期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
The photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)for stable photocatalytic CO_(2)reduction 被引量:1
1
作者 Yaqing Zhi Haoning Mao +5 位作者 Guangxing Yang Qiao Zhang Zhiting Liu Yonghai Cao Siyuan Yang Feng Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期104-112,共9页
Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)... Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)R)systems.Herein,monoclinic Cu_(2)(OH)_(2)CO_(3)is firstly proven to be a new class of photocatalyst,which has excellent catalytic stability and selectivity for PCO_(2)R in the absence of any sacrificial agent and cocatalysts.Based on a Cu_(2)(OH)_(2)^(13)CO_(3)photocatalyst and 13CO_(2)two-sided^(13)C isotopic tracer strategy,and combined with in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)analysis and density functional theory(DFT)calculations,two main CO_(2)transformation routes,and the photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)are definitely revealed.The PCO_(2)R activity of Cu_(2)(OH)_(2)CO_(3)is comparable to some of state-of-the-art novel photocatalysts.Significantly,the PCO_(2)R properties can be further greatly enhanced by simply combining Cu_(2)(OH)_(2)CO_(3)with typical TiO_(2)to construct composites photocatalyst.The highest CO_(2)and CH_(4)production rates by 7.5 wt%Cu_(2)(OH)_(2)CO_(3)-TiO_(2)reach 16.4μmol g^(-1)h^(-1)and 116.0μmol g^(-1)h^(-1),respectively,which are even higher than that of some of PCO_(2)R systems containing sacrificial agents or precious metals modified photocatalysts.This work provides a better understanding for the PCO_(2)R mechanism at the atomic levels,and also indicates that basic carbonate photocatalysts have broad application potential in the future. 展开更多
关键词 CO_(2)photocatalytic reduction PHOTOCATALYSIS Basic copper carbonate SELF-RECONSTRUCTION PHOTOCATALYST
下载PDF
Photoinduced Cu^(+)/Cu^(2+)interconversion for enhancing energy conversion and storage performances of CuO based Li-ion battery
2
作者 Qiuman Zhang Meng Wei +7 位作者 Qianwen Dong Qiongzhi Gao Xin Cai Shengsen Zhang Teng Yuan Feng Peng Yueping Fang Siyuan Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期83-91,共9页
Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper... Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper oxide(CuO)is one of the most popular candidates in both LIBs and photocatalysis.While CuO based PA-LIBs have never been reported yet.Herein,one-dimensional(1D)CuO nanowire arrays in situ grown on a three-dimensional(3D)copper foam support were employed as dualfunctional photoanode for both‘solar-to-electricity’and‘electricity-to-chemical’energy conversion in the PA-LIBs.It is found that light energy can be indeed stored and converted into electrical energy through the assembled CuO based PA-LIBs.Without external power source,the photo conversion efficiency of CuO based photocell reaches about 0.34%.Impressively,at a high current density of 4000 m A g^(-1),photoassisted discharge and charge specific capacity of CuO based PA-LIBs respectively receive 64.01%and 60.35%enhancement compared with the net electric charging and discharging process.Mechanism investigation reveals that photogenerated charges from CuO promote the interconversion between Cu^(2+)and Cu^(+)during the discharging/charging process,thus forcing the lithium storage reaction more completely and increasing the specific capacity of the PA-LIBs.This work can provide a general principle for the development of other high-efficient semiconductor-based PA-LIBs. 展开更多
关键词 Li-ion batteries Energy conversion and storage Photo rechargeable Electrochemistry Copper oxide
下载PDF
Supplemental blue light increases growth and quality of greenhouse pak choi depending on cultivar and supplemental light intensity 被引量:20
3
作者 ZHENG Yin-jian ZHANG Yi-ting +4 位作者 LIU Hou-cheng LI Ya-min LIU Ying-liang HAO Yan-wei LEI Bing-fu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第10期2245-2256,共12页
