The electronic properties of sphalerite(110)surface bearing Fe,Mn and Cd impurities were calculated using density-functional theory,and the effects of impurities on the copper activation of sphalerite were investigate...The electronic properties of sphalerite(110)surface bearing Fe,Mn and Cd impurities were calculated using density-functional theory,and the effects of impurities on the copper activation of sphalerite were investigated.Calculated results indicate that both Fe and Mn impurities narrow the band gap of sphalerite surface and lead to the Fermi level shifting to conduction band.Impurity levels composed of Fe 3d and Mn 3d orbital appearing in band gap are beneficial to electrons transfer from the valence band to the conduction band and promote the surface conductivity and the electrochemical activity.The results show that Fe and Mn impurities cannot be replaced by Cu atom,which reduces the exchange sites(Zn)for Cu atom,hence Fe-and Mn-bearing sphalerites are hard to be activated by copper.Cd impurity has little effect on electronic structure of sphalerite surface;however,Cd atom is easily replaced by Cu atom,and this is the reason why the Cd-bearing sphalerite can be easily floated.展开更多
The electronic properties of sphalerite(110) surface with Zn-vacancy and S-vacancy were calculated by using density-functional theory,and the effects of vacancy defect on the copper activation of sphalerite were inves...The electronic properties of sphalerite(110) surface with Zn-vacancy and S-vacancy were calculated by using density-functional theory,and the effects of vacancy defect on the copper activation of sphalerite were investigated.The calculated results indicate that surface state occurs in the band gap of Zn-vacancy sphalerite,which is from the contribution of S 3p orbital at the first layer of the surface.The presence of S-vacancy results in surface state appearing near the Fermi level and the bottom of conductor band,which are composed of S 3p and Zn 4s orbital,respectively.The surface structure of Zn-vacancy sphalerite is more stable than S-vacancy surface due to the occupation of Zn-vacancy by Cu atoms;hence,the substitution reaction of Cu for Zn vacancy is easier than the substitution of Cu for Zn atoms with S-vacancy surface.展开更多
Ten kinds of organic depressants were used to investigate the depressing performance on marmatite and pyrite.Flotation results show that the organic compounds only with single group of hydroxyl(-OH),carboxyl(-COOH) or...Ten kinds of organic depressants were used to investigate the depressing performance on marmatite and pyrite.Flotation results show that the organic compounds only with single group of hydroxyl(-OH),carboxyl(-COOH) or amino(-NH2) in molecule are ineffective in depressing marmatite,jamesonite and pyrite.The combinations of these functional groups still cannot enhance the depressing ability of organic depressant.The thioglycollic acid containing reductive functional group(-SH) has a good depressing performance for marmatite and pyrite.The presence of benzene ring in molecule can enhance the depressing performance.The functional group electronegativity,hydrophilic-hydrophobic indexes and frontier orbital of organic depressants were calculated,and the criterion for the depressing effect of organic depressants to sulphide minerals was proposed.展开更多
Longhole caving method was used to mine gently inclined thick orebody step by step in a test stope of tin mine under complex filling body. The problem that the complex filling body around the stope affects the stabili...Longhole caving method was used to mine gently inclined thick orebody step by step in a test stope of tin mine under complex filling body. The problem that the complex filling body around the stope affects the stability of roof thickness, chamber and spacer pillar in actual mining was investigated; meanwhile, the formed goaf during mining is so vulnerable that surrounding rock collapses early. Based on this point, elasticity mechanics and limit span theory were used to study separately the roof thickness and the span limit of goaf formed in mining, and then a reasonable roof thickness of 8 m and goaf span of 14 m are proposed. In addition, the stability of roof thickness, chamber and spacer pillar were investigated and analyzed by using numerical analysis method; meanwhile, the field monitoring on the displacement of caving chamber was conducted. The results show that the maximum compressive stress of surrounding rock is 20 MPa, and the maximum tensile stress is 1.2 MPa, which is less than the ultimate tensile strength of 2.4 MPa. Moreover, plastic zone has little influence on stope stability. In addition, the displacement of 11 mm is also smaller. The displacement monitoring results are consistent with the numerical results. Thus, the roof thickness and span of goaf proposed are safe.展开更多
Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe...Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe 3d, while that of hexagonal pyrrhotite is from Fe 3d, Fe 3p and S 3s. The hexagonal pyrrhotite is more reactive than monoclinic pyrrhotite because of large density of states near the Fermi level. The hexagonal pyrrhotite shows antiferromagnetism. S—Fe bonds mainly exist in monoclinic pyrrhotite as the covalent bonds, while hexagonal pyrrhotite has no covalency. The main contributions of higest occupied molecular orbital(HOMO) and lowest unoccupied molecular obital(LUMO) for monoclinic pyrrhotite come from S and Fe. The main contribution of HOMO for hexagonal pyrrhotite comes from Fe, while that of LUMO comes from S. The coefficient of Fe atom is much larger than that of S atom of HOMO for hexagonal pyrrhotite, which contributes to the adsorption of Ca OH+ on the surface of hexagonal pyrrhotite when there is lime. As a result, lime has the inhibitory effect on the floatation of hexagonal pyrrhotite and the coefficient of Fe is very close to that of S for monoclinic pyrrhotite. Therefore, the existence of S prevents the adsorption of Ca OH+on the surface of monoclinic pyrrhotite, which leads to less inhibitory effect on the flotation of monoclinic pyrrhotite.展开更多
Investigation on the mineralwater interactions is crucial for understanding the subsequent interfacial reactions.Currently,the hydration mechanisms of smithsonite are still obscure.In this paper,the adsorption of H_(2...Investigation on the mineralwater interactions is crucial for understanding the subsequent interfacial reactions.Currently,the hydration mechanisms of smithsonite are still obscure.In this paper,the adsorption of H_(2)O at different coverage rates on smithsonite(101)surface was innovatively investigated using density-functional theory(DFT)calculations and molecular dynamics(MD)simulations by analyzing adsorption model,interaction energy,atomic distance,density of state,electron density difference,concentration profile,radial distribution function and self-diffusion coefficient.We found that single H_(2)O preferred to be dissociated on smithsonite(101)surface via the interaction of surface Zn with the Ow of H_(2)O and H-bond between Hw of H_(2)O and surface Os.However,dissociation adsorption and molecular adsorption coexisted on the smithsonite surface at a high coverage rate of H_(2)O,and dissociation adsorption remained the main adsorption mechanism.Moreover,we found the interaction between smithsonite surface and H_(2)O was weakened as a function of H_(2)O coverage,which was because the presence of interlayer H_(2)O and different layers of H_(2)O decreased the reactivity of the smithsonite surface.The H_(2)O is mainly adsorbed on the smithsonite surface by forming three layers of H_(2)O(about 10–15Å),with the ordering degree gradually decreasing.展开更多
First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated resu...First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated results show that the structure and electronic properties of sulfide minerals surfaces have been influenced in presence of H2 O molecule. The adsorption of the flotation reagent at the interface of mineral-water would be different from that of mineral surface due to the changes of surface structures and electronic properties caused by H2 O molecule. Hence, the influence of H2 O molecule on the reaction of flotation reagent with sulfide mineral surface will attract more attention.展开更多
The adsorption heat and reaction rate constant of potassium dichromate on the surface of galena were studied. The results indicate that potassium dichromate tends to adsorption on the galena surface. The reaction orde...The adsorption heat and reaction rate constant of potassium dichromate on the surface of galena were studied. The results indicate that potassium dichromate tends to adsorption on the galena surface. The reaction order is only 0.08385, suggesting that the concentration of potassium dichromate has little influence on its adsorption on the galena surface. In addition, the simulation of CrO2 4- adsorption on the PbS (100) surface in the absence and presence of O2 was carried out by density functional theory (DFT). The calculated results show that CrO2 4- species adsorb energetically at the Pb-S bond site, and the presence of O2 can enhance this adsorption.展开更多
The electronic structure and properties of FeS2 with the space groups of Pa3 and P1 were studied by the density functional theory. The generalized-gradient approximation exchange-correlation functional was used in con...The electronic structure and properties of FeS2 with the space groups of Pa3 and P1 were studied by the density functional theory. The generalized-gradient approximation exchange-correlation functional was used in conjunction with a plane wave-ultrasoft pseudopotential representation. Calculation results show that differences are observed in electronic structures and properties between Pa3 and P1 crystals. The band gap and energy loss of P1 are smaller than those of Pa3 crystal, while the dielectric constant, conductivity, refractive index, extinction coefficient, and intensity of optical absorption of P1 are larger than those of Pa3. These behaviors are attributed to the differences in symmetry, atomic arrangement, and Mulliken bond population of each unit for Pa3 and P1 crystals.展开更多
