Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its co...Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state.展开更多
An abnormally high peak friction angle of Ottawa sand was observed in(National Aeronautics and Space Administration) NASA–(Mechanics of Granular Materials) MGM tests in microgravity conditions on the space shuttle. P...An abnormally high peak friction angle of Ottawa sand was observed in(National Aeronautics and Space Administration) NASA–(Mechanics of Granular Materials) MGM tests in microgravity conditions on the space shuttle. Previous investigations have been unsuccessful in providing a constitutive insight into this behavior of granular materials under extremely low effective stress conditions. Here, a recently proposed unified constitutive model for transient rheological behavior of sand and other granular materials is adopted for the analytical assessment of high peak friction angles. For the first time, this long-eluded behavior of sand is attributed to a hidden rheological transition mechanism, that is not only rate-sensitive, but also pressure-sensitive. The NASA–MGM microgravity conditions show that shear-tests of sand can be performed under abnormally low confining stress conditions. The pressure-sensitive behavior of granular shearing that is previously ignored is studied based on the μ(I) rheology and its variations. Comparisons between the model and the NASA microgravity tests demonstrate a high degree of agreement. The research is highly valid for pressure-sensitive and rate-dependent problems that occur during earthquakes, landslides, and space exploration.展开更多
Since the 1950s,numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin(LRB),China.While these measures have protected the upstream soil and water ec...Since the 1950s,numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin(LRB),China.While these measures have protected the upstream soil and water ecological environment,they have led to a sharp reduction in the downstream flow and the deterioration of the river ecological environment.Therefore,it is important to evaluate the impact of soil and water conservation measures on hydrological processes to assess long-term runoff changes.Using the Soil and Water Assessment Tool(SWAT)models and sensitivity analyses based on the Budyko hypothesis,this study quantitatively evaluated the effects of climate change,direct water withdrawal,and soil and water conservation measures on runoff in the LRB during different periods,including different responses to runoff discharge,hydrological regime,and flood processes.The runoff series were divided into a baseline period(1956-1969)and two altered periods,i.e.,period 1(1970-1999)and period 2(2000-2020).Human activities were the main cause of the decrease in runoff during the altered periods,contributing 86.03%(-29.61 mm),while the contribution of climate change was only 13.70%(-4.70 mm).The impact of climate change manifests as a decrease in flood volume caused by a reduction in precipitation during the flood season.Analysis of two flood cases indicated a 66.00%-84.00%reduction in basin runoff capacity due to soil and water conservation measures in the upstream area.Soil and water conservation measures reduced the peak flow and total flood volume in the upstream runoff area by 77.98%and 55.16%,respectively,even with nearly double the precipitation.The runoff coefficient in the reservoir area without soil and water conservation measures was 4.0 times that in the conservation area.These results contribute to the re-evaluation of soil and water conservation hydrological effects and provide important guidance for water resource planning and water conservation policy formulation in the LRB.展开更多
Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simul...Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simulate deep-water focused waves of a two-layer Boussinesq-type(BT)model,which has been shown to have excellent linear and nonlinear performance.To further improve the numerical accuracy and stability,the internal wavegenerated method is introduced into the two-layer Boussinesq-type model.Firstly,the sensitivity of the numerical results to the grid resolution is analyzed to verify the convergence of the model;secondly,the focused wave propagating in two opposite directions is simulated to prove the symmetry of the numerical results and the feasibility of the internal wave-generated method;thirdly,the limiting focused wave condition is simulated to compare and analyze the wave surface and the horizontal velocity of the profile at the focusing position,which is in good agreement with the measured values.Meanwhile the simulation of focused waves in very deep waters agrees well with the measured values,which further demonstrates the capability of the two-layer BT model in simulating focused waves in deep waters.展开更多
Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evalua...Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evaluation.Artificial intelligence(AI)has achieved many breakthroughs in almost every aspect of modern technology over the past decade,and undoubtedly offers a more robust approach to automated pavement condition survey.This article aims to provide a comprehensive review on data collection systems,data processing algorithms and condition evaluation methods proposed between 2010 and 2023 for intelligent pavement condition survey.In particular,the data collection system includes AI-driven hardware devices and automated pavement data collection vehicles.The AI-driven hardware devices including right-of-way(ROW)cameras,ground penetrating radar(GPR)devices,light detection and ranging(LiDAR)devices,and advanced laser imaging systems,etc.These different hardware components can be selectively mounted on a vehicle to simultaneously collect multimedia information about the pavement.In addition,this article pays close attention to the application of artificial intelligence methods in detecting pavement distresses,measuring pavement roughness,identifying pavement rutting,analyzing skid resistance and evaluating structural strength of pavements.Based upon the analysis of a variety of the state-of-the-art artificial intelligence methodologies,remaining challenges and future needs with respect to intelligent pavement condition survey are discussed eventually.展开更多
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes...Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.展开更多
The ChatGPT,a lite and conversational variant of Generative Pretrained Transformer 4(GPT-4)developed by OpenAI,is one of the milestone Large Language Models(LLMs)with billions of parameters.LLMs have stirred up much i...The ChatGPT,a lite and conversational variant of Generative Pretrained Transformer 4(GPT-4)developed by OpenAI,is one of the milestone Large Language Models(LLMs)with billions of parameters.LLMs have stirred up much interest among researchers and practitioners in their impressive skills in natural language processing tasks,which profoundly impact various fields.This paper mainly discusses the future applications of LLMs in dentistry.We introduce two primary LLM deployment methods in dentistry,including automated dental diagnosis and cross-modal dental diagnosis,and examine their potential applications.Especially,equipped with a cross-modal encoder,a single LLM can manage multi-source data and conduct advanced natural language reasoning to perform complex clinical operations.We also present cases to demonstrate the potential of a fully automatic Multi-Modal LLM AI system for dentistry clinical application.While LLMs offer significant potential benefits,the challenges,such as data privacy,data quality,and model bias,need further study.Overall,LLMs have the potential to revolutionize dental diagnosis and treatment,which indicates a promising avenue for clinical application and research in dentistry.展开更多
As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,...As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,structures,equipment,and detection technologies related to road engineering have continually and progressively emerged,reshaping the landscape of pavement systems.There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies.Therefore,Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of“advanced road materials,structures,equipment,and detection technologies”.This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars,all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering.It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering:advanced road materials,advanced road structures and performance evaluation,advanced road construction equipment and technology,and advanced road detection and assessment technologies.展开更多
The base layer constructed by cement-stabilized macadam(CSM)has been widely used in highway construction due to its low elasticity deformation and high carrying capacity.As a bearing layer,the CSM base is not exempt f...The base layer constructed by cement-stabilized macadam(CSM)has been widely used in highway construction due to its low elasticity deformation and high carrying capacity.As a bearing layer,the CSM base is not exempt from fatigue cracking under cyclic loading in the service process.Cracks in the base will create irreversible structural and functional deficiencies,such as the potential for reflective cracking of subsequently placed asphalt concrete overlays.The fracture of the base will shorten the service life of the pavement.The quality of the CSM base is directly related to the bearing capacity and integrity of the whole pavement structure.It is of practical significance to further study the fatigue failure behavior of CSM material for the long-term performance of the pavement.The CSM material is a typical heterogeneous multiphase composite.On the mesoscale,CSM consists of aggregate,cement mortar,pores,and the interface transitional zone(ITZ).On the microscale,the hardened mortar contains a large number of capillary pores,unhydrated particles,hydrated crystals,etc.,which makes the spatial distribution of its material properties stochastic.In addition,cement hydration,dry shrinkage,and temperature shrinkage can also produce micro-crack defects in cement mortar.These microcracks will have crossscale evolution under load,resulting in structural fracture.Macroscopic complex deformation and mechanical response are the reflections of its microscopic and even mesoscale composition and structure.This study summarized the existing studies on the mesoscopic properties of CSM materials,respectively from the three aspects of mesostructure,structural characterization,and mesoscale fatigue damage analysis,to help the development of long-life pavement.The future research direction is to explore the mesoscale characteristics of CSM using multiscale representation and analysis methods,to establish the connection between mesoscale characteristics and macroscopic mechanical properties.展开更多
