Low and high-concentration nitric wastewater can induce stable nitrite accumulation and realize the nitrification system, with the nitrite accumulation rate between 50% and 90%. In the low-concentration nitrite nitrif...Low and high-concentration nitric wastewater can induce stable nitrite accumulation and realize the nitrification system, with the nitrite accumulation rate between 50% and 90%. In the low-concentration nitrite nitrification system, the average FA concentrations during the period of stable nitrite accumulation remained at 7 to 10 mg/L. In the high-concentration nitrite nitrification system, the nitrogen oxidation activity will not be affected by biomass, the nitrite oxidation activity is related to the system biomass, it is recommended to be measured by FA/MLSS. Keeping the FA sludge load below 0.1 is the precondition of making good nitrite accumulation and nitrogen degradation rate. Nitrite oxidation bacteria cannot be totally eliminated or washed out from the system.展开更多
Through the matching relationship between land use types and carbon emission items, this paper estimated carbon emissions of different land use types in Nanjing City, China and analyzed the influencing factors of carb...Through the matching relationship between land use types and carbon emission items, this paper estimated carbon emissions of different land use types in Nanjing City, China and analyzed the influencing factors of carbon emissions by Logarithmic Mean Divisia Index(LMDI) model. The main conclusions are as follows: 1) Total anthropogenic carbon emission of Nanjing increased from 1.22928 ×10^7 t in 2000 to 3.06939 × 10^7 t in 2009, in which the carbon emission of Inhabitation, mining & manufacturing land accounted for 93% of the total. 2) The average land use carbon emission intensity of Nanjing in 2009 was 46.63 t/ha, in which carbon emission intensity of Inhabitation, mining & manufacturing land was the highest(200.52 t/ha), which was much higher than that of other land use types. 3) The average carbon source intensity in Nanjing was 16 times of the average carbon sink intensity(2.83 t/ha) in 2009, indicating that Nanjing was confronted with serious carbon deficit and huge carbon cycle pressure. 4) Land use area per unit GDP was an inhibitory factor for the increase of carbon emissions, while the other factors were all contributing factors. 5) Carbon emission effect evaluation should be introduced into land use activities to formulate low-carbon land use strategies in regional development.展开更多
Urban carbon footprint reflects the impact and pressure of human activities on ur- ban environment. Based on city level, this paper estimated carbon emissions and carbon footprint of Nanjing city, analyzed urban carbo...Urban carbon footprint reflects the impact and pressure of human activities on ur- ban environment. Based on city level, this paper estimated carbon emissions and carbon footprint of Nanjing city, analyzed urban carbon footprint intensity and carbon cycle pressure and discussed the influencing factors of carbon footprint through LMDI decomposition model. The main conclusions are as follows: (1) The total carbon emissions of Nanjing increased rapidly since 2000, in which the carbon emission from the use of fossil energy was the largest Meanwhile, carbon sinks of Nanjing presented a declining trend since 2000, which caused the decrease of carbon compensation rate and the increase of urban carbon cycle pressure. (2) The total carbon footprint of Nanjing increased rapidly since 2000, and the carbon deficit was more than ten times of total land areas of Nanjing in 2009, which means Nanjing confronted high carbon cycle pressure. (3) Generally, carbon footprint intensity of Nanjing was on de- crease and the carbon footprint productivity was on increase. This indicated that energy utilization rate and carbon efficiency of Nanjing was improved since 2000, and the policy for energy conservation and emission reduction taken by Nanjing's government received better effects. (4) Economic development, population and industrial structure are promoting factors for the increase of carbon footprint of Nanjing, while the industrial carbon footprint intensity was inhibitory factor. (5) Several countermeasures should be taken to decrease urban carbon footprint and alleviate carbon cycle pressure, such as: improvement of the energy efficiency, industrial structure reconstruction, afforestation and environmental protection and land use control. Generally, transition to low-carbon economy is essential for Chinese cities to realize sustainable development in the future.展开更多
基金supported by Guizhou Science and Technology Fund Project 2008-2236the Scientific and Technological Project under Science and Technology Department of Guizhou Province [SZ(2008)3073]Guizhou University’s Scientific Research Personnel Introduction Pro-gram 2008-029
文摘Low and high-concentration nitric wastewater can induce stable nitrite accumulation and realize the nitrification system, with the nitrite accumulation rate between 50% and 90%. In the low-concentration nitrite nitrification system, the average FA concentrations during the period of stable nitrite accumulation remained at 7 to 10 mg/L. In the high-concentration nitrite nitrification system, the nitrogen oxidation activity will not be affected by biomass, the nitrite oxidation activity is related to the system biomass, it is recommended to be measured by FA/MLSS. Keeping the FA sludge load below 0.1 is the precondition of making good nitrite accumulation and nitrogen degradation rate. Nitrite oxidation bacteria cannot be totally eliminated or washed out from the system.
