Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementi...Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementitious material(CNCM)was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO_(2) mineralization capacity.Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development.Meanwhile,thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO_(2) adsorption amount and carbonation products of CNCM.Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging(BSE)with energy-dispersive X-ray spectrometry.Results showed that among the studied samples,the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO_(2) sequestration amount of 8.51wt%at 80℃and 72 h while presenting the compressive strength of 39.07 MPa.This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO_(2) and exhibit high compressive strength.Although the addition of citric acid did not improve strength development,it was beneficial to increase the CO_(2) diffusion and adsorption amount under the same carbonation conditions from BSE results.This work provides guidance for synthesizing CO_(2)-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals.展开更多
The application of Mg-based electrochemical energy storage materials in high performance supercapacitors is an essential step to promote the exploitation and utilization of magnesium resources in the field of energy s...The application of Mg-based electrochemical energy storage materials in high performance supercapacitors is an essential step to promote the exploitation and utilization of magnesium resources in the field of energy storage.Unfortunately,the inherent chemical properties of magnesium lead to poor cycling stability and electrochemical reactivity,which seriously limit the application of Mg-based materials in supercapacitors.Herein,in this review,more than 70 research papers published in recent 10 years were collected and analyzed.Some representative research works were selected,and the results of various regulative strategies to improve the electrochemical performance of Mg-based materials were discussed.The effects of various regulative strategies(such as constructing nanostructures,synthesizing composites,defect engineering,and binder-free synthesis,etc.)on the electrochemical performance and their mechanism are demonstrated using spinelstructured MgX_(2)O_(4) and layered structured Mg-X-LDHs as examples.In addition,the application of magnesium oxide and magnesium hydroxide in electrode materials,MXene's solid spacers and hard templates are introduced.Finally,the challenges and outlooks of Mg-based electrochemical energy storage materials in high performance supercapacitors are also discussed.展开更多
Dual-channel redox reaction system is advantageous for photocatalytic hydrogen(H_(2))production when coupled with photoreforming oxidation of waste materials,benefiting both thermodynamically and kinetically.However,e...Dual-channel redox reaction system is advantageous for photocatalytic hydrogen(H_(2))production when coupled with photoreforming oxidation of waste materials,benefiting both thermodynamically and kinetically.However,existing reviews primarily focus on specific oxidation reactions,such as oxidative organic synthesis and water remediation,often neglecting recent advancements in plastic upgrading,biomass conversion,and H_(2)O_(2)production,and failing to provide an in-depth discussion of catalytic mechanisms.This review addresses these gaps by offering a comprehensive overview of recent advancements in dual-channel redox reactions for photocatalytic H_(2)-evolution and waste photoreforming.It highlights waste-to-wealth design concepts,examines the challenges,advantages and diverse applications of dual-channel photocatalytic reactions,including photoreforming of biomass,alcohol,amine,plastic waste,organic pollutants,and H_(2)O_(2)production.Emphasizing improvement strategies and exploration of catalytic mechanisms,it includes advanced in-situ characterization,spin capture experiments,and DFT calculations.By identifying challenges and future directions in this field,this review provides valuable insights for designing innovative dual-channel photocatalytic systems.展开更多
Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulatio...Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulation.However,conventional LCMs seem ineffective in high-temperature formations.This may be due to the changes in the mechanical properties of LCMs and their sealing performance under high-temperature conditions.To understand how high temperature affects the fracture sealing performance of LCMs,we developed a coupled computational fluid dynamics-discrete element method(CFD-DEM)model to simulate the behavior of granular LCMs in fractures.We summarized the literature on the effects of high temperature on the mechanical properties of LCMs and the rheological properties of drilling fluid.We conducted sensitivity analyses to investigate how changing LCM slurry properties affected the fracture sealing efficiency at increasing temperatures.The results show that high temperature reduces the size,strength,and friction coefficient of LCMs as well as the drilling fluid viscosity.Smaller,softer,and less frictional LCM particles have lower bridging probability and slower bridging initiation.Smaller particles tend to form dual-particle bridges rather than single-particle bridges.These result in a deeper,tighter,but unstable sealing zone.Reduced drilling fluid viscosity leads to faster and shallower sealing zones.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced elect...Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.展开更多