The differential cubature solution to the problem of a Mindlin plate lying on the Winkler foundation with two simply supported edges and two clamped edges was derived.Discrete numerical technology and shape functions ...The differential cubature solution to the problem of a Mindlin plate lying on the Winkler foundation with two simply supported edges and two clamped edges was derived.Discrete numerical technology and shape functions were used to ensure that the solution is suitable to irregular shaped plates.Then,the mechanical model and the solution were employed to model the protection layer that isolates the mining stopes from sea water in Sanshandao gold mine,which is the first subsea mine of China.Furthermore,thickness optimizations for the protection layers above each stope were conducted based on the maximum principle stress criterion,and the linear relations between the best protection layer thickness and the stope area under different safety factors were regressed to guide the isolation design.The method presented in this work provides a practical way to quickly design the isolation layer thickness in subsea mining.展开更多
The asymmetric semi-circular bend(ASCB)specimen has been proposed to investigate the cracking behavior in different geo and construction materials and attracted the attention of researchers due to its advantages.Howev...The asymmetric semi-circular bend(ASCB)specimen has been proposed to investigate the cracking behavior in different geo and construction materials and attracted the attention of researchers due to its advantages.However,there are few studies on the fracture toughness determination of rock materials.In this work,a series of fracture tests were performed with the ASCB specimens made of granite.The onset of fracture,crack initiation angle and crack propagating trajectory was analyzed in detail combined with several mixed mode fracture criteria.The influence of the crack length on the mode Ⅰ/Ⅱ fracture toughness was studied.A comparison between the fracture toughness ratios predicted by varying criteria and experimental results was conducted.The relationship between experimentally determined crack initiation angles and curves of the generalized maximum tangential stress(GMTS)criterion was obtained.The fracture process of the specimen was recorded with the high-speed camera.The shortcomings of the ASCB specimens for the fracture toughness determination of rock materials were discussed.The results may provide a reference for analysis of mixed mode I and II fracture behavior of brittle materials.展开更多
According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in...According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method.展开更多
For improving global stability of mining environment reconstructing structure,the stress field evolution law of the structure with the filling height change of low-grade backfill was studied by ADINA finite element an...For improving global stability of mining environment reconstructing structure,the stress field evolution law of the structure with the filling height change of low-grade backfill was studied by ADINA finite element analysis code.Three kinds of filling schemes were designed and calculated,in which the filling heights were 2,4,and 7 m,separately.The results show that there are some rules in the stress field with the increase of the filling height as follows:(1) the maximum value of tension stress of the roof decreases gradually,and stress conditions are improved gradually;(2) the tension stress status in the vertical pillar is transformed into the compressive stress status,and the carrying capacity is improved gradually;however,when the filling height is beyond 2.8 m,the carrying capacity of the vertical pillar grows very slowly,so,there is little significance to continue to fill the low-grade backfill;(3) the bottom pillar suffers the squeezing action from the vertical pillars at first and then the gravity action of the low-grade backfill,and the maximum value of tension stress of the bottom pillar firstly increases and then decreases.Considering the economic factor,security and other factors,the low-grade backfill has the most reasonable height(2.8 m) in the scope of all filling height.展开更多
The separation of azodicarbonamide(AC)from the surface of diatomite by froth flotation is investigated in this research.Pure samples of diatomite,AC and1:1mixtures of the two were floated in a lab-scale flotation cell...The separation of azodicarbonamide(AC)from the surface of diatomite by froth flotation is investigated in this research.Pure samples of diatomite,AC and1:1mixtures of the two were floated in a lab-scale flotation cell withcollector dosage,frother type and dosage,and pH varied to determine the optimum experimental conditions.The diatomite sample and products from flotation tests were characterized using scanning electron microscopy(SEM)equipped with energy dispersive X-ray spectroscopy(EDX).The results of the flotation tests indicate that there is less AC on the surface of diatomite after flotation compared to the feed,while the AC present in diatomite pores remains unchanged.Additionally,Fourier transform infrared spectroscopy(FT-IR)was employed to study the mechanism of interaction between reagents and minerals.展开更多
