A novel biocomposite coating of hydroxyapatite/Al2O3 was fabricated on titanium using a multi-step technique including physical vapor deposition(PVD), anodization, electrodeposition and hydrothermal treatment. Anodic ...A novel biocomposite coating of hydroxyapatite/Al2O3 was fabricated on titanium using a multi-step technique including physical vapor deposition(PVD), anodization, electrodeposition and hydrothermal treatment. Anodic Al2O3 layer with micrometric pore diameter was formed by anodization of the PVD-deposited aluminum film on titanium and subsequent removal of part barrier Al2O3 layer. Hydroxyapatite coating was then electrodeposited onto the as-synthesized anodic Al2O3 on titanium. A hydrothermal process was finally applied to the fabricated biocomposite coating on titanium in alkaline medium. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffractometry(XRD) were employed to investigate the morphologies and compositions of the pre-and post-hydrothermally treated hydroxyapatite/Al2O3 biocomposite coatings. The results show that micrometric plate-like Ca-deficient hydroxyapatite (CDHA) coatings are directly electrodeposited onto anodic Al2O3 at constant current densities ranging from 1.2 to 2.0 mA/cm2 using NaH2PO4 as the phosphorous source. After hydrothermal treatment, the micrometric plate-like CDHA coating electrodeposited at 2.0 mA/cm2 is converted into nano-network Ca-rich hydroxyapatite (CRHA) one and the adhesion strength is improved from 9.5 MPa to 21.3 MPa. A mechanism of dissolution-recrystallization was also proposed for the formation of CRHA.展开更多
When pumping is conducted in confined aquifer inside excavation pit(waterproof curtain),the direction of the groundwater seepage outside the excavation changes from horizontal to vertical owing to the existence of the...When pumping is conducted in confined aquifer inside excavation pit(waterproof curtain),the direction of the groundwater seepage outside the excavation changes from horizontal to vertical owing to the existence of the curtain barrier.There is no analytical calculation method for the groundwater head distribution induced by dewatering inside excavation.This paper first analyses the mechanism of the blocking effects from a close barrier in confined aquifer.Then,a simple equation based on analytical solution is proposed to calculate groundwater heads inside and outside of the excavation pit with waterproof curtain(hereafter refer to close barrier)in a confined aquifer.The distribution of groundwater head is derived according to two conditions:(i)pumping with a constant water head,and(ii)pumping with a constant flow rate.The proposed calculation equation is verified by both numerical simulation and experimental results.The comparisons demonstrate that the proposed model can be applied in engineering practice of excavation.展开更多
This study presents a numerical investigation of dewatering-induced settlement and wall deflection during pumping tests in Tianjin,China.Based on the measured groundwater head and building settlement during the pumpin...This study presents a numerical investigation of dewatering-induced settlement and wall deflection during pumping tests in Tianjin,China.Based on the measured groundwater head and building settlement during the pumping test,a three-dimensional liquid-solid coupling model is established by using the finite element method(FEM).The void ratio,hydraulic conductivity,and elastic modulus of each layer are back-calculated through the numerical model.The groundwater drawdown,seepage field,ground settlement,horizontal ground displacement,and diaphragm wall lateral deflection are analyzed using the FEM model.The simulated results demonstrate that(i)the maximum ground settlement outside of the excavation reaches to 82 mm due to the leakage effect of aquitards;(ii)large horizontal displacement occurs in the soil during the pumping test with a maximum value of 28.3 mm,and the installation of the diaphragm wall in the aquifer can reduce the horizontal displacement of the ground;(iii)long-term pumping causes a large lateral deflection of the diaphragm wall,and a maximum value of 23.2 mm occurs at the layer where the screens of the wells are located;and(iv)long-term large-scale pumping should be avoided before excavation.展开更多
TiC/ZA43 composites were fabricated by XD TM and stirring casting techniques. The tribology properties of the unreinforced ZA43 alloy and the composites were studied by using a block on ring apparatus. Experimental re...TiC/ZA43 composites were fabricated by XD TM and stirring casting techniques. The tribology properties of the unreinforced ZA43 alloy and the composites were studied by using a block on ring apparatus. Experimental results show that the incorporation of TiC particles improves the microstructure of ZA43 matrix alloy. The coefficient of friction μ and the width of worn groove decrease with the increase of TiC volume fraction φ (TiC). The width of worn groove and μ of the composite during wear testing increase with increasing the applied load. Metallographic examinations reveal that unreinforced ZA43 alloy has deep ploughing grooves with obvious adhesion phenomenon, whereas TiC/ZA43 composites have smooth worn surface. Delamination formation is related to the fatigue cracks and the shear cracks on the surface. [展开更多
To solve the existing problems during the ceramic mold enterprises product design and development process, the variable structure parametric design system based on modular of ceramic mold has been developed. The syste...To solve the existing problems during the ceramic mold enterprises product design and development process, the variable structure parametric design system based on modular of ceramic mold has been developed. The system uses the object-oriented technology and top-down design concept as a guide, establishes a ceramic mold parametric design process, divides the process of ceramic mold design into modules of different levels and creates a component model library based on the functional analysis. Expanding modular thinking to parts structure design level is an effective solution to the difficulty of changing the structure during the product design process. Examples show that the system can achieve a ceramic mold product design, improve design efficiency.展开更多