To evaluate the supplementary blue light intensity on growth and health-promoting compounds in pak choi(Brassica campestris ssp.chinensis var.communis),four blue light intensity treatments(T0,T50,T100 and T150 indi... To evaluate the supplementary blue light intensity on growth and health-promoting compounds in pak choi(Brassica campestris ssp.chinensis var.communis),four blue light intensity treatments(T0,T50,T100 and T150 indicate 0,50,100,and 150μmol m^(-2) s^(-1),respectively)were applied 10 days before harvest under greenhouse conditions.Both of cultivars(greenand red-leaf pak choi)under T50 had the highest yield,content of chlorophyll and sugars.With light intensity increasing,antioxidant compounds(vitamin C and carotenoids)significantly increased,while nitrate content showed an opposite trend.The health-promoting compounds(phenolics,flavonoids,anthocyanins,and glucosinolates)were significantly higher under supplementary light treatment than T0,so as the antioxidant capacity(2,2-diphenyl-1-picrylhydrazyl and ferric-reducing antioxidant power).The species-specific differences in photosynthetic pigment and health-promoting compounds was found in green-and red-leaf pak choi.T50 treatment could be used for yield improvement,whereas T100 treatment could be applied for quality improvement.Results showed that blue light intensity can regulate the accumulation of biomass,morphology and health-promoting compounds in pak choi under greenhouse conditions. 展开更多
关键词 blue light antioxidant compounds health-promoting compounds SPECIES-SPECIFIC pak choi
下载PDF
Modification of compact TiO_(2) layer by TiCl_(4)-TiCl_(3) mixture treatment and construction of high-efficiency carbon-based CsPbI_(2)Br perovskite solar cells 被引量:1
4
作者 Wenran Wang Yu Lina +4 位作者 Guizhi Zhang Cuiting Kang Zhenxiao Pan Xinhua Zhong Huashang Rao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期442-451,I0010,共11页
In the construction of high performance planar perovskite solar cells(PSCs),the modification of compact TiO_(2) layer and engineering of perovskite/TiO_(2) interfaces are essential for efficient electron transfer and ... In the construction of high performance planar perovskite solar cells(PSCs),the modification of compact TiO_(2) layer and engineering of perovskite/TiO_(2) interfaces are essential for efficient electron transfer and retarded charge recombination loss.In this work,a facile and effective strategy is developed to modify the surface of compact TiO_(2) layer by TiCl_(4)-TiCl_(3) mixture treatment.Compared with conventional sole TiCl_(4),the TiCl_(4)-TiCl_(3) treatment takes the advantage of accelerated and controlled hydrolysis of TiCl_(3),therefore TiO_(2) with dominating anatase phase and moderate roughness is obtained to facilitate the growth of CsPbI_(2) Br perovskite layer with high quality.Furthermore,the oxidation-driven hydrolysis of TiCl_(3) component results in surface Cl doping that facilitates interfacial electron transfer with retarded recombination loss.The average power conversion efficiency(PCE) of carbon-based CsPbI_(2) Br planar PSCs based on TiCl_(4)-TiCl_(3) treatment increases to 14.18% from the intial 13.04% based on conventional sole TiCl_(4) treatment.The champion PSC exhibits a PCE of 14.46%(V_(oc)=1.28 V,J_(sc)=14.21 mA/cm^(2),and FF=0.794),which is one of the highest PCEs for carbon-based CsPbI_(2) Br PSCs. 展开更多
关键词 Perovskite solar cells CsPbI_(2)Br TiO_(2) TiCl_(3) PHOTOVOLTAIC
下载PDF
Azole selenourea disrupted the midgut and caused malformed development of Plutella xylostella 被引量:1
5
作者 GUO Xue-ying HUANG Zi-hao +6 位作者 XIONG Lan-tu DONG Li HUANG Yue-kun WEI Lin-hao TANG Ri-yuan WANG Zhi-lin XU Han-hong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期1104-1116,共13页
Chemical insecticides targeting the digestive system of diamondback moth(DBM),Plutella xylostella,have not been developed.The discovery of an insecticide with novel mode of action is a challenge for the control of DBM... Chemical insecticides targeting the digestive system of diamondback moth(DBM),Plutella xylostella,have not been developed.The discovery of an insecticide with novel mode of action is a challenge for the control of DBM.In this study,a class of selenium-and difluoromethyl-modified azoles(fluoroazole selenoureas,FASU)were designed and synthesized for the control of DBM.Of these azoles,compound B4 showed the highest insecticidal activity against DBM.The LC50of third-and second-instar larvae reached 32.3 and 4.6μg mL^(–1),respectively.The midgut tissue of larvae was severely disrupted,and the larval intestinal tissue was dotted with unique red spots after treatment with compound B4.Compound B4 led to disintegration of the peritrophic matrix,swelling of the midgut epithelium,fracture of the microvilli,and extensive leakage of cellular debris in the midgut lumen.Surviving larvae grew very slowly,and the larval duration was significantly prolonged after exposure to compound B4 at sublethal doses(LC10,LC25and LC50).Furthermore,the pupation rate,emergence rate and pupae weight were significantly decreased.Compound B4 also induced abnormal pupae,causing adults to be trapped in the cocoon or failure to fly due to twisted wings.These results demonstrated that FASU could reduce the population of DBM in sublethal doses.FASU is the first synthetic insecticidal lead compound that has been shown to disrupt the midgut tissue of the larvae of DBM,and its mode of action totally differs from that of commercial chemical insecticides. 展开更多