The band structure, density of states, Mulliken populations, and frontier orbital of spodumene crystal were calculated using the first-principles method based on the density functional theory(DFT) and further analyz...The band structure, density of states, Mulliken populations, and frontier orbital of spodumene crystal were calculated using the first-principles method based on the density functional theory(DFT) and further analyzed in detail. The calculation results reveal that the O in spodumene is the most active and easily links with H+in the water, but the active Li is very low, so it is better to add activator to increase the concentrate grade and recovery rate of spodumene in the flotation process. Si–O bonds in spodumene crystal are mainly covalent, since the covalency of Al–O bonds is stronger than that of Li–O bonds,and minerals dissociate along the weakest Li–O bonds. In addition, the study of the frontier orbital indicates that both O and Si atoms have large contribution to the frontier orbital in the spodumene crystal. Oleate and dodecylamine are used as the collectors of spodumene. The results contribute to the understanding of crystal structures of spodumene, and can be used in guiding related practical applications.展开更多
The extraction chromatography–electrodeposition(EC–ED) process was proposed for the quantitative recovery of palladium from high-level liquid waste(HLLW) in this study. The process coupled the extraction chromatogra...The extraction chromatography–electrodeposition(EC–ED) process was proposed for the quantitative recovery of palladium from high-level liquid waste(HLLW) in this study. The process coupled the extraction chromatography method to obtain the decontamination of Pd(II) from HLLW with the electrochemical method to recover metallic palladium from the concentrated solution.Separation of Pd(II) from a nitric acid medium by extraction chromatography using iso Bu-BTP/SiO_2-P adsorbent and the electrochemical behavior of Pd(II) in nitric acid solution in the presence of thiourea(TU) were investigated.iso Bu-BTP/SiO_2-P exhibited a high selectivity for Pd(II)over other fission products(FPs), and Pd(II) could be desorbed by TU from loaded BTP/SiO_2-P. The adsorbent performed good stability against HNO_3 because the adsorption performance kept Pd(II) after extended contact with HNO_3 solution. The column experiment achieved the separation of Pd(II) from simulated HLLW successfully.The electrochemical behavior of Pd(II) in palladium desorption solution containing TU and nitric acid was investigated at a platinum electrode by cyclic voltammetry. A weak reduction wave at-0.4 V was due to the reduction in Pd(II) to Pd(0), and the deposition process wasirreversible. In electrowinning experiments, a maximum of92% palladium could be obtained.展开更多
The Kwangsian Orogeny originated along the southeast coast of China and stepwise developed in a northwest direction.It includes two stages,a long locally varying uplift from the Late Ordovician to the early Silurian a...The Kwangsian Orogeny originated along the southeast coast of China and stepwise developed in a northwest direction.It includes two stages,a long locally varying uplift from the Late Ordovician to the early Silurian and a finally tectonic movement near the Silurian and Devonian transition.The Kwangsian uplift event shows a stepwise delay northwestwards from the southeastern coast area in Nemagraptus gracilis Biozone(Sa1)to the south side of the Xuefeng Mountains in or later than Cystograptus vesiculosus Biozone(R3)to Coronograptus cyphus Biozone(R4).In the southern of Yangtze Platform,the Yichang Uplift was droved by the Kwangsian Orogeny forming a diachronous stratigraphical break through Rhuddanian and Aeronian.The distribution of the early Telychian lower marine red beds indicates a northwestward increase of the Cathaysian Oldland.Stratigraphical evidence may explain why the Kwangsian movement was marked by an angular disconformity during the Pridoli to earliest Devonian interval.展开更多
基金Project(50864001) supported by the National Natural Science Foundation of China
文摘The electronic properties of sphalerite(110)surface bearing Fe,Mn and Cd impurities were calculated using density-functional theory,and the effects of impurities on the copper activation of sphalerite were investigated.Calculated results indicate that both Fe and Mn impurities narrow the band gap of sphalerite surface and lead to the Fermi level shifting to conduction band.Impurity levels composed of Fe 3d and Mn 3d orbital appearing in band gap are beneficial to electrons transfer from the valence band to the conduction band and promote the surface conductivity and the electrochemical activity.The results show that Fe and Mn impurities cannot be replaced by Cu atom,which reduces the exchange sites(Zn)for Cu atom,hence Fe-and Mn-bearing sphalerites are hard to be activated by copper.Cd impurity has little effect on electronic structure of sphalerite surface;however,Cd atom is easily replaced by Cu atom,and this is the reason why the Cd-bearing sphalerite can be easily floated.