Laser cleaning is a highly nonlinear physical process for solving poor single-modal(e.g., acoustic or vision)detection performance and low inter-information utilization. In this study, a multi-modal feature fusion net...Laser cleaning is a highly nonlinear physical process for solving poor single-modal(e.g., acoustic or vision)detection performance and low inter-information utilization. In this study, a multi-modal feature fusion network model was constructed based on a laser paint removal experiment. The alignment of heterogeneous data under different modals was solved by combining the piecewise aggregate approximation and gramian angular field. Moreover, the attention mechanism was introduced to optimize the dual-path network and dense connection network, enabling the sampling characteristics to be extracted and integrated. Consequently, the multi-modal discriminant detection of laser paint removal was realized. According to the experimental results, the verification accuracy of the constructed model on the experimental dataset was 99.17%, which is 5.77% higher than the optimal single-modal detection results of the laser paint removal. The feature extraction network was optimized by the attention mechanism, and the model accuracy was increased by 3.3%. Results verify the improved classification performance of the constructed multi-modal feature fusion model in detecting laser paint removal, the effective integration of acoustic data and visual image data, and the accurate detection of laser paint removal.展开更多
We study the first integral and the solution of electromagnetic field by Lie symmetry technique and the differential invariant method.The definition and properties of differential invariants are introduced and the inf...We study the first integral and the solution of electromagnetic field by Lie symmetry technique and the differential invariant method.The definition and properties of differential invariants are introduced and the infinitesimal generators of Lie symmetries and the differential invariants of electromagnetic field are obtained.The first integral and the solution of electromagnetic field are given by the Lie symmetry technique and the differential invariants method.A typical example is presented to illustrate the application of our theoretical results.展开更多
Superhydrophilic surfaces were fabricated on copper substrates by an electrochemical deposition and sintering process. Superhydrophobic surfaces were prepared by constructing micro/nano-structure on copper substrates ...Superhydrophilic surfaces were fabricated on copper substrates by an electrochemical deposition and sintering process. Superhydrophobic surfaces were prepared by constructing micro/nano-structure on copper substrates through an electrochemical deposition method. Conversion from superhydrophobic to superhydrophilic was obtained via a suitable sintering process. After reduction sintering, the contact angle of the superhydrophilic surfaces changed from 155° to 0°. The scanning electron microscope (SEM) images show that the morphology of superhydrophobic and superhydrophilic surfaces looks like corals and cells respectively. The chemical composition and crystal structure of these surfaces were examined using energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). The results show that the main components on superhydrophobic surfaces are Cu, Cu2O and CuO, while the superhydrophilic surfaces are composed of Cu merely. The crystal structure is more inerratic and the grain size becomes bigger after the sintering. The interracial strength of the superhydrophilic surfaces was investigated, showing that the interfacial strength between superhydrophilic layer and copper substrate is considerably high.展开更多
Based on the principles of differential geometry and kinematics, a mathematical model is developed to describe the grinding wheel axial cross-section with the radial cross-section of the flute in a given drill under t...Based on the principles of differential geometry and kinematics, a mathematical model is developed to describe the grinding wheel axial cross-section with the radial cross-section of the flute in a given drill under the basic engagement condition between the generating flute and the generated grinding wheel (or disk milling tool). The mathematical model is good for the flute in the radial cross-section consisting of three arcs. Furthermore, a CAD system is also developed to represent the axial cross-section of the grinding wheel (or disk milling tool). With the system, the grinding wheel (or disk milling tool) axial cross-section that corresponds to the three-arc flute cross section can be conveniently simulated. Through the grinding experiment of drill flutes, the method and the CAD system are proved to be feasible and reasonable.展开更多
Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with ...Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with finite collapses (e.g., Logistic map, Tent map, and Chebyshev map), a new adaptive mutative scale chaos optimization algorithm (AMSCOA) is proposed by using the chaos model x = sin(2/x). In the optimization algorithm, in order to ensure its advantage of speed convergence and high precision in the seeking optimization process, some measures are taken: 1) the searching space of optimized variables is reduced continuously due to adaptive mutative scale method and the searching precision is enhanced accordingly; 2) the most circle time is regarded as its control guideline. The calculation examples about three testing functions reveal that the adaptive mutative scale chaos optimization algorithm has both high searching speed and precision.展开更多