基金Under the auspices of National Natural Science Foundation of China(No.41301633)National Social Science Foundation of China(No.10ZD&030)+1 种基金Postdoctoral Science Foundation of China(No.2012M511243,2013T60518)Clean Development Mechanism Foundation of China(No.1214073,2012065)
文摘Through the matching relationship between land use types and carbon emission items, this paper estimated carbon emissions of different land use types in Nanjing City, China and analyzed the influencing factors of carbon emissions by Logarithmic Mean Divisia Index(LMDI) model. The main conclusions are as follows: 1) Total anthropogenic carbon emission of Nanjing increased from 1.22928 ×10^7 t in 2000 to 3.06939 × 10^7 t in 2009, in which the carbon emission of Inhabitation, mining & manufacturing land accounted for 93% of the total. 2) The average land use carbon emission intensity of Nanjing in 2009 was 46.63 t/ha, in which carbon emission intensity of Inhabitation, mining & manufacturing land was the highest(200.52 t/ha), which was much higher than that of other land use types. 3) The average carbon source intensity in Nanjing was 16 times of the average carbon sink intensity(2.83 t/ha) in 2009, indicating that Nanjing was confronted with serious carbon deficit and huge carbon cycle pressure. 4) Land use area per unit GDP was an inhibitory factor for the increase of carbon emissions, while the other factors were all contributing factors. 5) Carbon emission effect evaluation should be introduced into land use activities to formulate low-carbon land use strategies in regional development.
基金National Social Science Foundation of China, No. 10ZD&030 National Natural Science Foundation of China, No.41301633+3 种基金 China Clean Development Mechanism Foundation, No.1214073 China Postdoctoral Science Foundation, No.2012M511243 No.2013 T60518 The Startup Project for High-level Talented Person of North China University of Water Resources and Electric Power, No.201164
文摘Urban carbon footprint reflects the impact and pressure of human activities on ur- ban environment. Based on city level, this paper estimated carbon emissions and carbon footprint of Nanjing city, analyzed urban carbon footprint intensity and carbon cycle pressure and discussed the influencing factors of carbon footprint through LMDI decomposition model. The main conclusions are as follows: (1) The total carbon emissions of Nanjing increased rapidly since 2000, in which the carbon emission from the use of fossil energy was the largest Meanwhile, carbon sinks of Nanjing presented a declining trend since 2000, which caused the decrease of carbon compensation rate and the increase of urban carbon cycle pressure. (2) The total carbon footprint of Nanjing increased rapidly since 2000, and the carbon deficit was more than ten times of total land areas of Nanjing in 2009, which means Nanjing confronted high carbon cycle pressure. (3) Generally, carbon footprint intensity of Nanjing was on de- crease and the carbon footprint productivity was on increase. This indicated that energy utilization rate and carbon efficiency of Nanjing was improved since 2000, and the policy for energy conservation and emission reduction taken by Nanjing's government received better effects. (4) Economic development, population and industrial structure are promoting factors for the increase of carbon footprint of Nanjing, while the industrial carbon footprint intensity was inhibitory factor. (5) Several countermeasures should be taken to decrease urban carbon footprint and alleviate carbon cycle pressure, such as: improvement of the energy efficiency, industrial structure reconstruction, afforestation and environmental protection and land use control. Generally, transition to low-carbon economy is essential for Chinese cities to realize sustainable development in the future.