基金Project(50864001) supported by the National Natural Science Foundation of China
文摘The electronic properties of sphalerite(110) surface with Zn-vacancy and S-vacancy were calculated by using density-functional theory,and the effects of vacancy defect on the copper activation of sphalerite were investigated.The calculated results indicate that surface state occurs in the band gap of Zn-vacancy sphalerite,which is from the contribution of S 3p orbital at the first layer of the surface.The presence of S-vacancy results in surface state appearing near the Fermi level and the bottom of conductor band,which are composed of S 3p and Zn 4s orbital,respectively.The surface structure of Zn-vacancy sphalerite is more stable than S-vacancy surface due to the occupation of Zn-vacancy by Cu atoms;hence,the substitution reaction of Cu for Zn vacancy is easier than the substitution of Cu for Zn atoms with S-vacancy surface.
基金Project(50864001) supported by the National Natural Science Foundation of ChinaProject(0991082) supported by Guangxi Natural Science Foundation, China
文摘Ten kinds of organic depressants were used to investigate the depressing performance on marmatite and pyrite.Flotation results show that the organic compounds only with single group of hydroxyl(-OH),carboxyl(-COOH) or amino(-NH2) in molecule are ineffective in depressing marmatite,jamesonite and pyrite.The combinations of these functional groups still cannot enhance the depressing ability of organic depressant.The thioglycollic acid containing reductive functional group(-SH) has a good depressing performance for marmatite and pyrite.The presence of benzene ring in molecule can enhance the depressing performance.The functional group electronegativity,hydrophilic-hydrophobic indexes and frontier orbital of organic depressants were calculated,and the criterion for the depressing effect of organic depressants to sulphide minerals was proposed.
基金Project(2012BAK09B02-05)supported by the National Science and Technology Pillar Program during the 12th Five-Year Plan PeriodProject(11KF02)supported by the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety
文摘Longhole caving method was used to mine gently inclined thick orebody step by step in a test stope of tin mine under complex filling body. The problem that the complex filling body around the stope affects the stability of roof thickness, chamber and spacer pillar in actual mining was investigated; meanwhile, the formed goaf during mining is so vulnerable that surrounding rock collapses early. Based on this point, elasticity mechanics and limit span theory were used to study separately the roof thickness and the span limit of goaf formed in mining, and then a reasonable roof thickness of 8 m and goaf span of 14 m are proposed. In addition, the stability of roof thickness, chamber and spacer pillar were investigated and analyzed by using numerical analysis method; meanwhile, the field monitoring on the displacement of caving chamber was conducted. The results show that the maximum compressive stress of surrounding rock is 20 MPa, and the maximum tensile stress is 1.2 MPa, which is less than the ultimate tensile strength of 2.4 MPa. Moreover, plastic zone has little influence on stope stability. In addition, the displacement of 11 mm is also smaller. The displacement monitoring results are consistent with the numerical results. Thus, the roof thickness and span of goaf proposed are safe.