Accurate simulation of the horizontal-two-dimension(H2D)focused wave group in deep water requires high accuracy of a numerical model.The two-layer Boussinesq-type model(Liu and Fang,2016;Liu et al.,2018)with the highe...Accurate simulation of the horizontal-two-dimension(H2D)focused wave group in deep water requires high accuracy of a numerical model.The two-layer Boussinesq-type model(Liu and Fang,2016;Liu et al.,2018)with the highest spatial derivative of 2 has high accuracy in both linear and nonlinear properties.Based on the further development of the velocity equations(Liu et al.,2023),the H2D numerical model for water waves is established with the prediction-correction-iteration model in the finite difference method,and a composite fourth-order Adams-Bashforth-Moulton scheme is used for time integration.The wave generation method proposed by Hsiao et al.(2005)is applied and calibrated in this H2D model.The numerical calculations lead to the following three main conclusions:First,compared with the analytical solution of Stokes linear waves,the calculated velocity profiles show higher accuracy by using the improved velocity formulas.Second,the simulations of the focused multidirectional wave group are carried out,and good agreements are found,demonstrating that the present H2D numerical model shows high accuracy in simulating focused multidirectional wave groups,and the effectiveness of the improved velocity formulas is also validated.Furthermore,the velocity profiles throughout the computational domain at the time of maximum wave crest are given.Finally,the FFT method is used to obtain the amplitude with different frequencies for several locations,and the changes of the wavelet energy spectrum at different locations are presented for several cases.展开更多
Currently, the comprehensive assessment of the communication troops’ camp planning project is primarily qualitative, with limited quantitative evaluation. Drawing upon the relevant spirit of the Military Commission’...Currently, the comprehensive assessment of the communication troops’ camp planning project is primarily qualitative, with limited quantitative evaluation. Drawing upon the relevant spirit of the Military Commission’s documents and leveraging the author’s own work experience in branch offices, this article thoroughly explores the factors influencing the comprehensive assessment of the project and proposes quantitative representation methods for these factors. Utilizing the Analytic Hierarchy Process (AHP), a hierarchical structure model and judgment matrix for the evaluation factors of the communication troops’ camp construction planning project are constructed, enabling the determination of the weightage of each factor. This provides a certain level of support and reference for the project approval and management by branch offices, while also offering valuable insights for the approval and management of camp planning and construction projects in other types of troops and battlefield projects.展开更多
The current space launch missions are intense, and the utilization of equipment is frequent, demanding increasingly higher responsiveness and capability in maintenance and support. The aerospace equipment maintenance ...The current space launch missions are intense, and the utilization of equipment is frequent, demanding increasingly higher responsiveness and capability in maintenance and support. The aerospace equipment maintenance and support chain relies on aerospace equipment maintenance and support facilities, deploying various maintenance and support resources rationally according to specific requirements and principles, ultimately forming a unidirectional functional chain or network from the supply side to the demand side. This system helps address the “bottleneck” issue in the generation of aerospace equipment support capability and significantly improves the level of aerospace equipment maintenance and support. The model construction is a prerequisite for analyzing the formation and operation mechanism of the chain, and identifying factors affecting the efficiency and effectiveness of maintenance and support. With consideration of the particularity of aerospace equipment maintenance and support, the paper extensively investigates the construction of the aerospace equipment maintenance and support chain model by drawing on research achievements in modern supply chain and logistics theories, as well as model construction methods. It develops a structural diagram-based chain model, with symbols as key elements, and establishes an evaluation indicator system, providing insights into understanding and grasping the composition of the aerospace equipment maintenance and support chain effectively. Furthermore, it offers a reference for solving other equipment support chains’ construction and optimization problems.