关键词 Plutella xylostella AZOLE SELENIUM digestive system MIDGUT
下载PDF
Synthesis, Crystal Structure and Luminescent Property of a Dinuclear Cadmium Complex Based on 1,2-Bis(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene 被引量:1
6
作者 潘荣楷 刘生桂 +3 位作者 宋江莉 李国璧 苏文义 倪春林 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第8期1355-1360,共6页
A dinuclear cadmium complex [Cd2(bpbb)2Cl2(μ-Cl2)], where bpbb is 1,2-bis(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene, was synthesized and characterized by X-ray singlecrystal structure analyses. Crystal data: C... A dinuclear cadmium complex [Cd2(bpbb)2Cl2(μ-Cl2)], where bpbb is 1,2-bis(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene, was synthesized and characterized by X-ray singlecrystal structure analyses. Crystal data: C(64)H(44)Cd2Cl4N8, Mr = 1291.67, triclinic system, space group P1, a = 10.076(3), b = 12.730(4), c = 13.176(4) A, α = 99.087(3), β = 109.859(3), γ = 112.551(3)°, V = 1384.8(7) A3, Z = 1, Dc = 1.549 g/cm^3, λ = 0.71073 A, μ(Mo Kα) = 1.010 mm^(–1), F(000) = 648, S = 1.062, R = 0.0425 and wR = 0.1130 for 9688 observed reflections with I 〉 2s(I). One 1,2-bis(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene coordinates to one cadmium ion. The cadmium is five-coordinated by three chloride ions and two nitrogen atoms from bpbb. Each cadmium ion is bridged by two chloride ions. The decomposition temperature is up to 420 ℃. The complex emits blue luminescence in DMF solution and in solid powder state. 展开更多
关键词 BENZIMIDAZOLE cadmium complex crystal structure luminescence
下载PDF
Selenium–nitrogen-co-doped carbon dots increase rice seedling growth and salt resistance 被引量:1
7
作者 Yadong Li Ronghua Xu +5 位作者 Qianying Han Shang Lei Congli Ma Jingyi Qi Yingliang Liu Hongjie Wang 《The Crop Journal》 SCIE CSCD 2024年第5期1496-1501,共6页
Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibit... Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibition by salt stress by foliar spraying.The treatment activated Ca^(2+)and jasmonic acid signaling pathways and increased iron homeostasis,antioxidant defense,and cell wall development of rice seedlings.It could be used to increase crop resistance to environmental stress. 展开更多
关键词 Carbon dots Rice seedling RESISTANCE Stress signaling Iron homeostasis
下载PDF
Mechanical Properties and Fire Retardancy of Wood Flour/High-Density Polyethylene Composites Reinforced with Continuous Honeycomb-Like Nano-SiO_(2)Network and Fire Retardant
8
作者 Haiyang Zhou Xiaoyu Wang +2 位作者 Xiaolong Hao Qingwen Wang Rongxian Ou 《Journal of Renewable Materials》 SCIE EI 2020年第5期485-498,共14页
The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)ne... The mechanical properties of wood flour/high-density polyethylene composites(WPC)were improved by adding a small amount of nano-SiO_(2)to obtain a network-structured WPC with a continuous honeycomb-like nano-SiO_(2)network.The wood flour was modified with a fire retardant(a mixture of sodium octabonate and amidine urea phosphate)to improve its fire retardancy.The flexural properties,creep resistance,thermal expansion,and fire retardancy of the WPC were compared to a control(WPCCTRL)without nano-SiO_(2)or fire retardant.The flexural strength and modulus of the WPC containing only 0.55 wt.%nano-SiO_(2)were 6.6%and 9.1%higher than the control,respectively,while the creep strain and thermal expansion rate at 90°C were 33.8%and 13.6%lower,respectively.The cone calorimetry tests revealed that the nano-SiO_(2)network physically shielded the WPC,giving it lower heat release and smoke production rates.The thermal expansion was further decreased by incorporating fire retardants into the WPC,which showed the lowest total heat release and total smoke production and the highest mass retention.This study demonstrates a facile procedure for producing WPC with desired performances by forming a continuous honeycomb-like network by adding a small amount of nanoparticles. 展开更多