基金Project supported by the Open Foundation of Guangxi Key Laboratory for Advanced Materials and Manufacturing Technology,China
文摘Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe 3d, while that of hexagonal pyrrhotite is from Fe 3d, Fe 3p and S 3s. The hexagonal pyrrhotite is more reactive than monoclinic pyrrhotite because of large density of states near the Fermi level. The hexagonal pyrrhotite shows antiferromagnetism. S—Fe bonds mainly exist in monoclinic pyrrhotite as the covalent bonds, while hexagonal pyrrhotite has no covalency. The main contributions of higest occupied molecular orbital(HOMO) and lowest unoccupied molecular obital(LUMO) for monoclinic pyrrhotite come from S and Fe. The main contribution of HOMO for hexagonal pyrrhotite comes from Fe, while that of LUMO comes from S. The coefficient of Fe atom is much larger than that of S atom of HOMO for hexagonal pyrrhotite, which contributes to the adsorption of Ca OH+ on the surface of hexagonal pyrrhotite when there is lime. As a result, lime has the inhibitory effect on the floatation of hexagonal pyrrhotite and the coefficient of Fe is very close to that of S for monoclinic pyrrhotite. Therefore, the existence of S prevents the adsorption of Ca OH+on the surface of monoclinic pyrrhotite, which leads to less inhibitory effect on the flotation of monoclinic pyrrhotite.
基金This work was supported in part by the High Performance Com-puting Center of Central South UniversityThis study was finan-cially supported by the National Natural Science Foundation of China(No.51674291).
文摘Investigation on the mineralwater interactions is crucial for understanding the subsequent interfacial reactions.Currently,the hydration mechanisms of smithsonite are still obscure.In this paper,the adsorption of H_(2)O at different coverage rates on smithsonite(101)surface was innovatively investigated using density-functional theory(DFT)calculations and molecular dynamics(MD)simulations by analyzing adsorption model,interaction energy,atomic distance,density of state,electron density difference,concentration profile,radial distribution function and self-diffusion coefficient.We found that single H_(2)O preferred to be dissociated on smithsonite(101)surface via the interaction of surface Zn with the Ow of H_(2)O and H-bond between Hw of H_(2)O and surface Os.However,dissociation adsorption and molecular adsorption coexisted on the smithsonite surface at a high coverage rate of H_(2)O,and dissociation adsorption remained the main adsorption mechanism.Moreover,we found the interaction between smithsonite surface and H_(2)O was weakened as a function of H_(2)O coverage,which was because the presence of interlayer H_(2)O and different layers of H_(2)O decreased the reactivity of the smithsonite surface.The H_(2)O is mainly adsorbed on the smithsonite surface by forming three layers of H_(2)O(about 10–15Å),with the ordering degree gradually decreasing.
基金Project(51164001)supported by the National Natural Science Foundation of China
文摘First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated results show that the structure and electronic properties of sulfide minerals surfaces have been influenced in presence of H2 O molecule. The adsorption of the flotation reagent at the interface of mineral-water would be different from that of mineral surface due to the changes of surface structures and electronic properties caused by H2 O molecule. Hence, the influence of H2 O molecule on the reaction of flotation reagent with sulfide mineral surface will attract more attention.
基金financially supported by the National Natural Science Foundation of China(No.51164001)
文摘The adsorption heat and reaction rate constant of potassium dichromate on the surface of galena were studied. The results indicate that potassium dichromate tends to adsorption on the galena surface. The reaction order is only 0.08385, suggesting that the concentration of potassium dichromate has little influence on its adsorption on the galena surface. In addition, the simulation of CrO2 4- adsorption on the PbS (100) surface in the absence and presence of O2 was carried out by density functional theory (DFT). The calculated results show that CrO2 4- species adsorb energetically at the Pb-S bond site, and the presence of O2 can enhance this adsorption.
基金financially supported by the Program for New Century Excellent Talents in Universities of China (No. NCET-11-0925)the National Natural Science Foundation of China (No. 51164001)the Scientific Research Foundation of Guangxi University (No.XBZ100498)
文摘The electronic structure and properties of FeS2 with the space groups of Pa3 and P1 were studied by the density functional theory. The generalized-gradient approximation exchange-correlation functional was used in conjunction with a plane wave-ultrasoft pseudopotential representation. Calculation results show that differences are observed in electronic structures and properties between Pa3 and P1 crystals. The band gap and energy loss of P1 are smaller than those of Pa3 crystal, while the dielectric constant, conductivity, refractive index, extinction coefficient, and intensity of optical absorption of P1 are larger than those of Pa3. These behaviors are attributed to the differences in symmetry, atomic arrangement, and Mulliken bond population of each unit for Pa3 and P1 crystals.
