To investigate the overall damage characteristics and failure modes of a warship subjected to an underwater non-contact near-field explosion,a hull girder with a trapezoidal cross-section was designed,manufactured,and...To investigate the overall damage characteristics and failure modes of a warship subjected to an underwater non-contact near-field explosion,a hull girder with a trapezoidal cross-section was designed,manufactured,and tested.The design criteria and parameters were determined according to the similarity criterion.Dynamic responses of the girder freely floating on water were obtained under varying conditions,including stand-off distance,charge mass,and position of attack.Damage morphologies of the girder model were obtained.Based on our analysis,basic conditions for sagging damage of the hull girder are proposed.The aim of this study was to determine an efficient method of attack resulting in the most severe damage to the ship hull.The experimental results show that the girder mainly exhibits a first-order response when the first wet frequency of the girder is close to the frequency of the explosion bubble pulsation.The largest deformation was observed when the underwater explosion occurred directly below the midspan of the girder compared to other explosions of the same intensity at different attack positions.When the ratio of stand-off to maximum bubble radius(λ)satisfies 0.7≤λ<2,the bubble mainly causes sagging damage instead of hogging.Asλdecreases(1≤λ<2),the sagging damage increases under the same charge mass.However,asλdecreases further(0.7≤λ<1),the sagging deformation decreases.This is likely due to the impact of the liquid jet formed by the collapsing bubble,which causes the girder deformation to shift from sagging back to hogging deformation.The initial shock wave excites the high-frequency response of the girder structure but contributes very little to the overall velocity and displacement.However,bubble pulsation typically causes a low-frequency response,which will affect the velocity and displacement of the girder.The low-pressure region of the flow field formed by bubble pulsation and resonant coupling between the girder and the bubble are the predominant causes of damage to the overall girder structure.展开更多
With the development of large liquid cargo ships,liquid tank sloshing has gradually become a hot research topic in the area of shipping and ocean Engineering.Liquid tank sloshing,characterized by strong nonlinearity a...With the development of large liquid cargo ships,liquid tank sloshing has gradually become a hot research topic in the area of shipping and ocean Engineering.Liquid tank sloshing,characterized by strong nonlinearity and randomness,not only affects the stability of the ship but also generates a huge impact force on the wall of the tank.To further investigate liquid tank sloshing,a comprehensive review is given on the research process of the most focused subjects of liquid sloshing.Summarizing the existing research will help to identify issues in the current field and provide useful references.The methods for investigating sloshing,the research progress and the situations worldwide are discussed.The advantages and defects of experiments and numerical simulations are also explored.The problems which need to be explored in the future are subsequently proposed.展开更多
Generative AI is rapidly employed by software developers to generate code or other software artifacts.However,the analysis and assessment of generative AI with respect to requirements analysis and modeling tasks,espec...Generative AI is rapidly employed by software developers to generate code or other software artifacts.However,the analysis and assessment of generative AI with respect to requirements analysis and modeling tasks,especially with UML,has received little attention.This paper investigates the capabilities of generative AI to aid in the creation of three types of UML models:UML use case models,class diagrams,and sequence diagrams.For this purpose,we designed an AI-aided UML modeling task in our course on software requirements modeling.50 undergraduates who majored in Software Engineering at Wuhan University completed the modeling task and the corresponding online survey.Our findings show that generative AI can help create these three types of UML models,but its performance is limited to identifying essential modeling elements of these UML models.展开更多
A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibrati...A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.展开更多
Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated...Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase.展开更多
In this study,a method for control of reticulated shells is proposed and its practicality is demonstrated.The control is implemented by replacing selected bars of the shell with passive viscoelastic dampers.By applyin...In this study,a method for control of reticulated shells is proposed and its practicality is demonstrated.The control is implemented by replacing selected bars of the shell with passive viscoelastic dampers.By applying the eigenvalue perturbation technique and the earthquake spectrum concept,the sensitivities of various topologies of the shell are analyzed,and the optimal topology is determined by taking their symmetries into consideration.The results of this research show that common damper topologies are not effective for all types of responses and recorded earthquakes.The optimal topology identifi ed requires a minimal number of dampers for each type of earthquake record.The displacement control effect of the dynamic responses of the optimal topology is 10% – 20%; the acceleration control effect is also about 10% – 20%; and the axial force control effect is as much as 30% – 45%.Furthermore,the incremental dynamic analysis(IDA) method is used to investigate the stability of the controlled shell.The results show that the dynamic stability of the controlled shell is well preserved when it is vibrated under vibration and is better than the uncontrolled shell.The ultimate load increased by 10% and the elements entered into the plastic stage when the peak acceleration reached 580 Gal,which is 200 Gal larger than the uncontrolled shell.展开更多
Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equ...Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equivalence principle, a spares demand rate calculation method for redundant system is proposed through structure transformation. According to the system analysis method, the general modeling data structure of spares support echelon and system indenture is established, and the mission success probability is taken as the optimization target to build the dynamic optimization model of carrying spares during the process of multi-phase. By introducing the Lagrange multiplier, the spares weight, volume and cost are transformed to the single target of the spares total scale, and the initial Lagrange factors and its dynamic adjustment policy is proposed. In a given example, the main influence factors of the carrying spares project are analyzed, and the study results are in accordance with the reality, which can provide a new approach to mission-oriented carrying spares optimization for the redundant system.展开更多
Air lubrication by means of a bottom cavity is a promising method for ship drag reduction. The characteristics of the bottom cavity are sensitive to the flow field around the ship hull and the effect of drag reduction...Air lubrication by means of a bottom cavity is a promising method for ship drag reduction. The characteristics of the bottom cavity are sensitive to the flow field around the ship hull and the effect of drag reduction, especially the depth of the bottom cavity. In this study, a ship model experiment of a bulk carrier is conducted in a towing tank using the method of air layer drag reduction (ALDR) with different bottom cavity depths. The shape of the air layer is observed, and the changes in resistance are measured. The model experiments produce results of approximately 20% for the total drag reduction at the ship design speed for a 25-mm cavity continuously supplied with air at Cq = 0.224 in calm water, and the air layer covers the whole cavity when the air flow rate is suitable. In a regular head wave, the air layer is easily broken and reduces the drag reduction rate in short waves, particularly when λ/Lw1 is close to one;however, it still has a good drag reduction effect in the long waves.展开更多
In order to study the influence of the bolt joint mode on low-velocity projectiles penetrating the composite protective structure,two bolt joint models which connect the composite target to the fixed frame were design...In order to study the influence of the bolt joint mode on low-velocity projectiles penetrating the composite protective structure,two bolt joint models which connect the composite target to the fixed frame were designed,the ballistic test of the bolted composite protective structure with limited span was carried out,and the bearing and failure characteristics of the bolted region,as well as the energy dissipation of each part of the structure,were analyzed.The results show that in the condition of lowvelocity impact,there are three failure modes for the bolted composite protective structure subjected to projectile penetration,including failure of the impact point of the composite target,failure of protective structure connecting components and failure of the holes in the bolted region of the composite target;the failure mode of bolt holes in the bolted region has a great influence on the protection performance,and the allowable value of the bearing capacity of the bolted region depends on the sum of the minimum failure load in the failure modes and the friction force;shear-out failure occurring in the bolt holes in the bolted region exerts the greatest effect on ballistic performance,which should be avoided;When simultaneous failure occurs in the bolted region and the free deformation region of the composite protective structure,the energy absorption per unit surface density of the composite protective structure reaches the maximum,which can give full play to its anti-penetration efficiency.展开更多
As the energy supply problem worsens, the development and utilization of marine renewable energy have become a research hotspot. The development of wave energy is moving from the near shore to the distant sea. The pow...As the energy supply problem worsens, the development and utilization of marine renewable energy have become a research hotspot. The development of wave energy is moving from the near shore to the distant sea. The power-generation efficiency of a single two-floating-body wave-energy converter is relatively low. To fully utilize wave energy and improve the wave-energy capture rate of a fixed sea area, arranging a two-floating-body wave-energy converter array is necessary. This paper first introduces the basic theory of multi-floating flow field, time-domain calculation method, and influence factor of the waveenergy converter array. Then, the development of AQWA software in Fortran language considers the effect of power takeoff. A calculation method based on ANSYS–AQWA is proposed to simulate the motion of the oscillating-buoy two-floating-body wave-energy converter. The results are compared with the experimental results from the National Renewable Energy Laboratory. Finally, the ANSYS–AQWA method is used to study the power characteristics of simple and complex arrays of wave-energy converters. The average power generation of simple arrays is largest at 0°, and the average power generation of complex arrays does not change with the wave direction. Optimal layout spacing exists for the simple and complex arrays. These findings can serve as a valuable reference for the large-scale array layout of wave-energy converters in the future.展开更多