关键词 Wood plastic composites nano-SiO_(2) mechanical properties CREEP fire retardancy
下载PDF
High Water Resistance and Enhanced Mechanical Properties of Bio-Based Waterborne Polyurethane Enabled by in-situ Construction of Interpenetrating Polymer Network
9
作者 Henghui Deng Jingyi Lu +5 位作者 Dunsheng Liang Xiaomin Wang Tongyao Wang Weihao Zhang Jing Wang Chaoqun Zhang 《Journal of Renewable Materials》 SCIE EI 2023年第3期1209-1222,共14页
In this study,acrylic acid was used as a neutralizer to prepare bio-based WPU with an interpenetrating polymer network structure by thermally induced free radical emulsion polymerization.The effects of the content of ... In this study,acrylic acid was used as a neutralizer to prepare bio-based WPU with an interpenetrating polymer network structure by thermally induced free radical emulsion polymerization.The effects of the content of acrylic acid on the properties of the resulting waterborne polyurethane-poly(acrylic acid)(WPU-PAA)dispersion and the films were systematically investigated.The results showed that the cross-linking density of the interpenetrating network polymers was increased and the interlocking structure of the soft and hard phase dislocations in the molecular segments of the double networks was tailored with increasing the content of acrylic acid,leading to enhancement of the mechanical properties and water resistance of WPU-PAA films.Notably,with the increase in content of acrylic acid,the tensile strength,Young’s modulus,and toughness of the WPU-PAA-110 film increased by 3 times,and 8 times,and 2.4 times compared with WPU-PAA-80,respectively.The WPU-PAA-100 film showed the best water resistance,and the water absorption rate at 96 h was only 3.27%.This work provided a new design scheme for constructing bio-based WPU materials with excellent properties. 展开更多
关键词 Bio-based waterborne polyurethane interpenetrating polymer network highly water resistance superior mechanical performance
下载PDF
Selective Hydrodeoxygenation of Lignin-Derived Vanillin via Hetero-Structured High-Entropy Alloy/Oxide Catalysts
10
作者 Yan Sun Kaili Liang +9 位作者 Ren Tu Xudong Fan Charles Q.Jia Zhiwen Jia Yingnan Li Hui Yang Enchen Jiang Hanwen Liu Yonggang Yao Xiwei Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期202-210,共9页
The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sit... The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sites synergy for effective activation and achieving high chemoselectivity.Herein,it is reported that a high-entropy alloy(HEA)on high-entropy oxide(HEO)hetero-structured catalyst for highly active,chemoselective,and robust vanillin hydrodeoxygenation.The heterogenous HEA/HEO catalysts were prepared by thermal reduction of senary HEOs(NiZnCuFeAlZrO_(x)),where exsolvable metals(e.g.,Ni,Zn,Cu)in situ emerged and formed randomly dispersed HEA nanoparticles anchoring on the HEO matrix.This catalyst exhibits excellent catalytic performance:100%conversion of vanillin and 95%selectivity toward high-value 2-methyl-4 methoxy phenol at low temperature of 120℃,which were attributed to the synergistic effect among HEO matrix(with abundant oxygen vacancies),anchored HEA nanoparticles(having excellent hydrogenolysis capability),and their intimate hetero-interfaces(showing strong electron transferring effect).Therefore,our work reported the successful construction of HEA/HEO heterogeneous catalysts and their superior multifunctionality in biomass conversion,which could shed light on catalyst design for many important reactions that are complex and require multifunctional active sites. 展开更多
关键词 biomass conversion heterogeneous catalysts high-entropy oxide high-entropy alloys lignin pyrolysis
下载PDF
One-pot synthesis of peony-like Bi_2S_3/BiVO_4(040) with high photocatalytic activity for glyphosate degradation under visible light irradiation 被引量:6
11
作者 Qiang-Yong Tang Rui Huo +3 位作者 Lang-Ying Ou Xiu-Li Luo Yan-Ran Lv Yue-Hua Xu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第4期580-589,M0005,共11页