Vision-based technologies have been extensively applied for on-street parking space sensing,aiming at providing timely and accurate information for drivers and improving daily travel convenience.However,it faces great...Vision-based technologies have been extensively applied for on-street parking space sensing,aiming at providing timely and accurate information for drivers and improving daily travel convenience.However,it faces great challenges as a partial visualization regularly occurs owing to occlusion from static or dynamic objects or a limited perspective of camera.This paper presents an imagery-based framework to infer parking space status by generating 3D bounding box of the vehicle.A specially designed convolutional neural network based on ResNet and feature pyramid network is proposed to overcome challenges from partial visualization and occlusion.It predicts 3D box candidates on multi-scale feature maps with five different 3D anchors,which generated by clustering diverse scales of ground truth box according to different vehicle templates in the source data set.Subsequently,vehicle distribution map is constructed jointly from the coordinates of vehicle box and artificially segmented parking spaces,where the normative degree of parked vehicle is calculated by computing the intersection over union between vehicle’s box and parking space edge.In space status inference,to further eliminate mutual vehicle interference,three adjacent spaces are combined into one unit and then a multinomial logistic regression model is trained to refine the status of the unit.Experiments on KITTI benchmark and Shanghai road show that the proposed method outperforms most monocular approaches in 3D box regression and achieves satisfactory accuracy in space status inference.展开更多
In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using concept...In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using conceptions of the relative error,the change tendency of the forecasted object,gray basic weight and adaptive control coefficient on the basis of the method of fuzzy variable weight.Based on Visual Basic 6.0 platform,a fuzzy adaptive variable weight combined forecasting and management system was developed.The application results reveal that the forecasting precisions from the new nonlinear combined forecasting model are higher than those of other single combined forecasting models and the combined forecasting and management system is very powerful tool for the required decision in complex industry system.展开更多
Environmental conscious manufacturing has become an important issue in industry because of market pressure and environmental regulations. An environmental risk assessment model was developed based on the network analy...Environmental conscious manufacturing has become an important issue in industry because of market pressure and environmental regulations. An environmental risk assessment model was developed based on the network analytic method and fuzzy set theory. The "interval analysis method" was applied to deal with the on site monitoring data as basic information for assessment. In addition, the fuzzy set theory was employed to allow uncertain, interactive and dynamic information to be effectively incorporated into the environmental risk assessment. This model is a simple, practical and effective tool for evaluating the environmental risk of manufacturing industry and for analyzing the relative impacts of emission wastes, which are hazardous to both human and ecosystem health. Furthermore, the model is considered useful for design engineers and decision maker to design and select processes when the costs, environmental impacts and performances of a product are taken into consideration.展开更多
As the mining depth increases,the problem of high-temperature thermal damage mainly caused by heat dissipation of surrounding rock is becoming more and more obvious.It is very important to solve the environmental prob...As the mining depth increases,the problem of high-temperature thermal damage mainly caused by heat dissipation of surrounding rock is becoming more and more obvious.It is very important to solve the environmental problem of mine heat damage to improve the efficiency of mineral resource exploitation and protect the physical and mental health of workers.One can apply thermal insulation coating on the walls of mine roadways as a means of implementing active heat insulation.In this paper,expanded perlite(EP)and glazed hollow bead(GHB)are used as the main thermal insulation materials,ceramsite and sand as aggregate,plus glass fiber and sodium dodecyl sulfate to develop a new lightweight composite thermal insulation coating through orthogonal experiment method.According to the plate heat flow meter method and mechanical test method,the thermal insulation and mechanical properties of EP-GHB mixed ceramsite coating were studied by making specimens with different parameter ratios,and according to the analysis of the experimental results,the optimal mix ratio of the coating was selected.In addition,Fluent numerical simulation software was used to establish the roadway model,and the thermal insulation effect of the coating in the roadway under different working conditions was studied.The results show that the thermal conductivity of the prepared composite thermal insulation coating material is only 8.5% of that of ordinary cement mortar,and the optimal thickness of adding thermal insulation coating is 0.2 m,which can reduce the outlet air temperature of the roadway with a length of 1000 m by 4.87 K at this thickness.The thermal insulation coating developed in this study has the advantages of simple technology and strong practicability,and has certain popularization and application value in mine heat damage control.展开更多