The viscous flow field around two-dimensional flapping ( heaving and pitching) foils was numerically computed. The structural characteristics of caudal vortices were investigated and the contour curves at different ...The viscous flow field around two-dimensional flapping ( heaving and pitching) foils was numerically computed. The structural characteristics of caudal vortices were investigated and the contour curves at different phase angles were obtained. The relationships between the structural characteristics of the vortices and the force acting on the foil and between the widths of the caudal vortex street and of the caudal flow field were analyzed. A method to determine the shedding frequency of the vortices was proposed.展开更多
The blade frequency noise of non-cavitation propeller in a uniform flow is analyzed in time domain. The unsteady loading (dipole source) on the blade surface is calculated by a potential-based surface panel method. ...The blade frequency noise of non-cavitation propeller in a uniform flow is analyzed in time domain. The unsteady loading (dipole source) on the blade surface is calculated by a potential-based surface panel method. Then the time- dependent pressure data is used as the input for Ffowcs Williams-Hawkings formulation to predict the acoustics pressure. The integration of noise source is performed over the true blade surface rather than the nothickness blade surface, and the effect of hub can be considered. The noise characteristics of the non-cavitation propeller and the numerical discretization forms are discussed.展开更多
The thermodynamic charge performance of a variable-mass thermodynamic system was investigated by the simulation modeling and experimental analysis. Three sets of experiments were conducted for various charge time and ...The thermodynamic charge performance of a variable-mass thermodynamic system was investigated by the simulation modeling and experimental analysis. Three sets of experiments were conducted for various charge time and charge steam flow under three different control strategies of charge valve. Characteristic performance parameters from the average sub-cooled degree and the charging energy coefficient point of views were also defined to evaluate and predict the charge performance of system combined with the simulation model and experimental data. The results show that the average steam flow reflects the average sub-cooled degree qualitatively, while the charging energy coefficients of 74.6%, 69.9% and 100% relate to the end value of the average sub-cooled degree at 2.1, 2.9 and 0 respectively for the three sets of experiments. The mean and maximum deviations of the results predicted from those by experimental data are smaller than 6.8% and 10.8%, respectively. In conclusion, the decrease of average steam flow can effectively increase the charging energy coefficient in the same charge time condition and therefore improve the thermodynamic charge performance of system. While the increase of the charging energy coefficient by extending the charge time needs the consideration of the operating frequency for steam users.展开更多
The global consumption of p-xylene(PX)for the production of polymers has raised serious concerns about its impact on the environment.As various reports have shown the risks that PX could pose to human health,research ...The global consumption of p-xylene(PX)for the production of polymers has raised serious concerns about its impact on the environment.As various reports have shown the risks that PX could pose to human health,research into cost-effective remedial methods to remove PX from the environment has gained attraction.In this work,a hierarchical porous crab shell biochar(KCS)was synthesized,characterized,and evaluated for its efficiency to remove PX from aqueous solution.The characterizations of KCS,including the porous structure,surface functional group,phase structure,and surface morphology,were discussed by N_(2) adsorption-desorption,FTIR,XRD,and SEM.Batch adsorption experiments showed that the maximum adsorption capacity of PX on KCS was 393 mg/g within 5 min,larger than most biological/biomass materials,mainly due to the higher specific surface area of 2046 m^(2)/g,and abundant lipophilic functional groups.Subsequent adsorption kinetics study indicated a pseudo-second-order model which implied that the adsorption of PX was due to chemisorption.Thermodynamic parameters showed that the values ofΔH°andΔG°were both negative,indicating that the PX adsorption process on KCS was spontaneous and exothermic.The performance of KCS in delivering a cost-effective,fast,and efficient solution for the removal of PX from aqueous solution would greatly benefit current environmental remediation efforts.展开更多
In order to investigate the effect of wind input and whitecapping dissipation on the simulation of typhoon-waves, three experiments are conducted with the latest version of SWAN (Simulating WAves Nearshore) model. T...In order to investigate the effect of wind input and whitecapping dissipation on the simulation of typhoon-waves, three experiments are conducted with the latest version of SWAN (Simulating WAves Nearshore) model. The three experiments adopt the Komen, Janssens, and Westhuysen expressions for wind input and whitecapping dissipation, respectively. Besides the above-mentioned source tems, other parameterization schemes in these experiments are the same. It shows that the experiment with the Westhuysen expression result in the least simulation errors while that with the Janssens expression has the most. The results from the experiments with Komen and Westhuysen expressions show that the differenees in significant wave height (SWH) have a good correlation with the differences in dissipation energy caused by whiteeapping. This indicates that the whitecapping dissipation source term plays an important role in the resultant differences of the simulated SWH between the two experiments.展开更多