In this work,samples consisting of BiVO4 with exposed(040)facets coupled with Bi2S3(Bi2S3/BiVO4)were prepared through a one-pot hydrothermal method,using ethylenediaminetetraacetic acid as directing agent and L-cystei... In this work,samples consisting of BiVO4 with exposed(040)facets coupled with Bi2S3(Bi2S3/BiVO4)were prepared through a one-pot hydrothermal method,using ethylenediaminetetraacetic acid as directing agent and L-cysteine as sulfur source and soft template.X-ray diffraction,field emission scanning electron microscopy,and high-resolution transmission electron microscopy measurements indicated that the Bi2S3 content had a significant influence on the growth of(040)and(121)facets as well as on the morphology of the Bi2S3/BiVO4 samples.When the Bi2S3 content reached 1 mmol,the Bi2S3/BiVO4 samples exhibited a peony-like morphology.The results of transient photocurrent tests and electrochemical impedance spectroscopy measurements confirmed that a more effective charge separation and a faster interfacial charge transfer occurred in Bi2S3/BiVO4 than BiVO4.The enhanced photocatalytic activity of the Bi2S3/BiVO4 samples could be attributed to the improved absorption capability in the visible light region and the enhanced electron-hole pair separation efficiency due to the formation of the Bi2S3/BiVO4 heterostructure.In addition,the Bi2S3/BiVO4 samples showed relative stability and reusability.The simple method presented in this work could be used to fabricate composite photocatalysts with high activity for different applications,such as photocatalytic degradation of organic pollutants,photocatalytic splitting of water,and photocatalytic reduction of carbon dioxide. 展开更多
关键词 BiVO4(040) Bi2S3/BiVO4(040) Heterostructure Photocatalytic GLYPHOSATE
下载PDF
The properties of flax fiber reinforced wood flour/high density polyethylene composites 被引量:3
12
作者 Jingfa Zhang Haigang Wang +1 位作者 Rongxian Ou Qingwen Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第2期524-531,共8页
Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare ... Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare FF reinforced WF/PE composites(FF/WF/PE).Mechanical testing,dynamic mechanical analysis,scanning electron microscopy(SEM),creep measurement and Torque rheology were used to characterize the resulting composites.The results indicate that the mechanical performance of the composites could be remarkably improved by adding a limited amount of FF.The flexural strength and modulus increased by 14.6 and 51.4%,respectively(FF content of 9 wt%),while the unnotched impact strength could be increased by 26.5%(FF content of12 wt%).The creep resistance and toughness of thecomposite was markedly improved without changing the plastic content of the composite material. 展开更多
关键词 Wood-plastic composites Flax fiber REINFORCEMENT PROCESSING Mechanical property Creep resistance
下载PDF
Architecture engineering of carbonaceous anodes for high-rate potassium-ion batteries 被引量:5
13
作者 Tianlai Wu Weicai Zhang +6 位作者 Jiaying Yang Qiongqiong Lu Jing Peng Mingtao Zheng Fei Xu Yingliang Liu Yeru Liang 《Carbon Energy》 CAS 2021年第4期554-581,共28页
The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium-ion battery.Potassium-ion batteries(KIBs)are regarded as a kind of promising candidate... The limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium-ion battery.Potassium-ion batteries(KIBs)are regarded as a kind of promising candidate for large-scale energy storage owing to the high abundance and low cost of potassium resources.Nevertheless,further development and wide application of KIBs are still challenged by several obstacles,one of which is their fast capacity deterioration at high rates.A considerable amount of effort has recently been devoted to address this problem by developing advanced carbonaceous anode materials with diverse structures and morphologies.This review presents and highlights how the architecture engineering of carbonaceous anode materials gives rise to high-rate performances for KIBs,and also the beneficial conceptions are consciously extracted from the recent progress.Particularly,basic insights into the recent engineering strategies,structural innovation,and the related advances of carbonaceous anodes for high-rate KIBs are under specific concerns.Based on the achievements attained so far,a perspective on the foregoing,and proposed possible directions,and avenues for designing high-rate anodes,are presented finally. 展开更多
关键词 carbonaceous anodes electronic conductivity high-rate performance ion diffusivity potassiumion batteries
下载PDF
Improved visible-light photocatalytic H_2 generation over CdS nanosheets decorated by NiS_2 and metallic carbon black as dual earth-abundant cocatalysts 被引量:4
14
作者 Song Ma Xingmin Xu +1 位作者 Jun Xie Xin Li 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第12期1970-1980,共11页