On the current breeding goose farm,the detection of individual egg laying mainly depends on some judgement experiences of farm workers.At present,there have been some egg laying detection systems developed with images...On the current breeding goose farm,the detection of individual egg laying mainly depends on some judgement experiences of farm workers.At present,there have been some egg laying detection systems developed with images and weighing sensors,which only signal the eggs being laid,but no egg position being achieved.Meanwhile,the detection rate of the system is not high due to environment limitations like dim light of the goose barn.Therefore,to solve these problems mentioned above,an intelligent detection and positioning system is pro-posed by integrating technologies of the Radio Frequency(RF)and photoelectric sensors,together with the geometric calculation principle.In this research,individual egg laying information of breeding geese in a non-cage state was examined to improve the level of auto-matic detection and positioning in the field of breeder egg production.The results showed that an accurate detection and positioning of an egg in a nest filled with the artificial turf could be achieved under some conditions:the height of sensor is 3.5 cm from the bottom plate of the egg laying nest,the spacing of the photoresistor module is 5 cm,and the external light intensity is less than 110 LUX.It also shown that the error of the goose egg position recognition is 0.443 cm with a suitable level of straw in the nest.Therefore,the monitoring system and positioningmethod that was developed in this research could provide a reference for the analysis of individual egg laying behavior,and could result in an improvement in the automatic egg collection for the breeding geese production.展开更多
The hybrid boundary node method (HdBNM) combines a modified function with the moving least squares approximation to form a boundary-only truly meshless method. This paper describes two implementations of the HdBNM, ...The hybrid boundary node method (HdBNM) combines a modified function with the moving least squares approximation to form a boundary-only truly meshless method. This paper describes two implementations of the HdBNM, the singular hybrid boundary node method (ShBNM) and the regular hybrid boundary node method (RhBNM). The ShBNM and RhBNM were compared with each other, and the parameters that influence their performance were studied in detail. The convergence rates and their applicability to thin structures were also investigated. The ShBNM and RhBNM are found to be very easy to implement and to efficiently obtain numerical solutions to computational mechanics problems.展开更多
The enhancement of energy density and cycling stability is in urgent need for the widespread applications of aqueous rechargeable Ni-Zn batteries.Herein,a facile strategy has been employed to construct hierarchical Co...The enhancement of energy density and cycling stability is in urgent need for the widespread applications of aqueous rechargeable Ni-Zn batteries.Herein,a facile strategy has been employed to construct hierarchical Co-doped NiMoO4nanosheets as the cathode for high-performance Ni-Zn battery.Benefiting from the merits of substantially improved electrical conductivity and increased concentration of oxygen vacancies,the NiMoO4with 15%cobalt doping(denoted as CNMO-15)displays the best capacity of 361.4 m A h g-1at a current density of 3 A g-1and excellent cycle stability.Moreover,the assembled CNMO-15//Zn battery delivers a satisfactory specific capacity of 270.9 mA h g-1at 2 A g-1and a remarkable energy density of 474.1 W h kg-1at 3.5 kW kg-1,together with a maximum power density of 10.3 kW kg-1achieved at 118.8 W h kg-1.Noticeably,there is no capacity decay with a 119.8%retention observed after 5000 cycles,demonstrating its outstanding long lifespan.This work might provide valuable inspirations for the fabrication of high-performance Ni-Zn batteries with superior energy density and impressive stability.展开更多
We present a double-layered control algorithm to plan the local trajectory for automated trucks equipped with four hub motors. The main layer of the proposed control algorithm consists of a main layer nonlinear model ...We present a double-layered control algorithm to plan the local trajectory for automated trucks equipped with four hub motors. The main layer of the proposed control algorithm consists of a main layer nonlinear model predictive control(MLN-MPC) controller and a secondary layer nonlinear MPC(SLN-MPC) controller. The MLN-MPC controller is applied to plan a dynamically feasible trajectory, and the SLN-MPC controller is designed to limit the longitudinal slip of wheels within a stable zone to avoid the tire excessively slipping during traction. Overall, this is a closed-loop control system. Under the off-line co-simulation environments of AMESim, Simulink, dSPACE, and TruckSim, a dynamically feasible trajectory with collision avoidance operation can be generated using the proposed method, and the longitudinal wheel slip can be constrained within a stable zone so that the driving safety of the truck can be ensured under uncertain road surface conditions. In addition, the stability and robustness of the method are verified by adding a driver model to evaluate the application in the real world. Furthermore, simulation results show that there is lower computational cost compared with the conventional PID-based control method.展开更多
基金Project(50472031) supported by the National Natural Science Foundation of China
文摘A novel biocomposite coating of hydroxyapatite/Al2O3 was fabricated on titanium using a multi-step technique including physical vapor deposition(PVD), anodization, electrodeposition and hydrothermal treatment. Anodic Al2O3 layer with micrometric pore diameter was formed by anodization of the PVD-deposited aluminum film on titanium and subsequent removal of part barrier Al2O3 layer. Hydroxyapatite coating was then electrodeposited onto the as-synthesized anodic Al2O3 on titanium. A hydrothermal process was finally applied to the fabricated biocomposite coating on titanium in alkaline medium. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffractometry(XRD) were employed to investigate the morphologies and compositions of the pre-and post-hydrothermally treated hydroxyapatite/Al2O3 biocomposite coatings. The results show that micrometric plate-like Ca-deficient hydroxyapatite (CDHA) coatings are directly electrodeposited onto anodic Al2O3 at constant current densities ranging from 1.2 to 2.0 mA/cm2 using NaH2PO4 as the phosphorous source. After hydrothermal treatment, the micrometric plate-like CDHA coating electrodeposited at 2.0 mA/cm2 is converted into nano-network Ca-rich hydroxyapatite (CRHA) one and the adhesion strength is improved from 9.5 MPa to 21.3 MPa. A mechanism of dissolution-recrystallization was also proposed for the formation of CRHA.