Reliability, maintainability, supportability (RMS) are the important performance indexes of equipment, which affect not only the availability, but also the life cycle cost (LCC) of the equipment. First discussed i...Reliability, maintainability, supportability (RMS) are the important performance indexes of equipment, which affect not only the availability, but also the life cycle cost (LCC) of the equipment. First discussed is the qualitative relation between reliability and LCC and the costs which may be used to enhance the reliability. Secondly, the factors that affect the maintainability are summarized, and if maintainability is advanced, the trend of the LCC is depicted. Thirdly, the qualitative relation between the supportability and LCC is described. Reliability, maintainability and supportability index all have a relation with the availability, so this paper presents the tradeoff for RMS indexes based on the availability calculation models and LCC models. On the condition that the availability value is not below the given value, the decision-making is optimal if the life cycle cost is the minimum value.展开更多
According to the configuration and absorption theory of polymer macromolecule materials, a kind of IPN with wider temperature range and higher damping property was designed and synthesized. By using the spectrum of dy...According to the configuration and absorption theory of polymer macromolecule materials, a kind of IPN with wider temperature range and higher damping property was designed and synthesized. By using the spectrum of dynamic mechanical thermal analysis (DMTA) and acoustic pulse tube device, the microstructure, phase separation degree, phase size and phase continuity of IPN with different components were analyzed. The experimental results show that the nano size grade of phase, the continuous and homogeneous IPN phase can provide higher absorption coefficient. The absorption coefficient of optimized sample I09 is 0.7 in 2 kHz, and the absorption peak is 0.9 in 4 kHz. Then the underwater acoustic properties of modified IPN filled with mica, micro-balloon and nano-SiO2 were discussed respectively to indicate that the inhomogeneous property of filler-modified IPN can improve the underwater acoustic stealth performance effectively, and the micro size grade of these filler-modified IPN can work well in low frequency acoustic stealth.展开更多
The mechanical performance of ultra-high molecular weight polyethylene fiber (UHMWPE) and its composites were proposed. Penetrated properties of different thicknesses UHMWPE FRP laminates (URP) impacted by 3.3g cubic ...The mechanical performance of ultra-high molecular weight polyethylene fiber (UHMWPE) and its composites were proposed. Penetrated properties of different thicknesses UHMWPE FRP laminates (URP) impacted by 3.3g cubic high velocity fragments were studied. According to the ballistic experimental results and theoretical analysis, the linear relation between ballistic limit vBL and area density AD was confirmed. The relative parameters of showing experientially residual velocity vr were expressed by the function of AD. In the end, versatile experiential expression between vr and AD was found. Prediction of vr and vBL using obtained expressions under the above stated condition of impacting URP was consistent with the experimentaled results. Consequently, the two experiential relations can be used to predict the residual velocity and ballistic limit of cubic high velocity fragments impacting URP. The residual characteristic of high-velocity steel fragments penetrating UHMWPE FRP laminates can be more exactly forecasted by the two derived experiential formulas.展开更多
Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching p...Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching process, the thermodynamics and kinetics characteristics of the system with three valves of different flow characteristics were got. The simulation results show that the values of the peak-to-average ratios of dimensionless acceleration with the equal percentage valve, the linear valve and the quick opening valve are 1.355, 1.614 and 1.722, respectively, and the final values of the dimensionless velocities are 0.843, 0.957 and 1.0, respectively. In conclusion, the value of the dimensionless velocity with the equal percentage valve doesn't reach the set value of 0.90 when the dimensionless displacement is 0.82, while the system with the linear valve can meet the launching requirement, as well as the fluctuation range of dimensionless acceleration is less than that of the quick opening valve. Therefore, the system with the linear valve has the best performance among the three kinds of valves.展开更多
Life cycle cost technique is a powerful tool to make a scientific decision and a useful method of advancing the continuable development of the society. In this paper, development course, application actuality and up-t...Life cycle cost technique is a powerful tool to make a scientific decision and a useful method of advancing the continuable development of the society. In this paper, development course, application actuality and up-to-date research trends of life cycle cost technique in China are summarized. Some suggestions are given on how to general- ize the application of life cycle cost technique which are used as the reference to study life cycle cost technique.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51679244).