Energy storage is an ever-growing global concern due to increased energy needs and resource exhaustion.Sodium-ion batteries(SIBs)have called increasing attention and achieved substantial progress in recent years owing...Energy storage is an ever-growing global concern due to increased energy needs and resource exhaustion.Sodium-ion batteries(SIBs)have called increasing attention and achieved substantial progress in recent years owing to the abundance and even distribution of Na resources in the crust,and the predicted low cost of the technique.Nevertheless,SIBs still face challenges like lower energy density and inferior cycling stability compared to mature lithium-ion batteries(LIBs).Enhancing the electrochemical performance of SIBs requires an in-deep and comprehensive understanding of the improvement strategies and the underlying reaction mechanism elucidated by in situ techniques.In this review,commonly applied in situ techniques,for instance,transmission electron microscopy(TEM),Raman spectroscopy,X-ray diffraction(XRD),and X-ray absorption near-edge structure(XANES),and their applications on the representative cathode and anode materials with selected samples are summarized.We discuss the merits and demerits of each type of material,strategies to enhance their electrochemical performance,and the applications of in situ characterizations of them during the de/sodiation process to reveal the underlying reaction mechanism for performance improvement.We aim to elucidate the composition/structure-per formance relationship to provide guidelines for rational design and preparation of electrode materials toward high electrochemical performance.展开更多
Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed ...Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption.展开更多
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s...Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.展开更多
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ...Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.展开更多
This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))wer...This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))were designed to be added into the substrate of Mg alloy by friction stir processing(FSP).Then,Mg alloy sample designed with different precipitated morphology ofβ-Mg_(17)Al_(12)phase was treated by microarc oxidation(MAO)in Na_(3)PO_(4)/Na2SiO3electrolyte.The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),contact angle meter,and potentiodynamic polarization.It was found that the coarseα-Mg grains in extruded AZ91D Mg alloy were refined by FSP,and theβ-Mg_(17)Al_(12)phase with reticular structure was broken and dispersed.The nano-ZrO_(2)particles were pinned at the grain boundary by FSP,which refined theα-Mg grain and promoted the precipitation ofβ-Mg_(17)Al_(12)phase in grains.It effectively inhibited the“cascade”phenomenon of microarcs,which induced the uniform distribution of discharge pores.The MAO coating on Zr-FSP sample had good wettability and corrosion resistance.However,TiO_(2)particles were hardly detected in the coating on TiFSP sample.展开更多
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ...This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.展开更多
Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibri...Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibrium analysis of Mn^(2+)-Fe^(2+)-Mg^(2+)-C_(2)O_(4)^(2-)-H_(2)O system is used to guide the design and preparation of insitu Mg-doped(Fe_(0.4)Mn_(0.6))_(1-x)Mg_(x)C_(2)O_(4)intermediate,which is then employed as an innovative precursor to synthesize high-performance Mg-doped LiFe_(0.4)Mn_(0.6)PO_(4).It indicates that the metal ions with a high precipitation efficiency and the stoichiometric precursors with uniform element distribution can be achieved under the optimized thermodynamic conditions.Meanwhile,accelerated Li+diffusivity and reduced charge transfer resistance originating from Mg doping are verified by various kinetic characterizations.Benefiting from the contributions of inherited homogeneous element distribution,small particle size,uniform carbon layer coating,enhanced Li+migration ability and structural stability induced by Mg doping,the Li(Fe_(0.4)Mn_(0.6))_(0.97)Mg_(0.03)PO_(4)/C exhibits splendid electrochemical performance.展开更多
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-...Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.展开更多
Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive speci...Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.展开更多
Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanosphe...Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.展开更多
We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After ...We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After compression deformation,allαstructures of titanium were compacted with the emergence of Widmanstatten structures.Coarsened coloniesαof titanium were elongated and waved along the original growth direction,resulting in anisotropy of grains.Pores and Ti/Al intermetallic compounds of aluminum are significantly decreased after hot compression.Meanwhile,a good bonding interface between titanium and aluminum is obtained after hot compression,and the element diffusion is more intense.In addition,the mechanical properties and fracture behaviors of Ti/Al composite material with different clad ratio that is defined as the ratio of the thickness of titanium to that of the Ti/Al composite material are investigated by uniaxial tensile test.The experimental results show that the ultimate tensile strength of Ti/Al composite material is between that of single deposited titanium and aluminum,while the elongation of Ti/Al composite material with low clad ratio is lower than that of single aluminum due to the metallurgical reaction.As the clad ratio increases,the two component layers are harder to separate during deformation,which is resulted from the decrease of the inward contraction stress of three-dimensional stress caused by necking of aluminum.This work may promote the engineering application of Ti/Al bimetallic structures.展开更多