基金“The Pearl River Talent Recruitment Program”in 2019(Grant No.2019CX01G338)Guangdong Province and the Research Funding of Shantou University for New Faculty Member(Grant No.NTF19024-2019)the National Natural Science Foundation of China(NSFC)(Grant No.41807235).
文摘When pumping is conducted in confined aquifer inside excavation pit(waterproof curtain),the direction of the groundwater seepage outside the excavation changes from horizontal to vertical owing to the existence of the curtain barrier.There is no analytical calculation method for the groundwater head distribution induced by dewatering inside excavation.This paper first analyses the mechanism of the blocking effects from a close barrier in confined aquifer.Then,a simple equation based on analytical solution is proposed to calculate groundwater heads inside and outside of the excavation pit with waterproof curtain(hereafter refer to close barrier)in a confined aquifer.The distribution of groundwater head is derived according to two conditions:(i)pumping with a constant water head,and(ii)pumping with a constant flow rate.The proposed calculation equation is verified by both numerical simulation and experimental results.The comparisons demonstrate that the proposed model can be applied in engineering practice of excavation.
基金funded by the National Nature Science Foundation of China(NSFC)(Grant No.41807235)funded by“The Pearl River Talent Recruitment Program”in 2019(Grant No.2019CX01G338)Guangdong Province and the Research Funding of Shantou University for New Faculty Member(NTF19024-2019).
文摘This study presents a numerical investigation of dewatering-induced settlement and wall deflection during pumping tests in Tianjin,China.Based on the measured groundwater head and building settlement during the pumping test,a three-dimensional liquid-solid coupling model is established by using the finite element method(FEM).The void ratio,hydraulic conductivity,and elastic modulus of each layer are back-calculated through the numerical model.The groundwater drawdown,seepage field,ground settlement,horizontal ground displacement,and diaphragm wall lateral deflection are analyzed using the FEM model.The simulated results demonstrate that(i)the maximum ground settlement outside of the excavation reaches to 82 mm due to the leakage effect of aquitards;(ii)large horizontal displacement occurs in the soil during the pumping test with a maximum value of 28.3 mm,and the installation of the diaphragm wall in the aquifer can reduce the horizontal displacement of the ground;(iii)long-term pumping causes a large lateral deflection of the diaphragm wall,and a maximum value of 23.2 mm occurs at the layer where the screens of the wells are located;and(iv)long-term large-scale pumping should be avoided before excavation.
文摘TiC/ZA43 composites were fabricated by XD TM and stirring casting techniques. The tribology properties of the unreinforced ZA43 alloy and the composites were studied by using a block on ring apparatus. Experimental results show that the incorporation of TiC particles improves the microstructure of ZA43 matrix alloy. The coefficient of friction μ and the width of worn groove decrease with the increase of TiC volume fraction φ (TiC). The width of worn groove and μ of the composite during wear testing increase with increasing the applied load. Metallographic examinations reveal that unreinforced ZA43 alloy has deep ploughing grooves with obvious adhesion phenomenon, whereas TiC/ZA43 composites have smooth worn surface. Delamination formation is related to the fatigue cracks and the shear cracks on the surface. [
文摘To solve the existing problems during the ceramic mold enterprises product design and development process, the variable structure parametric design system based on modular of ceramic mold has been developed. The system uses the object-oriented technology and top-down design concept as a guide, establishes a ceramic mold parametric design process, divides the process of ceramic mold design into modules of different levels and creates a component model library based on the functional analysis. Expanding modular thinking to parts structure design level is an effective solution to the difficulty of changing the structure during the product design process. Examples show that the system can achieve a ceramic mold product design, improve design efficiency.