基金Projects(51504044,51204100)supported by National Natural Science Foundation of ChinaProject(14KF05)supported by the Research Fund of The State Key Laboratory of Coal Resources and Mine Safety,CUMT,China+3 种基金Project(cstc2016jcyj A1861)supported by the Research Fund of Chongqing Basic Science and Cutting-Edge Technology Special Projects,ChinaProject(2015CDJXY)supported by the Fundamental Research Funds for the Central UniversitiesProject supported by the China Postdoctoral Science FoundationProject(2011DA105287-MS201503)supported by the Independent Subject of State Key Laboratory of Coal Mine Disaster Dynamics and Control,China
文摘The differential cubature solution to the problem of a Mindlin plate lying on the Winkler foundation with two simply supported edges and two clamped edges was derived.Discrete numerical technology and shape functions were used to ensure that the solution is suitable to irregular shaped plates.Then,the mechanical model and the solution were employed to model the protection layer that isolates the mining stopes from sea water in Sanshandao gold mine,which is the first subsea mine of China.Furthermore,thickness optimizations for the protection layers above each stope were conducted based on the maximum principle stress criterion,and the linear relations between the best protection layer thickness and the stope area under different safety factors were regressed to guide the isolation design.The method presented in this work provides a practical way to quickly design the isolation layer thickness in subsea mining.
基金Projects(52004182,51804110,51904101)supported by the National Natural Science Foundation of ChinaProject(2020JJ5188)supported by the Natural Science Foundation of Hunan Province,China。
文摘The asymmetric semi-circular bend(ASCB)specimen has been proposed to investigate the cracking behavior in different geo and construction materials and attracted the attention of researchers due to its advantages.However,there are few studies on the fracture toughness determination of rock materials.In this work,a series of fracture tests were performed with the ASCB specimens made of granite.The onset of fracture,crack initiation angle and crack propagating trajectory was analyzed in detail combined with several mixed mode fracture criteria.The influence of the crack length on the mode Ⅰ/Ⅱ fracture toughness was studied.A comparison between the fracture toughness ratios predicted by varying criteria and experimental results was conducted.The relationship between experimentally determined crack initiation angles and curves of the generalized maximum tangential stress(GMTS)criterion was obtained.The fracture process of the specimen was recorded with the high-speed camera.The shortcomings of the ASCB specimens for the fracture toughness determination of rock materials were discussed.The results may provide a reference for analysis of mixed mode I and II fracture behavior of brittle materials.
基金Project(51074027)supported by the National Natural Science Foundation of China
文摘According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method.
基金Project(200911MS01) supported by the Scientific Research Fund of Guangxi Provincial Education Department, China Project (XBZ100126) supported by the Scientific Research Foundation of Guangxi University, China Project(2009B005) supported by the Teaching Reform Foundation in the New Century Higher Education of Guangxi Province,China
文摘For improving global stability of mining environment reconstructing structure,the stress field evolution law of the structure with the filling height change of low-grade backfill was studied by ADINA finite element analysis code.Three kinds of filling schemes were designed and calculated,in which the filling heights were 2,4,and 7 m,separately.The results show that there are some rules in the stress field with the increase of the filling height as follows:(1) the maximum value of tension stress of the roof decreases gradually,and stress conditions are improved gradually;(2) the tension stress status in the vertical pillar is transformed into the compressive stress status,and the carrying capacity is improved gradually;however,when the filling height is beyond 2.8 m,the carrying capacity of the vertical pillar grows very slowly,so,there is little significance to continue to fill the low-grade backfill;(3) the bottom pillar suffers the squeezing action from the vertical pillars at first and then the gravity action of the low-grade backfill,and the maximum value of tension stress of the bottom pillar firstly increases and then decreases.Considering the economic factor,security and other factors,the low-grade backfill has the most reasonable height(2.8 m) in the scope of all filling height.