To achieve high microwave permeability in wide-band for the micron-thick magnetic films,[Fe-Fe_(20)Ni_(80)/Cr]_(n) multilayer structure was proposed by co-sputtering Fe and FeNi to form the magnetic layers and Cr to f...To achieve high microwave permeability in wide-band for the micron-thick magnetic films,[Fe-Fe_(20)Ni_(80)/Cr]_(n) multilayer structure was proposed by co-sputtering Fe and FeNi to form the magnetic layers and Cr to form the interlayers.The multilayer structure contributes to the high permeability by reducing the coercivity and diminishing out-of-plane magnetization.The maximum imaginary permeability of[Fe-Fe_(20)Ni_(80)/Cr]_(n) multilayer film reaches a large value of 800 at 0.52 GHz even though its overall thickness exceeds 1μm.Besides,the magnetic resonance frequency of the multilayer film can be modulated from 0.52 to 1.35 GHz by adjusting the sputtering power of Fe from 0 to 86 W,and its bandwidth for μ’’>200(Δf) is as large as 2.0 GHz.The desirable broad Δf of magnetic permeability,which can be well fitted by the Landau-Lifshitz-Gilbert equations,is due to dual magnetic resonances originated from double magnetic phases of Fe and FeNi that are of different saturation magnetization.The micron-thick multilayer films with high permeability in extended waveband are promising candidate for electromagnetic noise suppression application.展开更多
Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)...Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)R)systems.Herein,monoclinic Cu_(2)(OH)_(2)CO_(3)is firstly proven to be a new class of photocatalyst,which has excellent catalytic stability and selectivity for PCO_(2)R in the absence of any sacrificial agent and cocatalysts.Based on a Cu_(2)(OH)_(2)^(13)CO_(3)photocatalyst and 13CO_(2)two-sided^(13)C isotopic tracer strategy,and combined with in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)analysis and density functional theory(DFT)calculations,two main CO_(2)transformation routes,and the photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)are definitely revealed.The PCO_(2)R activity of Cu_(2)(OH)_(2)CO_(3)is comparable to some of state-of-the-art novel photocatalysts.Significantly,the PCO_(2)R properties can be further greatly enhanced by simply combining Cu_(2)(OH)_(2)CO_(3)with typical TiO_(2)to construct composites photocatalyst.The highest CO_(2)and CH_(4)production rates by 7.5 wt%Cu_(2)(OH)_(2)CO_(3)-TiO_(2)reach 16.4μmol g^(-1)h^(-1)and 116.0μmol g^(-1)h^(-1),respectively,which are even higher than that of some of PCO_(2)R systems containing sacrificial agents or precious metals modified photocatalysts.This work provides a better understanding for the PCO_(2)R mechanism at the atomic levels,and also indicates that basic carbonate photocatalysts have broad application potential in the future.展开更多
The high ductility of Mg-Li alloy has been mainly ascribed to a high activity of pyramidal<c+a>slip to accommodate plastic strain.In the present study,however,a quantitative analysis reveals that Li-addition can...The high ductility of Mg-Li alloy has been mainly ascribed to a high activity of pyramidal<c+a>slip to accommodate plastic strain.In the present study,however,a quantitative analysis reveals that Li-addition can only slightly stimulate the activation of pyramidal<c+a>slip under compression along the normal direction of a hot-rolled Mg-4.5 wt.%Li plate,with a relative activity of approximately 18%.Although the limited activity of pyramidal<c+a>slip alone cannot accommodate a large plastic strain,it effectively reduces the number of{10.11}−{10.12}double twins,which are believed to be favorable sites for crack initiation.The evidently reduced activity of double twins leads to a lower cracking tendency,and therefore improves ductility.展开更多
基金supported by the Intergovernmental International Science and Technology Innovation Cooperation Key Project of the National Key Research and Development Program of China (No.2022YFE0135100)the National Natural Science Foundation of China (No.52072171)+1 种基金the Beijing Nova Program (No.20220484057)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO_(2)-mineralized cementitious materials.In this work,copper-nickel slag-based cementitious material(CNCM)was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO_(2) mineralization capacity.Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development.Meanwhile,thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO_(2) adsorption amount and carbonation products of CNCM.Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging(BSE)with energy-dispersive X-ray spectrometry.Results showed that among the studied samples,the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO_(2) sequestration amount of 8.51wt%at 80℃and 72 h while presenting the compressive strength of 39.07 MPa.This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO_(2) and exhibit high compressive strength.Although the addition of citric acid did not improve strength development,it was beneficial to increase the CO_(2) diffusion and adsorption amount under the same carbonation conditions from BSE results.This work provides guidance for synthesizing CO_(2)-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals.