基金Project(51875491) supported by the National Natural Science Foundation of ChinaProject(2021T3069) supported by the Fujian Science and Technology Plan STS Project,China。
文摘Laser cleaning is a highly nonlinear physical process for solving poor single-modal(e.g., acoustic or vision)detection performance and low inter-information utilization. In this study, a multi-modal feature fusion network model was constructed based on a laser paint removal experiment. The alignment of heterogeneous data under different modals was solved by combining the piecewise aggregate approximation and gramian angular field. Moreover, the attention mechanism was introduced to optimize the dual-path network and dense connection network, enabling the sampling characteristics to be extracted and integrated. Consequently, the multi-modal discriminant detection of laser paint removal was realized. According to the experimental results, the verification accuracy of the constructed model on the experimental dataset was 99.17%, which is 5.77% higher than the optimal single-modal detection results of the laser paint removal. The feature extraction network was optimized by the attention mechanism, and the model accuracy was increased by 3.3%. Results verify the improved classification performance of the constructed multi-modal feature fusion model in detecting laser paint removal, the effective integration of acoustic data and visual image data, and the accurate detection of laser paint removal.
基金National Natural Science Foundation of China(No.11872335)。
文摘We study the first integral and the solution of electromagnetic field by Lie symmetry technique and the differential invariant method.The definition and properties of differential invariants are introduced and the infinitesimal generators of Lie symmetries and the differential invariants of electromagnetic field are obtained.The first integral and the solution of electromagnetic field are given by the Lie symmetry technique and the differential invariants method.A typical example is presented to illustrate the application of our theoretical results.
基金Supported by the National Natural Science Foundation of China(51275180)the Fundamental Research Funds for the Central Universities(2013ZM0003)the Doctorate Dissertation Funds of Guangdong Province(sybzzxm 201213)
文摘Superhydrophilic surfaces were fabricated on copper substrates by an electrochemical deposition and sintering process. Superhydrophobic surfaces were prepared by constructing micro/nano-structure on copper substrates through an electrochemical deposition method. Conversion from superhydrophobic to superhydrophilic was obtained via a suitable sintering process. After reduction sintering, the contact angle of the superhydrophilic surfaces changed from 155° to 0°. The scanning electron microscope (SEM) images show that the morphology of superhydrophobic and superhydrophilic surfaces looks like corals and cells respectively. The chemical composition and crystal structure of these surfaces were examined using energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). The results show that the main components on superhydrophobic surfaces are Cu, Cu2O and CuO, while the superhydrophilic surfaces are composed of Cu merely. The crystal structure is more inerratic and the grain size becomes bigger after the sintering. The interracial strength of the superhydrophilic surfaces was investigated, showing that the interfacial strength between superhydrophilic layer and copper substrate is considerably high.
基金This project is supported by National Natural Science Foundation of China (No.50675065).
文摘Based on the principles of differential geometry and kinematics, a mathematical model is developed to describe the grinding wheel axial cross-section with the radial cross-section of the flute in a given drill under the basic engagement condition between the generating flute and the generated grinding wheel (or disk milling tool). The mathematical model is good for the flute in the radial cross-section consisting of three arcs. Furthermore, a CAD system is also developed to represent the axial cross-section of the grinding wheel (or disk milling tool). With the system, the grinding wheel (or disk milling tool) axial cross-section that corresponds to the three-arc flute cross section can be conveniently simulated. Through the grinding experiment of drill flutes, the method and the CAD system are proved to be feasible and reasonable.
基金Hunan Provincial Natural Science Foundation of China (No. 06JJ50103)the National Natural Science Foundationof China (No. 60375001)
文摘Based on results of chaos characteristics comparing one-dimensional iterative chaotic self-map x = sin(2/x) with infinite collapses within the finite region[-1, 1] to some representative iterative chaotic maps with finite collapses (e.g., Logistic map, Tent map, and Chebyshev map), a new adaptive mutative scale chaos optimization algorithm (AMSCOA) is proposed by using the chaos model x = sin(2/x). In the optimization algorithm, in order to ensure its advantage of speed convergence and high precision in the seeking optimization process, some measures are taken: 1) the searching space of optimized variables is reduced continuously due to adaptive mutative scale method and the searching precision is enhanced accordingly; 2) the most circle time is regarded as its control guideline. The calculation examples about three testing functions reveal that the adaptive mutative scale chaos optimization algorithm has both high searching speed and precision.
基金This work was supported in part by National Natural Science Foundation of China(No.51805312)in part by Shanghai Sailing Program(No.18YF1409400)+2 种基金in part by Training and Funding Program of Shanghai College young teachers(No.ZZGCD15102)in part by Scientific Research Project of Shanghai University of Engineering Science(No.2016-19)in part by the Shanghai University of Engineering Science Innovation Fund for Graduate Students(No.18KY0613).