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terz...Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terzaghi one-dimensional consolidation equation is not well-posed. Moreover, the classical boundary conditions of the equation can only be applied to problems with either perfectly pervious or perfectly impervious boundaries. General boundary conditions are proposed to overcome these shortcomings and thus transfer the solution of the Terzaghi one-dimensional consolidation equation to a well-posed initial boundary value problem. The solution for proposed general boundary conditions is validated by comparing it to the classical solution. The actual field drainage conditions can be simulated by adjusting the values of parameters b and c given in the proposed general botmdary conditions. For relatively high coefficient of consolidation, just one term in series expansions is enough to obtain results with acceptable accuracy.展开更多
In order to accurately analyze vibration characteristics and site effects of loess hills under moving load of a highspeed train,four types of loess hill models under railway viaduct was established by ABAQUS of finite...In order to accurately analyze vibration characteristics and site effects of loess hills under moving load of a highspeed train,four types of loess hill models under railway viaduct was established by ABAQUS of finite element analysis software by field test.The dynamic response and stability of loess hills under two different vibration sources under high-speed train load were studied by using two-dimensional equivalent linear response timehistory analysis,and the influence of the mechanical parameters of loess on the vibration of different types of loess hill was analyzed.Results show that there are obvious differences between peak displacement cloud maps of loess hills under the railway viaduct under gravity and train load action.We analyzed the influence of the change of elastic modulus on vibration propagation of soil of foundation and loess knoll,and found that the change of elastic modulus of soil in different position of foundation has more effect on vibration propagation than that of loess knoll soil.At the same time,the vertical acceleration cloud maps of the four types of loess hills are obviously different.展开更多
To develop the initial sandplay picture system for Chinese young internet addicts (ISPSCYIA) for the diagnosis and testing studies on internet addiction, 22 pictures were selected from the used pictures of initial san...To develop the initial sandplay picture system for Chinese young internet addicts (ISPSCYIA) for the diagnosis and testing studies on internet addiction, 22 pictures were selected from the used pictures of initial sandplay in existing research results of initial sandplay of Chinese young Internet addicts. 54 normal adolescents were recruited to evaluate the valence of the pictures on a nine-point scale in terms of clarity, pleasure and arousal. Results were shown that there were no significant differences between addiction pictures and non-addiction pictures in clarity, while there were significant differences in pleasure and arousal, as the scores of non-addiction pictures were higher. Correlation analysis indicated that there was obvious positive correlation among clarity, pleasure and arousal of addiction pictures & non-addiction pictures. The coefficients of internal consistency reliability and split-half reliability of 22 pictures’ scores exhibited both over 0.90. ISPSCYIA has proved typical and distinctive through valence assessment, which could be preliminarily applied to measure the characteristics of Chinese adolescents’ internet addiction.展开更多
This paper makes an analysis of the impact on the structure of the corridortype train working diagram by increasing the 350 km/h train pairs of Beijing-Shanghai High-speed Railway(HSR).According to the requirements of...This paper makes an analysis of the impact on the structure of the corridortype train working diagram by increasing the 350 km/h train pairs of Beijing-Shanghai High-speed Railway(HSR).According to the requirements of operation speed diversity,the multi-station receiving characteristics of cross-line trains and different train stopping schemes,this paper proposes a scheme of adding 350 km/h train pairs via computer analysis of carrying capability mode.The scheme is divided into three stages:(1)Initial stage:It is planned to increase trains running at 350 km/h,with 15~26 pairs of trains put into operation;(2)Rapid increase stage:27~142 pairs of 350 km/h trains are put into operation;(3)Full replacement stage:143~195 pairs of 350 km/h trains are put into operation,during which the number of cross-line trains under operation is controlled,the number of cross-line trains in each section is determined,the operation and connection scheme of cross-line trains is adjusted and the train stopping scheme is optimized.The results of this study were used for the adjustment of the train working diagram in the third quarter of June 25,2021 to increase the number of 350 km/h train pairs from 19 to 30 on Beijing-Shanghai HSR.350 km/h trains are evenly arranged during 7:00—19:00 on the train working diagram and 300 km/h trains are arranged by making full use of every time and space,to improve the travelling speed on Beijing-Shanghai HSR as a whole.展开更多
Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual matu...Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual maturation of platoon control technology is enabling vehicle platoons to achieve basic driving functions,thereby permitting large-scale vehicle platoon scheduling and planning,which is essential for industrialized platoon applications and generates significant economic benefits.Scheduling and planning are required in many aspects of vehicle platoon operation;here,we outline the advantages and challenges of a number of the most important applications,including platoon formation scheduling,lane-change planning,passing traffic light scheduling,and vehicle resource allocation.This paper’s primary objective is to integrate current independent platoon scheduling and planning techniques into an integrated architecture to meet the demands of large-scale platoon applications.To this end,we first summarize the general techniques of vehicle platoon scheduling and planning,then list the primary scenarios for scheduling and planning technique application,and finally discuss current challenges and future development trends in platoon scheduling and planning.We hope that this paper can encourage related platoon researchers to conduct more systematic research and integrate multiple platoon scheduling and planning technologies and applications.展开更多
The CRTS Ⅱ slab track, which is connected in a longitudinal direction, is one of the main ballastless tracks in China, with approximately 7365 km of operational track. Temperature loading is a very vital factor leadi...The CRTS Ⅱ slab track, which is connected in a longitudinal direction, is one of the main ballastless tracks in China, with approximately 7365 km of operational track. Temperature loading is a very vital factor leading to slab track damages such as warping and cracking. While existing research on temperature distribution rests on either site tests in special environments or theoretical analysis, the long-term temperature field characteristics are not clear. Therefore, a long-term temperature field test for the CRTS Ⅱ slab track on bridge-subgrade transition section was conducted to analyze the temperature field. A GA-BP(genetic algorithm optimized back propagation) neural network was trained on the test data to predict the temperature field. The vertical and lateral temperature distributions in four typical days were carried out. We found that the temperature along the track was distributed in a nonlinear manner. This was particularly distinct in the vertical direction for depths of less than 300 mm. The highest and lowest daily temperatures and the daily range of the temperature were analyzed. With the increasing depth, the daily highest temperatures and range of the temperature were smaller, the daily lowest temperatures were higher, and the time corresponding to this peak value appeared later in the day. Both the highest and lowest daily temperature could be predicted using the GA-BP neural network, though the accuracy in predicting the highest temperature was higher than that in predicting the lowest temperature.展开更多
基金funded by the BeijingNatural Science Foundation of China(8222003)National Natural Science Foundation of China(41807180).
文摘Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state.
基金Project supported by the ESA-CMSA/CSU Space Science and Utilization Collaboration Program。
文摘An abnormally high peak friction angle of Ottawa sand was observed in(National Aeronautics and Space Administration) NASA–(Mechanics of Granular Materials) MGM tests in microgravity conditions on the space shuttle. Previous investigations have been unsuccessful in providing a constitutive insight into this behavior of granular materials under extremely low effective stress conditions. Here, a recently proposed unified constitutive model for transient rheological behavior of sand and other granular materials is adopted for the analytical assessment of high peak friction angles. For the first time, this long-eluded behavior of sand is attributed to a hidden rheological transition mechanism, that is not only rate-sensitive, but also pressure-sensitive. The NASA–MGM microgravity conditions show that shear-tests of sand can be performed under abnormally low confining stress conditions. The pressure-sensitive behavior of granular shearing that is previously ignored is studied based on the μ(I) rheology and its variations. Comparisons between the model and the NASA microgravity tests demonstrate a high degree of agreement. The research is highly valid for pressure-sensitive and rate-dependent problems that occur during earthquakes, landslides, and space exploration.
基金Fundamental Research Funds for the Central Universities(ZY20230206)Langfang City Science and Technology Research and Development Plan Self-raised Funds Project(2023013216).