文摘To investigate the overall damage characteristics and failure modes of a warship subjected to an underwater non-contact near-field explosion,a hull girder with a trapezoidal cross-section was designed,manufactured,and tested.The design criteria and parameters were determined according to the similarity criterion.Dynamic responses of the girder freely floating on water were obtained under varying conditions,including stand-off distance,charge mass,and position of attack.Damage morphologies of the girder model were obtained.Based on our analysis,basic conditions for sagging damage of the hull girder are proposed.The aim of this study was to determine an efficient method of attack resulting in the most severe damage to the ship hull.The experimental results show that the girder mainly exhibits a first-order response when the first wet frequency of the girder is close to the frequency of the explosion bubble pulsation.The largest deformation was observed when the underwater explosion occurred directly below the midspan of the girder compared to other explosions of the same intensity at different attack positions.When the ratio of stand-off to maximum bubble radius(λ)satisfies 0.7≤λ<2,the bubble mainly causes sagging damage instead of hogging.Asλdecreases(1≤λ<2),the sagging damage increases under the same charge mass.However,asλdecreases further(0.7≤λ<1),the sagging deformation decreases.This is likely due to the impact of the liquid jet formed by the collapsing bubble,which causes the girder deformation to shift from sagging back to hogging deformation.The initial shock wave excites the high-frequency response of the girder structure but contributes very little to the overall velocity and displacement.However,bubble pulsation typically causes a low-frequency response,which will affect the velocity and displacement of the girder.The low-pressure region of the flow field formed by bubble pulsation and resonant coupling between the girder and the bubble are the predominant causes of damage to the overall girder structure.
基金financially supported by the National Natural Science Foundation of China(Grant No.52271271)the National Key Research and Development Program of China(Grant No.2022YFE0104500)+1 种基金“Pioneer”and“Leading Goose”R&D Program of Zhejiang Province(Grant No.2022C03023)Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ17E090003)。
文摘With the development of large liquid cargo ships,liquid tank sloshing has gradually become a hot research topic in the area of shipping and ocean Engineering.Liquid tank sloshing,characterized by strong nonlinearity and randomness,not only affects the stability of the ship but also generates a huge impact force on the wall of the tank.To further investigate liquid tank sloshing,a comprehensive review is given on the research process of the most focused subjects of liquid sloshing.Summarizing the existing research will help to identify issues in the current field and provide useful references.The methods for investigating sloshing,the research progress and the situations worldwide are discussed.The advantages and defects of experiments and numerical simulations are also explored.The problems which need to be explored in the future are subsequently proposed.
文摘Generative AI is rapidly employed by software developers to generate code or other software artifacts.However,the analysis and assessment of generative AI with respect to requirements analysis and modeling tasks,especially with UML,has received little attention.This paper investigates the capabilities of generative AI to aid in the creation of three types of UML models:UML use case models,class diagrams,and sequence diagrams.For this purpose,we designed an AI-aided UML modeling task in our course on software requirements modeling.50 undergraduates who majored in Software Engineering at Wuhan University completed the modeling task and the corresponding online survey.Our findings show that generative AI can help create these three types of UML models,but its performance is limited to identifying essential modeling elements of these UML models.
基金supported by the National Natural Science Foundation of China(Grant No.51079157)
文摘A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers.
基金Project(20080431380) supported by China Postdoctoral Science Foundation
文摘Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase.
基金Natural Science Foundation of China under Grant Nos.50908036&51261120376Natural Science Foundation of Liaoning Province No.201202040
文摘In this study,a method for control of reticulated shells is proposed and its practicality is demonstrated.The control is implemented by replacing selected bars of the shell with passive viscoelastic dampers.By applying the eigenvalue perturbation technique and the earthquake spectrum concept,the sensitivities of various topologies of the shell are analyzed,and the optimal topology is determined by taking their symmetries into consideration.The results of this research show that common damper topologies are not effective for all types of responses and recorded earthquakes.The optimal topology identifi ed requires a minimal number of dampers for each type of earthquake record.The displacement control effect of the dynamic responses of the optimal topology is 10% – 20%; the acceleration control effect is also about 10% – 20%; and the axial force control effect is as much as 30% – 45%.Furthermore,the incremental dynamic analysis(IDA) method is used to investigate the stability of the controlled shell.The results show that the dynamic stability of the controlled shell is well preserved when it is vibrated under vibration and is better than the uncontrolled shell.The ultimate load increased by 10% and the elements entered into the plastic stage when the peak acceleration reached 580 Gal,which is 200 Gal larger than the uncontrolled shell.