基金financial support provided by Projects(no.2020CDJXZ001)the Fundamental Research Funds for the Central Universities+1 种基金the Technology Innovation and Application Development Special Project of Chongqing(Z20211350 and Z20211351)Scientific Research Project of Chongqing Ecological Environment Bureau(no.CQEE2022-STHBZZ118)。
文摘The application of Mg-based electrochemical energy storage materials in high performance supercapacitors is an essential step to promote the exploitation and utilization of magnesium resources in the field of energy storage.Unfortunately,the inherent chemical properties of magnesium lead to poor cycling stability and electrochemical reactivity,which seriously limit the application of Mg-based materials in supercapacitors.Herein,in this review,more than 70 research papers published in recent 10 years were collected and analyzed.Some representative research works were selected,and the results of various regulative strategies to improve the electrochemical performance of Mg-based materials were discussed.The effects of various regulative strategies(such as constructing nanostructures,synthesizing composites,defect engineering,and binder-free synthesis,etc.)on the electrochemical performance and their mechanism are demonstrated using spinelstructured MgX_(2)O_(4) and layered structured Mg-X-LDHs as examples.In addition,the application of magnesium oxide and magnesium hydroxide in electrode materials,MXene's solid spacers and hard templates are introduced.Finally,the challenges and outlooks of Mg-based electrochemical energy storage materials in high performance supercapacitors are also discussed.
文摘Dual-channel redox reaction system is advantageous for photocatalytic hydrogen(H_(2))production when coupled with photoreforming oxidation of waste materials,benefiting both thermodynamically and kinetically.However,existing reviews primarily focus on specific oxidation reactions,such as oxidative organic synthesis and water remediation,often neglecting recent advancements in plastic upgrading,biomass conversion,and H_(2)O_(2)production,and failing to provide an in-depth discussion of catalytic mechanisms.This review addresses these gaps by offering a comprehensive overview of recent advancements in dual-channel redox reactions for photocatalytic H_(2)-evolution and waste photoreforming.It highlights waste-to-wealth design concepts,examines the challenges,advantages and diverse applications of dual-channel photocatalytic reactions,including photoreforming of biomass,alcohol,amine,plastic waste,organic pollutants,and H_(2)O_(2)production.Emphasizing improvement strategies and exploration of catalytic mechanisms,it includes advanced in-situ characterization,spin capture experiments,and DFT calculations.By identifying challenges and future directions in this field,this review provides valuable insights for designing innovative dual-channel photocatalytic systems.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Grant No.52274009)China Postdoctoral Science Foundation(Grant No.2022M723501)Science and Technology Planning Project of Sichuan Province(Grant No.2021YJ0359).