CdS nanosheets(NSs)photocatalysts modified with dual earth‐abundant co‐catalysts of metallic carbon black(CB)and NiS2were synthesized by a two‐step solvothermal/impregnation method.Allthe experiment results demonst... CdS nanosheets(NSs)photocatalysts modified with dual earth‐abundant co‐catalysts of metallic carbon black(CB)and NiS2were synthesized by a two‐step solvothermal/impregnation method.Allthe experiment results demonstrated that the co‐loading of CB and NiS2could significantly enhance the photocatalytic H2‐evolution activity of CdS NSs.The photocatalytic performance of the as‐prepared CdS/CB/NiS2samples was tested under visible light(λ≥420nm)by using an aqueous solution containing0.25mol L–1Na2S‐Na2SO3as the sacrifice agent.The CdS‐0.5%CB‐1.0%NiS2composite photocatalysts exhibited the highest H2‐evolution rate of166.7μmol h?1,which was approximately5.16and1.87times higher than those of pure CdS NSs and CdS‐1.0%NiS2,respectively.The possible mechanism for the enhanced H2‐evolution activity of CdS/CB/NiS2composite photocatalysts was proposed.The results showed that the enhanced photocatalytic H2‐evolution activities could be ascribed to the co‐loading of metallic CB and NiS2as co‐catalysts onto the surface of CdS NSs.The excellent synergetic effect between the CB and NiS2could obviously improve visible light absorption,promote separation of photogenerated electron‐hole pairs and boost the H2‐evolution kinetics,thus leading to an enhanced activity for H2evolution.More interestingly,the metallic CB could not only act as a cocatalyst for H2evolution,but also serve as a conductive electron bridge to promote the charge migration.This work not only demonstrates that loading CB as a co‐catalyst is a promising strategy to further boost the photocatalytic activity of CdS/NiS2composites,but also offers a new mechanistic insight into the construction of highly efficient and stable CdS NSs‐based hybrid photocatalysts with dual earth‐abundant co‐catalysts for photocatalytic applications. 展开更多
关键词 Photocatalytic hydrogen evolution CdS nanosheet Carbon black NiS2 Dual co‐catalyst
下载PDF
Unveiling the role of lithiophilic sites denseness in regulating lithium ion deposition 被引量:1
15
作者 Tianlai Wu Yongyin Wang +6 位作者 Weicai Zhang Kaixin Lu Jieyin Tan Mingtao Zheng Yong Xiao Yingliang Liu Yeru Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期324-332,I0009,共10页
The construction of lithiophilic sites is an effective way to achieve uniform lithium(Li)ion deposition for stably cycling Li metal batteries.However,in-depth investigations involving lithiophilic sites denseness(LSD)... The construction of lithiophilic sites is an effective way to achieve uniform lithium(Li)ion deposition for stably cycling Li metal batteries.However,in-depth investigations involving lithiophilic sites denseness(LSD)in impacting Li ion deposition remain unknown.Herein we propose an insight into this issue by probing the effect of LSD on determining the Li ion deposition.Experimental characterization and theoretical simulation demonstrate that rational LSD plays a vital role in both Li nucleation and the subsequent Li ion plating behaviors.By tailoring the LSD from low to high,the accompanied Li nucleation overpotentials continuously decrease.Additionally,the Li ion mobility increases first and then weakens in the subsequent Li ion plating stage.Consequently,the Li metal with a moderate LSD allows a dendritefree morphology and satisfactory long-term cycling performances.This work affords a deeper fundamental understanding of lithiophilic chemistry that directs the development of efficient strategies to realize dendrite-free Li metal batteries. 展开更多
关键词 Li metal batteries Lithiophilic sites denseness Li nucleation Li ion plating behaviour Li dendrite inhibition
下载PDF
Recent Development of Quantum Dot Deposition in Quantum Dot-Sensitized Solar Cells 被引量:1
16
作者 Ziwei Li Zhenxiao Pan Xinhua Zhong 《Transactions of Tianjin University》 EI CAS 2022年第5期374-384,共11页