文摘Vision-based technologies have been extensively applied for on-street parking space sensing,aiming at providing timely and accurate information for drivers and improving daily travel convenience.However,it faces great challenges as a partial visualization regularly occurs owing to occlusion from static or dynamic objects or a limited perspective of camera.This paper presents an imagery-based framework to infer parking space status by generating 3D bounding box of the vehicle.A specially designed convolutional neural network based on ResNet and feature pyramid network is proposed to overcome challenges from partial visualization and occlusion.It predicts 3D box candidates on multi-scale feature maps with five different 3D anchors,which generated by clustering diverse scales of ground truth box according to different vehicle templates in the source data set.Subsequently,vehicle distribution map is constructed jointly from the coordinates of vehicle box and artificially segmented parking spaces,where the normative degree of parked vehicle is calculated by computing the intersection over union between vehicle’s box and parking space edge.In space status inference,to further eliminate mutual vehicle interference,three adjacent spaces are combined into one unit and then a multinomial logistic regression model is trained to refine the status of the unit.Experiments on KITTI benchmark and Shanghai road show that the proposed method outperforms most monocular approaches in 3D box regression and achieves satisfactory accuracy in space status inference.
基金Project(08SK1002) supported by the Major Project of Science and Technology Department of Hunan Province,China
文摘In order to enhance forecasting precision of problems about nonlinear time series in a complex industry system,a new nonlinear fuzzy adaptive variable weight combined forecasting model was established by using conceptions of the relative error,the change tendency of the forecasted object,gray basic weight and adaptive control coefficient on the basis of the method of fuzzy variable weight.Based on Visual Basic 6.0 platform,a fuzzy adaptive variable weight combined forecasting and management system was developed.The application results reveal that the forecasting precisions from the new nonlinear combined forecasting model are higher than those of other single combined forecasting models and the combined forecasting and management system is very powerful tool for the required decision in complex industry system.
文摘Environmental conscious manufacturing has become an important issue in industry because of market pressure and environmental regulations. An environmental risk assessment model was developed based on the network analytic method and fuzzy set theory. The "interval analysis method" was applied to deal with the on site monitoring data as basic information for assessment. In addition, the fuzzy set theory was employed to allow uncertain, interactive and dynamic information to be effectively incorporated into the environmental risk assessment. This model is a simple, practical and effective tool for evaluating the environmental risk of manufacturing industry and for analyzing the relative impacts of emission wastes, which are hazardous to both human and ecosystem health. Furthermore, the model is considered useful for design engineers and decision maker to design and select processes when the costs, environmental impacts and performances of a product are taken into consideration.
基金supported by the National Natural Science Foundation of China(No.52374209)the Natural Science Foundation of Shandong Province(No.ZR2023QE080).
文摘As the mining depth increases,the problem of high-temperature thermal damage mainly caused by heat dissipation of surrounding rock is becoming more and more obvious.It is very important to solve the environmental problem of mine heat damage to improve the efficiency of mineral resource exploitation and protect the physical and mental health of workers.One can apply thermal insulation coating on the walls of mine roadways as a means of implementing active heat insulation.In this paper,expanded perlite(EP)and glazed hollow bead(GHB)are used as the main thermal insulation materials,ceramsite and sand as aggregate,plus glass fiber and sodium dodecyl sulfate to develop a new lightweight composite thermal insulation coating through orthogonal experiment method.According to the plate heat flow meter method and mechanical test method,the thermal insulation and mechanical properties of EP-GHB mixed ceramsite coating were studied by making specimens with different parameter ratios,and according to the analysis of the experimental results,the optimal mix ratio of the coating was selected.In addition,Fluent numerical simulation software was used to establish the roadway model,and the thermal insulation effect of the coating in the roadway under different working conditions was studied.The results show that the thermal conductivity of the prepared composite thermal insulation coating material is only 8.5% of that of ordinary cement mortar,and the optimal thickness of adding thermal insulation coating is 0.2 m,which can reduce the outlet air temperature of the roadway with a length of 1000 m by 4.87 K at this thickness.The thermal insulation coating developed in this study has the advantages of simple technology and strong practicability,and has certain popularization and application value in mine heat damage control.
基金This work was supported by the Key Area Research Program of Universities in Guangdong Province(Nature science),China(2020ZDZX1041).I would like to express my gratitude to all those who helped me during the writing of this thesis.