文摘Lost circulation is a common downhole problem of drilling in geothermal and high-temperature,high-pressure(HTHP)formations.Lost circulation material(LCM)is a regular preventive and remedial measure for lost circulation.However,conventional LCMs seem ineffective in high-temperature formations.This may be due to the changes in the mechanical properties of LCMs and their sealing performance under high-temperature conditions.To understand how high temperature affects the fracture sealing performance of LCMs,we developed a coupled computational fluid dynamics-discrete element method(CFD-DEM)model to simulate the behavior of granular LCMs in fractures.We summarized the literature on the effects of high temperature on the mechanical properties of LCMs and the rheological properties of drilling fluid.We conducted sensitivity analyses to investigate how changing LCM slurry properties affected the fracture sealing efficiency at increasing temperatures.The results show that high temperature reduces the size,strength,and friction coefficient of LCMs as well as the drilling fluid viscosity.Smaller,softer,and less frictional LCM particles have lower bridging probability and slower bridging initiation.Smaller particles tend to form dual-particle bridges rather than single-particle bridges.These result in a deeper,tighter,but unstable sealing zone.Reduced drilling fluid viscosity leads to faster and shallower sealing zones.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金financially supported by the National Natural Science Foundation of China (Grants Nos. 52064013, 52064014, 52072323 and 52122211)the “Double-First Class” Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University。
文摘Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs.
基金supported by the National Natural Science Foundation of China(22005130,21925404,21902137,21991151,and 22021001)the National Key Research and Development Program of China(2019YFA0705400 and 2020YFB1505800)the Natural Science Foundation of Fujian Province of China(2021J01988)。
文摘Energy storage is an ever-growing global concern due to increased energy needs and resource exhaustion.Sodium-ion batteries(SIBs)have called increasing attention and achieved substantial progress in recent years owing to the abundance and even distribution of Na resources in the crust,and the predicted low cost of the technique.Nevertheless,SIBs still face challenges like lower energy density and inferior cycling stability compared to mature lithium-ion batteries(LIBs).Enhancing the electrochemical performance of SIBs requires an in-deep and comprehensive understanding of the improvement strategies and the underlying reaction mechanism elucidated by in situ techniques.In this review,commonly applied in situ techniques,for instance,transmission electron microscopy(TEM),Raman spectroscopy,X-ray diffraction(XRD),and X-ray absorption near-edge structure(XANES),and their applications on the representative cathode and anode materials with selected samples are summarized.We discuss the merits and demerits of each type of material,strategies to enhance their electrochemical performance,and the applications of in situ characterizations of them during the de/sodiation process to reveal the underlying reaction mechanism for performance improvement.We aim to elucidate the composition/structure-per formance relationship to provide guidelines for rational design and preparation of electrode materials toward high electrochemical performance.
基金the National Natural Science Foundation of China(Nos.52102036 and52301192)the Sichuan Science and Technology Program,China(No.2021JDRC0099)+3 种基金Taishan Scholars and Young Experts Program of Shandong Province,China(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution,China(Research and Innovation Team of Structural-Functional Polymer Composites)Special Financial of Shandong Province,China(Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams)“Sanqin Scholars”Innovation Teams Project of Shaanxi Province,China(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.)。
文摘Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption.
基金supported by the National Natural Science Foundation of China (Nos.21701083 and 22179054).
文摘Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field.
基金supported by the National Natural the Science Foundation of China(51971042,51901028)the Chongqing Academician Special Fund(cstc2020yszxjcyj X0001)+1 种基金the China Scholarship Council(CSC)Norwegian University of Science and Technology(NTNU)for their financial and technical support。
文摘Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.
基金funded by China Postdoctoral Science Foundation(No.2021M700569)Chongqing Postdoctoral Science Foundation(No.7 cstc2021jcyj-bshX0087)。
文摘This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution ofβ-Mg_(17)Al_(12)phase in AZ91D Mg alloy.Two kinds of nano-particles(ZrO_(2)and TiO_(2))were designed to be added into the substrate of Mg alloy by friction stir processing(FSP).Then,Mg alloy sample designed with different precipitated morphology ofβ-Mg_(17)Al_(12)phase was treated by microarc oxidation(MAO)in Na_(3)PO_(4)/Na2SiO3electrolyte.The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy(SEM),energy dispersive spectrometer(EDS),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),contact angle meter,and potentiodynamic polarization.It was found that the coarseα-Mg grains in extruded AZ91D Mg alloy were refined by FSP,and theβ-Mg_(17)Al_(12)phase with reticular structure was broken and dispersed.The nano-ZrO_(2)particles were pinned at the grain boundary by FSP,which refined theα-Mg grain and promoted the precipitation ofβ-Mg_(17)Al_(12)phase in grains.It effectively inhibited the“cascade”phenomenon of microarcs,which induced the uniform distribution of discharge pores.The MAO coating on Zr-FSP sample had good wettability and corrosion resistance.However,TiO_(2)particles were hardly detected in the coating on TiFSP sample.