文摘Since the 1950s,numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin(LRB),China.While these measures have protected the upstream soil and water ecological environment,they have led to a sharp reduction in the downstream flow and the deterioration of the river ecological environment.Therefore,it is important to evaluate the impact of soil and water conservation measures on hydrological processes to assess long-term runoff changes.Using the Soil and Water Assessment Tool(SWAT)models and sensitivity analyses based on the Budyko hypothesis,this study quantitatively evaluated the effects of climate change,direct water withdrawal,and soil and water conservation measures on runoff in the LRB during different periods,including different responses to runoff discharge,hydrological regime,and flood processes.The runoff series were divided into a baseline period(1956-1969)and two altered periods,i.e.,period 1(1970-1999)and period 2(2000-2020).Human activities were the main cause of the decrease in runoff during the altered periods,contributing 86.03%(-29.61 mm),while the contribution of climate change was only 13.70%(-4.70 mm).The impact of climate change manifests as a decrease in flood volume caused by a reduction in precipitation during the flood season.Analysis of two flood cases indicated a 66.00%-84.00%reduction in basin runoff capacity due to soil and water conservation measures in the upstream area.Soil and water conservation measures reduced the peak flow and total flood volume in the upstream runoff area by 77.98%and 55.16%,respectively,even with nearly double the precipitation.The runoff coefficient in the reservoir area without soil and water conservation measures was 4.0 times that in the conservation area.These results contribute to the re-evaluation of soil and water conservation hydrological effects and provide important guidance for water resource planning and water conservation policy formulation in the LRB.
基金The National Natural Science Foundation under contract Nos 52171247,51779022,52071057,and 51709054.
文摘Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simulate deep-water focused waves of a two-layer Boussinesq-type(BT)model,which has been shown to have excellent linear and nonlinear performance.To further improve the numerical accuracy and stability,the internal wavegenerated method is introduced into the two-layer Boussinesq-type model.Firstly,the sensitivity of the numerical results to the grid resolution is analyzed to verify the convergence of the model;secondly,the focused wave propagating in two opposite directions is simulated to prove the symmetry of the numerical results and the feasibility of the internal wave-generated method;thirdly,the limiting focused wave condition is simulated to compare and analyze the wave surface and the horizontal velocity of the profile at the focusing position,which is in good agreement with the measured values.Meanwhile the simulation of focused waves in very deep waters agrees well with the measured values,which further demonstrates the capability of the two-layer BT model in simulating focused waves in deep waters.
基金the National Natural Science Foundation of China(grant no.51208419).
文摘Automated pavement condition survey is of critical importance to road network management.There are three primary tasks involved in pavement condition surveys,namely data collection,data processing and condition evaluation.Artificial intelligence(AI)has achieved many breakthroughs in almost every aspect of modern technology over the past decade,and undoubtedly offers a more robust approach to automated pavement condition survey.This article aims to provide a comprehensive review on data collection systems,data processing algorithms and condition evaluation methods proposed between 2010 and 2023 for intelligent pavement condition survey.In particular,the data collection system includes AI-driven hardware devices and automated pavement data collection vehicles.The AI-driven hardware devices including right-of-way(ROW)cameras,ground penetrating radar(GPR)devices,light detection and ranging(LiDAR)devices,and advanced laser imaging systems,etc.These different hardware components can be selectively mounted on a vehicle to simultaneously collect multimedia information about the pavement.In addition,this article pays close attention to the application of artificial intelligence methods in detecting pavement distresses,measuring pavement roughness,identifying pavement rutting,analyzing skid resistance and evaluating structural strength of pavements.Based upon the analysis of a variety of the state-of-the-art artificial intelligence methodologies,remaining challenges and future needs with respect to intelligent pavement condition survey are discussed eventually.
文摘Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.
基金supported by the Research and Development Program,West China Hospital of Stomatology,Sichuan University(RD-02-202107)Sichuan Province Science and Technology Support Program(2022NSFSC0743)Sichuan Postdoctoral Science Foundation(TB2022005)grant to H.Huang.
文摘The ChatGPT,a lite and conversational variant of Generative Pretrained Transformer 4(GPT-4)developed by OpenAI,is one of the milestone Large Language Models(LLMs)with billions of parameters.LLMs have stirred up much interest among researchers and practitioners in their impressive skills in natural language processing tasks,which profoundly impact various fields.This paper mainly discusses the future applications of LLMs in dentistry.We introduce two primary LLM deployment methods in dentistry,including automated dental diagnosis and cross-modal dental diagnosis,and examine their potential applications.Especially,equipped with a cross-modal encoder,a single LLM can manage multi-source data and conduct advanced natural language reasoning to perform complex clinical operations.We also present cases to demonstrate the potential of a fully automatic Multi-Modal LLM AI system for dentistry clinical application.While LLMs offer significant potential benefits,the challenges,such as data privacy,data quality,and model bias,need further study.Overall,LLMs have the potential to revolutionize dental diagnosis and treatment,which indicates a promising avenue for clinical application and research in dentistry.
