of spinal cord nerve injuries remains to be explored. In this study, a conductive graphene oxide composited chitosan scaffold was fabricated by genipin crosslinking and lyophilization. The prepared chitosan-graphene oxide scaffold presented a porous structure with an inner diameter of 18–87 μm, and a conductivity that reached 2.83 mS/cm because of good distribution of the graphene oxide nanosheets, which could be degraded by peroxidase. The chitosan-graphene oxide scaffold was transplanted into a T9 total resected rat spinal cord. The results show that the chitosan-graphene oxide scaffold induces nerve cells to grow into the pores between chitosan molecular chains, inducing angiogenesis in regenerated tissue, and promote neuron migration and neural tissue regeneration in the pores of the scaffold, thereby promoting the repair of damaged nerve tissue. The behavioral and electrophysiological results suggest that the chitosan-graphene oxide scaffold could significantly restore the neurological function of rats. Moreover, the functional recovery of rats treated with chitosangraphene oxide scaffold was better than that treated with chitosan scaffold. The results show that graphene oxide could have a positive role in the recovery of neurological function after spinal cord injury by promoting the degradation of the scaffold, adhesion, and migration of nerve cells to the scaffold. This study was approved by the Ethics Committee of Animal Research at the First Affiliated Hospital of Third Military Medical University(Army Medical University)(approval No. AMUWEC20191327) on August 30, 2019.
基金Supported by the National Natural Science Foundation of China (No. 20576123).
文摘A number of studies have been reported on the applications of supercritical fluids to polymeric processes. The presence of volatiles can affect the end-use properties of polymer materials. Therefore, these volatiles must be reduced to a level below the maximum permissible limit. Conventional heat-relevant techniques for polymer devolatilization sometimes have limited effectiveness. Devolatilization with supercritical fluids, however, can enhance removal of volatiles from polymers. A model for diffusion-limited extraction is used to characterize dynamic supercritical fluid devolatilization of spherical polymer particles. The rate of supercritical fluid devolailization for styrene/polystyrene system is measured at 343 K and 18 MPa and at CO2 flow rate of 1.93, 3.27 and 5.62 L·min^-1, respectively. The model analysis, which is consistent with experimental results, indicates that the supercritical fluid devolatilization is not solubility-limited but diffusion-limited when CO2 flow rate is above 4.00 L·min^-1.
基金National Key R&D Program of China(2019YFA0110600)National Natural Science Foundation of China(81970916,81671031)the LU JIAXI International team program supported by the K.C.Wong Education Foundation and CAS and the Youth Innovation Promotion Association of CAS(Grant No.2016236).
文摘Obesity-induced insulin resistance is the hallmark of metabolic syndrome,and chronic,low-grade tissue inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells.Current therapeutic approaches lack efficacy and immunomodulatory capacity.Thus,a new therapeutic approach is needed to prevent chronic inflammation and alleviate insulin resistance.Here,we synthesized a tetrahedral framework nucleic acid(tFNA)nanoparticle that carried resveratrol(RSV)to inhibit tissue inflammation and improve insulin sensitivity in obese mice.The prepared nanoparticles,namely tFNAs-RSV,possessed the characteristics of simple synthesis,stable properties,good water solubility,and superior biocompatibility.The tFNA-based delivery ameliorated the lability of RSV and enhanced its therapeutic efficacy.In high-fat diet(HFD)-fed mice,the administration of tFNAs-RSV ameliorated insulin resistance by alleviating inflammation status.tFNAs-RSV could reverse M1 phenotype macrophages in tissues to M2 phenotype macrophages.As for adaptive immunity,the prepared nanoparticles could repress the activation of Th1 and Th17 and promote Th2 and Treg,leading to the alleviation of insulin resistance.Furthermore,this study is the first to demonstrate that tFNAs,a nucleic acid material,possess immunomodulatory capacity.Collectively,our findings demonstrate that tFNAs-RSV alleviate insulin resistance and ameliorate inflammation in HFD mice,suggesting that nucleic acid materials or nucleic acid-based delivery systems may be a potential agent for the treatment of insulin resistance and obesity-related metabolic diseases.