文摘On the current breeding goose farm,the detection of individual egg laying mainly depends on some judgement experiences of farm workers.At present,there have been some egg laying detection systems developed with images and weighing sensors,which only signal the eggs being laid,but no egg position being achieved.Meanwhile,the detection rate of the system is not high due to environment limitations like dim light of the goose barn.Therefore,to solve these problems mentioned above,an intelligent detection and positioning system is pro-posed by integrating technologies of the Radio Frequency(RF)and photoelectric sensors,together with the geometric calculation principle.In this research,individual egg laying information of breeding geese in a non-cage state was examined to improve the level of auto-matic detection and positioning in the field of breeder egg production.The results showed that an accurate detection and positioning of an egg in a nest filled with the artificial turf could be achieved under some conditions:the height of sensor is 3.5 cm from the bottom plate of the egg laying nest,the spacing of the photoresistor module is 5 cm,and the external light intensity is less than 110 LUX.It also shown that the error of the goose egg position recognition is 0.443 cm with a suitable level of straw in the nest.Therefore,the monitoring system and positioningmethod that was developed in this research could provide a reference for the analysis of individual egg laying behavior,and could result in an improvement in the automatic egg collection for the breeding geese production.
基金the National Key Basic Research and Development (973) Program of China (No. 2004CB719402)the Program for New Century Excellent Talents in University (NCET-04-0766)
文摘The hybrid boundary node method (HdBNM) combines a modified function with the moving least squares approximation to form a boundary-only truly meshless method. This paper describes two implementations of the HdBNM, the singular hybrid boundary node method (ShBNM) and the regular hybrid boundary node method (RhBNM). The ShBNM and RhBNM were compared with each other, and the parameters that influence their performance were studied in detail. The convergence rates and their applicability to thin structures were also investigated. The ShBNM and RhBNM are found to be very easy to implement and to efficiently obtain numerical solutions to computational mechanics problems.
基金financially supported by the National Natural Science Foundation of China(51602049)the Fundamental Research Funds for the Central Universities(2232017D-15,GSIF-DH-M-2020002)China Postdoctoral Science Foundation(2017M610217 and 2018T110322)。
文摘The enhancement of energy density and cycling stability is in urgent need for the widespread applications of aqueous rechargeable Ni-Zn batteries.Herein,a facile strategy has been employed to construct hierarchical Co-doped NiMoO4nanosheets as the cathode for high-performance Ni-Zn battery.Benefiting from the merits of substantially improved electrical conductivity and increased concentration of oxygen vacancies,the NiMoO4with 15%cobalt doping(denoted as CNMO-15)displays the best capacity of 361.4 m A h g-1at a current density of 3 A g-1and excellent cycle stability.Moreover,the assembled CNMO-15//Zn battery delivers a satisfactory specific capacity of 270.9 mA h g-1at 2 A g-1and a remarkable energy density of 474.1 W h kg-1at 3.5 kW kg-1,together with a maximum power density of 10.3 kW kg-1achieved at 118.8 W h kg-1.Noticeably,there is no capacity decay with a 119.8%retention observed after 5000 cycles,demonstrating its outstanding long lifespan.This work might provide valuable inspirations for the fabrication of high-performance Ni-Zn batteries with superior energy density and impressive stability.
基金Project supported by the National Fund for Fundamental Research,China(No.282017Y-5303)the National Natural Science Foundation of China(Nos.51805312 and 51675324)+4 种基金the Shanghai Sailing Program,China(No.18YF1409400)the Training and Funding Program of Shanghai College Young Teachers,China(No.ZZGCD15102)the Scientific Research Project of Shanghai University of Engineering Science,China(No.2016-19)the Shanghai University of Engineering Science Innovation Fund for Graduate Students,China(No.18KY0610)the Technology and Innovation Projects of Guangxi Province,China(No.2017-393)。
文摘We present a double-layered control algorithm to plan the local trajectory for automated trucks equipped with four hub motors. The main layer of the proposed control algorithm consists of a main layer nonlinear model predictive control(MLN-MPC) controller and a secondary layer nonlinear MPC(SLN-MPC) controller. The MLN-MPC controller is applied to plan a dynamically feasible trajectory, and the SLN-MPC controller is designed to limit the longitudinal slip of wheels within a stable zone to avoid the tire excessively slipping during traction. Overall, this is a closed-loop control system. Under the off-line co-simulation environments of AMESim, Simulink, dSPACE, and TruckSim, a dynamically feasible trajectory with collision avoidance operation can be generated using the proposed method, and the longitudinal wheel slip can be constrained within a stable zone so that the driving safety of the truck can be ensured under uncertain road surface conditions. In addition, the stability and robustness of the method are verified by adding a driver model to evaluate the application in the real world. Furthermore, simulation results show that there is lower computational cost compared with the conventional PID-based control method.