基金funded by the National Natural Science Foundation of China(Nos.51801189)The Central Guidance on Local Science and Technology Development Fund of Shanxi Province(Nos.YDZJTSX2021A027)+2 种基金The National Natural Science Foundation of China(Nos.51801189)The Science and Technology Major Project of Shanxi Province(No.20191102008,20191102007)The North University of China Youth Academic Leader Project(No.11045505).
文摘This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.
基金financially supported by the National Natural Science Foundation of China(No.51904250)the China Postdoctoral Science Foundation(No.2021M692254)+2 种基金the Sichuan Science and Technology Program(No.2022YFG0098)the Fundamental Research Funds for the Central Universities(Nos.2021CDSN-02,2022SCU12002,2022CDZG-17,2022CDSN-08,2022CDZG-9)the Hohhot Science and Technology Program(No.2023-Jie Bang Gua Shuai-Gao-3)。
文摘Mn-rich LiFe_(1-x)Mn_(x)PO_(4)(x>0.5),which combines the high operation voltage of LiMnPO_(4)with excellent rate performa nce of LiFePO4,is hindered by its sluggish kinetic properties.Herein,thermodynamic equilibrium analysis of Mn^(2+)-Fe^(2+)-Mg^(2+)-C_(2)O_(4)^(2-)-H_(2)O system is used to guide the design and preparation of insitu Mg-doped(Fe_(0.4)Mn_(0.6))_(1-x)Mg_(x)C_(2)O_(4)intermediate,which is then employed as an innovative precursor to synthesize high-performance Mg-doped LiFe_(0.4)Mn_(0.6)PO_(4).It indicates that the metal ions with a high precipitation efficiency and the stoichiometric precursors with uniform element distribution can be achieved under the optimized thermodynamic conditions.Meanwhile,accelerated Li+diffusivity and reduced charge transfer resistance originating from Mg doping are verified by various kinetic characterizations.Benefiting from the contributions of inherited homogeneous element distribution,small particle size,uniform carbon layer coating,enhanced Li+migration ability and structural stability induced by Mg doping,the Li(Fe_(0.4)Mn_(0.6))_(0.97)Mg_(0.03)PO_(4)/C exhibits splendid electrochemical performance.
基金the Natural Science Foundation of China(Grant No:22309180)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No:XDB0600000,XDB0600400)+3 种基金Liaoning Binhai Laboratory,(Grant No:LILBLB-2023-04)Dalian Revitalization Talents Program(Grant No:2022RG01)Youth Science and Technology Foundation of Dalian(Grant No:2023RQ015)the University of Waterloo.
文摘Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
基金supported by the National Natural Science Foundation of China(Nos.21972073,22136003,22206188,and 21805166).
文摘Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.
基金supported by National Natural Science Foundation of China(NSFC,Grant No.51972178)Natural Science Foundation of Ningbo(2022J139)Ningbo Yongjiang Talent Introduction Programme(2022A-227-G)
文摘Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.
基金Funded by the National Natural Science Foundation of China(No.51775068)。
文摘We focused on Ti/Al composite materials fabricated by wire and arc addictive manufacturing,and the microstructure and interface characteristics of them before and after hot compression deformation were compared.After compression deformation,allαstructures of titanium were compacted with the emergence of Widmanstatten structures.Coarsened coloniesαof titanium were elongated and waved along the original growth direction,resulting in anisotropy of grains.Pores and Ti/Al intermetallic compounds of aluminum are significantly decreased after hot compression.Meanwhile,a good bonding interface between titanium and aluminum is obtained after hot compression,and the element diffusion is more intense.In addition,the mechanical properties and fracture behaviors of Ti/Al composite material with different clad ratio that is defined as the ratio of the thickness of titanium to that of the Ti/Al composite material are investigated by uniaxial tensile test.The experimental results show that the ultimate tensile strength of Ti/Al composite material is between that of single deposited titanium and aluminum,while the elongation of Ti/Al composite material with low clad ratio is lower than that of single aluminum due to the metallurgical reaction.As the clad ratio increases,the two component layers are harder to separate during deformation,which is resulted from the decrease of the inward contraction stress of three-dimensional stress caused by necking of aluminum.This work may promote the engineering application of Ti/Al bimetallic structures.