As new-generation solar cells,quantum dot-sensitized solar cells(QDSCs)have the outstanding advantages of low cost and high theoretical efficiency;thus,such cells receive extensive research attention.Their power conve... As new-generation solar cells,quantum dot-sensitized solar cells(QDSCs)have the outstanding advantages of low cost and high theoretical efficiency;thus,such cells receive extensive research attention.Their power conversion efficiency(PCE)has increased from 5%to over 15%in the past decade.However,compared with the theoretical efficiency(44%),the PCE of QDSCs still needs further improvement.The low loading amount of quantum dots(QDs)is a key factor limiting the improvement of cell efficiency.The loading amount of QDs on the surface of the substrate film is important for the performance of QDSCs,which directly affects the light-harvesting ability of the device and interfacial charge recombination.The optimization of QD deposition and the improvement of the loading amount are important driving forces for the rapid development of QDSCs in recent years and a key breakthrough in future development.In this paper,the research progress of QD deposition on the surface of substrate films in QDSCs was reviewed.In addition,the main deposition methods and their advantages and disadvantages were discussed,and future research on the further increase in loading amount was proposed. 展开更多
关键词 Quantum dot-sensitized solar cells Quantum dot deposition Capping ligand-induced self-assembly Secondary deposition
下载PDF
Enhanced Water Resistance Performance of Castor Oil—Based Waterborne Polyurethane Modified by Methoxysilane Coupling Agents via Thiol-Ene Photo Click Reaction 被引量:1
17
作者 Zhipeng He Junqi Xue +4 位作者 Yanzi Ke Ying Luo Qiming Lu Yuehua Xu Chaoqun Zhang 《Journal of Renewable Materials》 SCIE EI 2022年第3期591-604,共14页
Nowadays,waterborne polyurethanes(WPUs)prepared from renewable resources has attracted more and more attention.However,due to its structure,the prepared films easily swells in water and greatly affects the application... Nowadays,waterborne polyurethanes(WPUs)prepared from renewable resources has attracted more and more attention.However,due to its structure,the prepared films easily swells in water and greatly affects the application range of WPUs.Therefore,solving the problem of water resistance is a way to improve the application range of WPUs.In this study,a series of WPU dispersions were prepared using castor oil as the bio-based polyol.Besides,the thiol-ene photo click reaction was carried out on the WPU films for silane modification.The effect of the silane modification on the chemical structures of the WPU dispersions and the properties of the WPU films was investigated and discussed.The results revealed that the WPU dispersions had a smaller particle size and potential,showing excellent stability.In addition,the modified WPU films showed highly water resistance which 72 h water absorption could be reduced to 1.94%and the contact angle was up to 99.34?.Moreover,the modified WPU films also exhibited excellent solvent resistance(in acid and salt solution)and thermal stability.This study can provide a new way to improve the water-resistance,hydrophobicity,and thermal stability of bio-based waterborne polyurethane for potential application in painting,adhesives and inks. 展开更多
关键词 Castor oil waterborne polyurethane water resistance silane modification
下载PDF
Natural Cocoons Enabling Flexible and Stable Fabric Lithium–Sulfur Full Batteries 被引量:1
18
作者 Yanan An Chao Luo +7 位作者 Dahua Yao Shujing Wen Peitao Zheng Shangsen Chi Yu Yang Jian Chang Yonghong Deng Chaoyang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第5期204-217,共14页
Lithium–sulfur batteries are highly appealing as highenergy power systems and hold great application prospects for flexible and wearable electronics.However,the easy formation of lithium dendrites,shuttle effect of d... Lithium–sulfur batteries are highly appealing as highenergy power systems and hold great application prospects for flexible and wearable electronics.However,the easy formation of lithium dendrites,shuttle effect of dissolved polysulfides,random deposition of insulating lithium sulfides,and poor mechanical flexibility of both electrodes seriously restrict the utilization of lithium and stabilities of lithium and sulfur for practical applications.Herein,we present a cooperative strategy employing silk fibroin/sericin to stabilize flexible lithium–sulfur full batteries by simultaneously inhibiting lithium dendrites,adsorbing liquid polysulfides,and anchoring solid lithium sulfides.Benefiting from the abundant nitrogen-and oxygen-containing functional groups,the carbonized fibroin fabric serves as a lithiophilic fabric host for stabilizing the lithium anode,while the carbonized fibroin fabric and the extracted sericin are used as sulfiphilic hosts and adhesive binders,respectively,for stabilizing the sulfur cathode.Consequently,the assembled Li–S full battery provided a high areal capacity(5.6 mAh cm−2),limited lithium excess(90%),a high volumetric energy density(457.2 Wh L^(−1)),high-capacity retention(99.8%per cycle),and remarkable bending capability(6000 flexing cycles at a small radius of 5 mm). 展开更多