基金supported by the National Defense Pre-research Project in the 13th Five-Year(41404050502)the National Defense Science and Technology Fund of the Central Military Commission(2101140)
文摘Redundancy is a common structure for warship system,and it is an effective way to improve the reliability of the system.In this paper, warship system is taken as the object of study,based on the system reliability equivalence principle, a spares demand rate calculation method for redundant system is proposed through structure transformation. According to the system analysis method, the general modeling data structure of spares support echelon and system indenture is established, and the mission success probability is taken as the optimization target to build the dynamic optimization model of carrying spares during the process of multi-phase. By introducing the Lagrange multiplier, the spares weight, volume and cost are transformed to the single target of the spares total scale, and the initial Lagrange factors and its dynamic adjustment policy is proposed. In a given example, the main influence factors of the carrying spares project are analyzed, and the study results are in accordance with the reality, which can provide a new approach to mission-oriented carrying spares optimization for the redundant system.
基金supported by the Ministry of Industry and High Technology Marine Scientific Research Projects(Grant No.2011530)the High Performance Marine Technology Key Laboratory of the Ministry of Education Open Foundation(Grant No.2013033102)
文摘Air lubrication by means of a bottom cavity is a promising method for ship drag reduction. The characteristics of the bottom cavity are sensitive to the flow field around the ship hull and the effect of drag reduction, especially the depth of the bottom cavity. In this study, a ship model experiment of a bulk carrier is conducted in a towing tank using the method of air layer drag reduction (ALDR) with different bottom cavity depths. The shape of the air layer is observed, and the changes in resistance are measured. The model experiments produce results of approximately 20% for the total drag reduction at the ship design speed for a 25-mm cavity continuously supplied with air at Cq = 0.224 in calm water, and the air layer covers the whole cavity when the air flow rate is suitable. In a regular head wave, the air layer is easily broken and reduces the drag reduction rate in short waves, particularly when λ/Lw1 is close to one;however, it still has a good drag reduction effect in the long waves.
基金the financial support of the National Natural Science Foundation of China(Grant nos.51679246)。
文摘In order to study the influence of the bolt joint mode on low-velocity projectiles penetrating the composite protective structure,two bolt joint models which connect the composite target to the fixed frame were designed,the ballistic test of the bolted composite protective structure with limited span was carried out,and the bearing and failure characteristics of the bolted region,as well as the energy dissipation of each part of the structure,were analyzed.The results show that in the condition of lowvelocity impact,there are three failure modes for the bolted composite protective structure subjected to projectile penetration,including failure of the impact point of the composite target,failure of protective structure connecting components and failure of the holes in the bolted region of the composite target;the failure mode of bolt holes in the bolted region has a great influence on the protection performance,and the allowable value of the bearing capacity of the bolted region depends on the sum of the minimum failure load in the failure modes and the friction force;shear-out failure occurring in the bolt holes in the bolted region exerts the greatest effect on ballistic performance,which should be avoided;When simultaneous failure occurs in the bolted region and the free deformation region of the composite protective structure,the energy absorption per unit surface density of the composite protective structure reaches the maximum,which can give full play to its anti-penetration efficiency.
基金Supported by the National Natural Science Foundation of China under Grant Nos.5171101175,11572094,51809083,and 51579055
文摘As the energy supply problem worsens, the development and utilization of marine renewable energy have become a research hotspot. The development of wave energy is moving from the near shore to the distant sea. The power-generation efficiency of a single two-floating-body wave-energy converter is relatively low. To fully utilize wave energy and improve the wave-energy capture rate of a fixed sea area, arranging a two-floating-body wave-energy converter array is necessary. This paper first introduces the basic theory of multi-floating flow field, time-domain calculation method, and influence factor of the waveenergy converter array. Then, the development of AQWA software in Fortran language considers the effect of power takeoff. A calculation method based on ANSYS–AQWA is proposed to simulate the motion of the oscillating-buoy two-floating-body wave-energy converter. The results are compared with the experimental results from the National Renewable Energy Laboratory. Finally, the ANSYS–AQWA method is used to study the power characteristics of simple and complex arrays of wave-energy converters. The average power generation of simple arrays is largest at 0°, and the average power generation of complex arrays does not change with the wave direction. Optimal layout spacing exists for the simple and complex arrays. These findings can serve as a valuable reference for the large-scale array layout of wave-energy converters in the future.