基金Funded by the Young Top-notch Talent Cultivation Program of Hubei Provincethe Fundamental Research Funds for the Central Universities(WUT:2021IVA116 and WUT:2021CG015)。
文摘To achieve high microwave permeability in wide-band for the micron-thick magnetic films,[Fe-Fe_(20)Ni_(80)/Cr]_(n) multilayer structure was proposed by co-sputtering Fe and FeNi to form the magnetic layers and Cr to form the interlayers.The multilayer structure contributes to the high permeability by reducing the coercivity and diminishing out-of-plane magnetization.The maximum imaginary permeability of[Fe-Fe_(20)Ni_(80)/Cr]_(n) multilayer film reaches a large value of 800 at 0.52 GHz even though its overall thickness exceeds 1μm.Besides,the magnetic resonance frequency of the multilayer film can be modulated from 0.52 to 1.35 GHz by adjusting the sputtering power of Fe from 0 to 86 W,and its bandwidth for μ’’>200(Δf) is as large as 2.0 GHz.The desirable broad Δf of magnetic permeability,which can be well fitted by the Landau-Lifshitz-Gilbert equations,is due to dual magnetic resonances originated from double magnetic phases of Fe and FeNi that are of different saturation magnetization.The micron-thick multilayer films with high permeability in extended waveband are promising candidate for electromagnetic noise suppression application.
基金financial support from the National Natural Science Foundation of China(No.22272038)the Science and Technology Planning Project of Guangzhou City(No.2023A03J0026)。
文摘Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)R)systems.Herein,monoclinic Cu_(2)(OH)_(2)CO_(3)is firstly proven to be a new class of photocatalyst,which has excellent catalytic stability and selectivity for PCO_(2)R in the absence of any sacrificial agent and cocatalysts.Based on a Cu_(2)(OH)_(2)^(13)CO_(3)photocatalyst and 13CO_(2)two-sided^(13)C isotopic tracer strategy,and combined with in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)analysis and density functional theory(DFT)calculations,two main CO_(2)transformation routes,and the photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)are definitely revealed.The PCO_(2)R activity of Cu_(2)(OH)_(2)CO_(3)is comparable to some of state-of-the-art novel photocatalysts.Significantly,the PCO_(2)R properties can be further greatly enhanced by simply combining Cu_(2)(OH)_(2)CO_(3)with typical TiO_(2)to construct composites photocatalyst.The highest CO_(2)and CH_(4)production rates by 7.5 wt%Cu_(2)(OH)_(2)CO_(3)-TiO_(2)reach 16.4μmol g^(-1)h^(-1)and 116.0μmol g^(-1)h^(-1),respectively,which are even higher than that of some of PCO_(2)R systems containing sacrificial agents or precious metals modified photocatalysts.This work provides a better understanding for the PCO_(2)R mechanism at the atomic levels,and also indicates that basic carbonate photocatalysts have broad application potential in the future.
基金support from National Natural Science Foundation of China(51871032,52071039 and 51671040)Natural Science Foundation of Jiangsu Province(BK20202010)“111”Project by the Ministry of Education(B16007).
文摘The high ductility of Mg-Li alloy has been mainly ascribed to a high activity of pyramidal<c+a>slip to accommodate plastic strain.In the present study,however,a quantitative analysis reveals that Li-addition can only slightly stimulate the activation of pyramidal<c+a>slip under compression along the normal direction of a hot-rolled Mg-4.5 wt.%Li plate,with a relative activity of approximately 18%.Although the limited activity of pyramidal<c+a>slip alone cannot accommodate a large plastic strain,it effectively reduces the number of{10.11}−{10.12}double twins,which are believed to be favorable sites for crack initiation.The evidently reduced activity of double twins leads to a lower cracking tendency,and therefore improves ductility.