关键词 Lithium-sulfur batteries Flexible batteries Carbonized silk fabric Lithium dendrite Shuttle effect
下载PDF
Delivery of luminescent particles to plants for information encoding and storage
19
作者 Wei Li Junjie Lin +7 位作者 Wanyi Huang Qingrou Wang Haoran Zhang Xuejie Zhang Jianle Zhuang Yingliang Liu Songnan Qu Bingfu Lei 《Light(Science & Applications)》 SCIE EI 2024年第10期2288-2299,共12页
In the era of smart agriculture,the precise labeling and recording of growth information in plants pose challenges for modern agricultural production.This study introduces strontium aluminate particles coated with H_(... In the era of smart agriculture,the precise labeling and recording of growth information in plants pose challenges for modern agricultural production.This study introduces strontium aluminate particles coated with H_(3)PO_(4)as luminescent labels capable of spatial embedding within plants for information encoding and storage during growth.The encapsulation with H_(3)PO_(4)imparts stability and enhanced luminescence to SrAl_(2)O_(4):Eu^(2+),Dy^(3+)(SAO).Using SAO@H_(3)PO_(4)as a low-damage luminescent label,we implement its delivery into plants through microneedles(MNs)patches.The embedded SAO@H_(3)PO_(4)within plants exhibits sustained and unaltered high signal-to-noise afterglow emission,with luminous intensity remaining at approximately 78%of the original for 27 days.To cater to diverse information recording needs,MNs of various geometric shapes are designed for loading SAO@H_(3)PO_(4),and the luminescent signals in different shapes can be accurately identified through a designed program,the corresponding information can be conveniently viewed on a computer.Additionally,inspired by binary information concepts,MNs patches with specific arrangements of luminescent and non-luminescent points are created,resulting in varied luminescent MNs arrays on leaves.An advanced camera system with a tailored program accurately identifies and maps the labels to the corresponding recorded information.These findings showcase the potential of low-damage luminescent labels within plants,paving the way for convenient and widespread storage of plant growth information. 展开更多
关键词 recording damage luminous
原文传递
Selenium cooperated polysulfide electrolyte for efficiency enhancement of quantum dot-sensitized solar cells
20
作者 Mengsi Zhou Gencai Shen +1 位作者 Zhenxiao Pan Xinhua Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期147-152,共6页
The modification of polysulfide electrolyte with additives has been demonstrated as an effective way to improve the photovoltaic performance of quantum dot-sensitized solar cells(QDSCs). Most of these additives can in... The modification of polysulfide electrolyte with additives has been demonstrated as an effective way to improve the photovoltaic performance of quantum dot-sensitized solar cells(QDSCs). Most of these additives can inhibit the charge recombination processes at photoanode/electrolyte interface and favor the improvement of V oc of cell devices. Herein, we showed that the incorporation of elemental selenium(Se) in polysulfide electrolyte to form polyselenosulfide species can notably improve the performance of QDSCs. Unlike previous reports, we present here an integrated investigation of the effects of polyselenosulfide species in polysulfide electrolyte on the photovoltaic performance of QDSCs from both of the photoanode and counter electrode(CE) aspects. Electrochemical impedance spectroscopy(IS) and opencircuit voltage-decay(OCVD) measurements demonstrated that the introduction of Se into polysulfide electrolyte can not only retard charge recombination at photoanode/electrolyte interface, but also reduce the charge transfer resistance at CE/electrolyte interface, resulting in the improvement of J sc and FF values. Consequently, the average efficiency of Zn-Cu-In-Se QDSCs was improved from 9.26% to 9.78% under AM 1.5 G full one sun illumination. 展开更多
关键词 Quantum dot-sensitized solar cells POLYSULFIDE ELECTROLYTE SELENIUM Charge transfer COUNTER electrode
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部