文摘The viscous flow field around two-dimensional flapping ( heaving and pitching) foils was numerically computed. The structural characteristics of caudal vortices were investigated and the contour curves at different phase angles were obtained. The relationships between the structural characteristics of the vortices and the force acting on the foil and between the widths of the caudal vortex street and of the caudal flow field were analyzed. A method to determine the shedding frequency of the vortices was proposed.
基金supported by the National Natural Science Foundation of China (Grant No. 51009145)the Research Foundation of the State Key Lab of Ocean Engineering (Grant No. 0811)+1 种基金the Research Foundation of the Ministry of Education Key Laboratory of High Speed Ship Engineering (Grant No. HSSE1004)the Natural Science Foundation of Naval University of Engineering (Grant No. HGDQNJJ10010)
文摘The blade frequency noise of non-cavitation propeller in a uniform flow is analyzed in time domain. The unsteady loading (dipole source) on the blade surface is calculated by a potential-based surface panel method. Then the time- dependent pressure data is used as the input for Ffowcs Williams-Hawkings formulation to predict the acoustics pressure. The integration of noise source is performed over the true blade surface rather than the nothickness blade surface, and the effect of hub can be considered. The noise characteristics of the non-cavitation propeller and the numerical discretization forms are discussed.
基金Project(20080431380) supported by the China Postdoctoral Science Foundation
文摘The thermodynamic charge performance of a variable-mass thermodynamic system was investigated by the simulation modeling and experimental analysis. Three sets of experiments were conducted for various charge time and charge steam flow under three different control strategies of charge valve. Characteristic performance parameters from the average sub-cooled degree and the charging energy coefficient point of views were also defined to evaluate and predict the charge performance of system combined with the simulation model and experimental data. The results show that the average steam flow reflects the average sub-cooled degree qualitatively, while the charging energy coefficients of 74.6%, 69.9% and 100% relate to the end value of the average sub-cooled degree at 2.1, 2.9 and 0 respectively for the three sets of experiments. The mean and maximum deviations of the results predicted from those by experimental data are smaller than 6.8% and 10.8%, respectively. In conclusion, the decrease of average steam flow can effectively increase the charging energy coefficient in the same charge time condition and therefore improve the thermodynamic charge performance of system. While the increase of the charging energy coefficient by extending the charge time needs the consideration of the operating frequency for steam users.
基金supported by the Natural Science Foundation of Zhejiang Province of China(No.LQ16D060004)Key Research and Development Projects of Zhejiang Province of China(No.2018C02043)+1 种基金Demonstration Project of Marine Economic Innovation and Development of Zhoushan City of ChinaDemonstration Project of Marine Economic Innovation and Development of Yantai City of China(No.YHCX-SW-L-201705).
文摘The global consumption of p-xylene(PX)for the production of polymers has raised serious concerns about its impact on the environment.As various reports have shown the risks that PX could pose to human health,research into cost-effective remedial methods to remove PX from the environment has gained attraction.In this work,a hierarchical porous crab shell biochar(KCS)was synthesized,characterized,and evaluated for its efficiency to remove PX from aqueous solution.The characterizations of KCS,including the porous structure,surface functional group,phase structure,and surface morphology,were discussed by N_(2) adsorption-desorption,FTIR,XRD,and SEM.Batch adsorption experiments showed that the maximum adsorption capacity of PX on KCS was 393 mg/g within 5 min,larger than most biological/biomass materials,mainly due to the higher specific surface area of 2046 m^(2)/g,and abundant lipophilic functional groups.Subsequent adsorption kinetics study indicated a pseudo-second-order model which implied that the adsorption of PX was due to chemisorption.Thermodynamic parameters showed that the values ofΔH°andΔG°were both negative,indicating that the PX adsorption process on KCS was spontaneous and exothermic.The performance of KCS in delivering a cost-effective,fast,and efficient solution for the removal of PX from aqueous solution would greatly benefit current environmental remediation efforts.
