期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
1
作者 Haizhou Huang Huaixi Chen +7 位作者 Huagang Liu Zhi Zhang Xinkai Feng Jiaying Chen Hongchun Wu Jing Deng Wanguo Liang Wenxiong Lin 《Opto-Electronic Science》 2024年第4期12-20,共9页
Integrated photonic devices are essential for on-chip optical communication,optical-electronic systems,and quantum information sciences.To develop a high-fidelity interface between photonics in various frequency domai... Integrated photonic devices are essential for on-chip optical communication,optical-electronic systems,and quantum information sciences.To develop a high-fidelity interface between photonics in various frequency domains without disturbing their quantum properties,nonlinear frequency conversion,typically steered with the quadratic(χ2)process,should be considered.Furthermore,another degree of freedom in steering the spatial modes during theχ2 process,with unprecedent mode intensity is proposed here by modulating the lithium niobate(LN)waveguide-based inter-mode quasi-phasematching conditions with both temperature and wavelength parameters.Under high incident light intensities(25 and 27.8 dBm for the pump and the signal lights,respectively),mode conversion at the sum-frequency wavelength with sufficient high output power(−7–8 dBm)among the TM01,TM10,and TM00 modes is realized automatically with characterized broad temperature(ΔT≥8°C)and wavelength windows(Δλ≥1 nm),avoiding the previous efforts in carefully preparing the signal or pump modes.The results prove that high-intensity spatial modes can be prepared at arbitrary transparent wavelength of theχ2 media toward on-chip integration,which facilitates the development of chip-based communication and quantum information systems because spatial correlations can be applied to generate hyperentangled states and provide additional robustness in quantum error correction with the extended Hilbert space. 展开更多
关键词 integrated photonics LN waveguide sum-frequency generation spatial-mode steering on-chip integration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部