基金Project((2011)4012)supported by the High-Level of Innovative Talents of Guizhou Province,China
文摘The separation of azodicarbonamide(AC)from the surface of diatomite by froth flotation is investigated in this research.Pure samples of diatomite,AC and1:1mixtures of the two were floated in a lab-scale flotation cell withcollector dosage,frother type and dosage,and pH varied to determine the optimum experimental conditions.The diatomite sample and products from flotation tests were characterized using scanning electron microscopy(SEM)equipped with energy dispersive X-ray spectroscopy(EDX).The results of the flotation tests indicate that there is less AC on the surface of diatomite after flotation compared to the feed,while the AC present in diatomite pores remains unchanged.Additionally,Fourier transform infrared spectroscopy(FT-IR)was employed to study the mechanism of interaction between reagents and minerals.
基金financially supported by the National Natural Science Foundation of China (No. 51104070)the Special Funds for Postgraduate Student Innovation Program of Jiangxi University of Science and Technology (No. YC2012-X07)the Special Funds for Postgraduate Student Innovation Program of Jiangxi province (No. YC2013-S183)
文摘The band structure, density of states, Mulliken populations, and frontier orbital of spodumene crystal were calculated using the first-principles method based on the density functional theory(DFT) and further analyzed in detail. The calculation results reveal that the O in spodumene is the most active and easily links with H+in the water, but the active Li is very low, so it is better to add activator to increase the concentrate grade and recovery rate of spodumene in the flotation process. Si–O bonds in spodumene crystal are mainly covalent, since the covalency of Al–O bonds is stronger than that of Li–O bonds,and minerals dissociate along the weakest Li–O bonds. In addition, the study of the frontier orbital indicates that both O and Si atoms have large contribution to the frontier orbital in the spodumene crystal. Oleate and dodecylamine are used as the collectors of spodumene. The results contribute to the understanding of crystal structures of spodumene, and can be used in guiding related practical applications.
基金supported by the National Natural Science Foundation of China(Nos.11305102,91126006,and 21261140335)
文摘The extraction chromatography–electrodeposition(EC–ED) process was proposed for the quantitative recovery of palladium from high-level liquid waste(HLLW) in this study. The process coupled the extraction chromatography method to obtain the decontamination of Pd(II) from HLLW with the electrochemical method to recover metallic palladium from the concentrated solution.Separation of Pd(II) from a nitric acid medium by extraction chromatography using iso Bu-BTP/SiO_2-P adsorbent and the electrochemical behavior of Pd(II) in nitric acid solution in the presence of thiourea(TU) were investigated.iso Bu-BTP/SiO_2-P exhibited a high selectivity for Pd(II)over other fission products(FPs), and Pd(II) could be desorbed by TU from loaded BTP/SiO_2-P. The adsorbent performed good stability against HNO_3 because the adsorption performance kept Pd(II) after extended contact with HNO_3 solution. The column experiment achieved the separation of Pd(II) from simulated HLLW successfully.The electrochemical behavior of Pd(II) in palladium desorption solution containing TU and nitric acid was investigated at a platinum electrode by cyclic voltammetry. A weak reduction wave at-0.4 V was due to the reduction in Pd(II) to Pd(0), and the deposition process wasirreversible. In electrowinning experiments, a maximum of92% palladium could be obtained.
基金supported by Chinese Academy of Sciences(Grant No.KZCX2-EW-111)the State Key Laboratory of Palaeontology and Stratigraphy and Key Laboratory of Economic Stratigraphy and Paleogeography(Nanjing Institute of Geology and Palaeontology,Chinese Academy of Sciences)National Natural Science Foundation of China(Grant No.41272042)
文摘The Kwangsian Orogeny originated along the southeast coast of China and stepwise developed in a northwest direction.It includes two stages,a long locally varying uplift from the Late Ordovician to the early Silurian and a finally tectonic movement near the Silurian and Devonian transition.The Kwangsian uplift event shows a stepwise delay northwestwards from the southeastern coast area in Nemagraptus gracilis Biozone(Sa1)to the south side of the Xuefeng Mountains in or later than Cystograptus vesiculosus Biozone(R3)to Coronograptus cyphus Biozone(R4).In the southern of Yangtze Platform,the Yichang Uplift was droved by the Kwangsian Orogeny forming a diachronous stratigraphical break through Rhuddanian and Aeronian.The distribution of the early Telychian lower marine red beds indicates a northwestward increase of the Cathaysian Oldland.Stratigraphical evidence may explain why the Kwangsian movement was marked by an angular disconformity during the Pridoli to earliest Devonian interval.