基金supported by the National Key Basic Research Project of China(Grant No.2007CB411805)the National Natural Science Foundation of China(Grant No.40675065)
文摘In order to investigate the effect of wind input and whitecapping dissipation on the simulation of typhoon-waves, three experiments are conducted with the latest version of SWAN (Simulating WAves Nearshore) model. The three experiments adopt the Komen, Janssens, and Westhuysen expressions for wind input and whitecapping dissipation, respectively. Besides the above-mentioned source tems, other parameterization schemes in these experiments are the same. It shows that the experiment with the Westhuysen expression result in the least simulation errors while that with the Janssens expression has the most. The results from the experiments with Komen and Westhuysen expressions show that the differenees in significant wave height (SWH) have a good correlation with the differences in dissipation energy caused by whiteeapping. This indicates that the whitecapping dissipation source term plays an important role in the resultant differences of the simulated SWH between the two experiments.
基金supported by the National Postdoctoral Science Foundation of P. R. China Under Grant No. 20080431380
文摘Reliability, maintainability, supportability (RMS) are the important performance indexes of equipment, which affect not only the availability, but also the life cycle cost (LCC) of the equipment. First discussed is the qualitative relation between reliability and LCC and the costs which may be used to enhance the reliability. Secondly, the factors that affect the maintainability are summarized, and if maintainability is advanced, the trend of the LCC is depicted. Thirdly, the qualitative relation between the supportability and LCC is described. Reliability, maintainability and supportability index all have a relation with the availability, so this paper presents the tradeoff for RMS indexes based on the availability calculation models and LCC models. On the condition that the availability value is not below the given value, the decision-making is optimal if the life cycle cost is the minimum value.
基金Funded by the National Defense Foundation Item of China
文摘According to the configuration and absorption theory of polymer macromolecule materials, a kind of IPN with wider temperature range and higher damping property was designed and synthesized. By using the spectrum of dynamic mechanical thermal analysis (DMTA) and acoustic pulse tube device, the microstructure, phase separation degree, phase size and phase continuity of IPN with different components were analyzed. The experimental results show that the nano size grade of phase, the continuous and homogeneous IPN phase can provide higher absorption coefficient. The absorption coefficient of optimized sample I09 is 0.7 in 2 kHz, and the absorption peak is 0.9 in 4 kHz. Then the underwater acoustic properties of modified IPN filled with mica, micro-balloon and nano-SiO2 were discussed respectively to indicate that the inhomogeneous property of filler-modified IPN can improve the underwater acoustic stealth performance effectively, and the micro size grade of these filler-modified IPN can work well in low frequency acoustic stealth.
基金Sponsored by the 11th Five Years Foundation for Military Advance Research (40103050103)
文摘The mechanical performance of ultra-high molecular weight polyethylene fiber (UHMWPE) and its composites were proposed. Penetrated properties of different thicknesses UHMWPE FRP laminates (URP) impacted by 3.3g cubic high velocity fragments were studied. According to the ballistic experimental results and theoretical analysis, the linear relation between ballistic limit vBL and area density AD was confirmed. The relative parameters of showing experientially residual velocity vr were expressed by the function of AD. In the end, versatile experiential expression between vr and AD was found. Prediction of vr and vBL using obtained expressions under the above stated condition of impacting URP was consistent with the experimentaled results. Consequently, the two experiential relations can be used to predict the residual velocity and ballistic limit of cubic high velocity fragments impacting URP. The residual characteristic of high-velocity steel fragments penetrating UHMWPE FRP laminates can be more exactly forecasted by the two derived experiential formulas.
基金Project(20080431380)supported by the National Postdoctoral Science Foundation,China
文摘Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching process, the thermodynamics and kinetics characteristics of the system with three valves of different flow characteristics were got. The simulation results show that the values of the peak-to-average ratios of dimensionless acceleration with the equal percentage valve, the linear valve and the quick opening valve are 1.355, 1.614 and 1.722, respectively, and the final values of the dimensionless velocities are 0.843, 0.957 and 1.0, respectively. In conclusion, the value of the dimensionless velocity with the equal percentage valve doesn't reach the set value of 0.90 when the dimensionless displacement is 0.82, while the system with the linear valve can meet the launching requirement, as well as the fluctuation range of dimensionless acceleration is less than that of the quick opening valve. Therefore, the system with the linear valve has the best performance among the three kinds of valves.
基金supported by the National Postdoctoral Science Foundation of P.R.China under Grant No.20080431380
文摘Life cycle cost technique is a powerful tool to make a scientific decision and a useful method of advancing the continuable development of the society. In this paper, development course, application actuality and up-to-date research trends of life cycle cost technique in China are summarized. Some suggestions are given on how to general- ize the application of life cycle cost technique which are used as the reference to study life cycle cost technique.