基金support from the European Union's Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement No.101024139,the RILEM technical committee TC 279 WMR(valorisation of waste and secondary materials for roads),RILEM technical committee TC-264 RAP(asphalt pavement recycling)the Swiss National Science Foundation(SNF)grant 205121_178991/1 for the project titled“Urban Mining for Low Noise Urban Roads and Optimized Design of Street Canyons”,National Natural Science Foundation of China(No.51808462,51978547,52005048,52108394,52178414,52208420,52278448,52308447,52378429)+9 种基金China Postdoctoral Science Foundation(No.2023M730356)National Key R&D Program of China(No.2021YFB2601302)Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-QN-0472)Postdoctoral Science Foundation of Anhui Province(2022B627)Shaanxi Provincial Science and Technology Department(No.2022 PT30)Key Technological Special Project of Xinxiang City(No.22ZD013)Key Laboratory of Intelligent Manufacturing of Construction Machinery(No.IMCM2021KF02)the Applied Basic Research Project of Sichuan Science and Technology Department(Free Exploration Type)(Grant No.2020YJ0039)Key R&D Support Plan of Chengdu Science and Technology Project-Technology Innovation R&D Project(Grant No.2019-YF05-00002-SN)the China Postdoctoral Science Foundation(Grant No.2018M643520).
文摘As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,structures,equipment,and detection technologies related to road engineering have continually and progressively emerged,reshaping the landscape of pavement systems.There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies.Therefore,Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of“advanced road materials,structures,equipment,and detection technologies”.This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars,all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering.It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering:advanced road materials,advanced road structures and performance evaluation,advanced road construction equipment and technology,and advanced road detection and assessment technologies.
基金sponsored by the projects found by the National Natural Science Foundation of China(NSFC)under Grant No.51978163 and Grant No.52208439the Natural Science Foundation of Jiangsu Province under Grant No.BK20200468+4 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.SJCX22_0063the Jiangsu Transportation Science and Technology and Achievement Transformation Project under Grant No.2020Y19-1(1)Key S&T Project of Ministry of Transport of the People's Republic of China(2021-ZD1-004)the Scientific Research Program Project of Shanghai Municipal Transportation Commission(JT2021-KY-016)which the authors are very grateful.
文摘The base layer constructed by cement-stabilized macadam(CSM)has been widely used in highway construction due to its low elasticity deformation and high carrying capacity.As a bearing layer,the CSM base is not exempt from fatigue cracking under cyclic loading in the service process.Cracks in the base will create irreversible structural and functional deficiencies,such as the potential for reflective cracking of subsequently placed asphalt concrete overlays.The fracture of the base will shorten the service life of the pavement.The quality of the CSM base is directly related to the bearing capacity and integrity of the whole pavement structure.It is of practical significance to further study the fatigue failure behavior of CSM material for the long-term performance of the pavement.The CSM material is a typical heterogeneous multiphase composite.On the mesoscale,CSM consists of aggregate,cement mortar,pores,and the interface transitional zone(ITZ).On the microscale,the hardened mortar contains a large number of capillary pores,unhydrated particles,hydrated crystals,etc.,which makes the spatial distribution of its material properties stochastic.In addition,cement hydration,dry shrinkage,and temperature shrinkage can also produce micro-crack defects in cement mortar.These microcracks will have crossscale evolution under load,resulting in structural fracture.Macroscopic complex deformation and mechanical response are the reflections of its microscopic and even mesoscale composition and structure.This study summarized the existing studies on the mesoscopic properties of CSM materials,respectively from the three aspects of mesostructure,structural characterization,and mesoscale fatigue damage analysis,to help the development of long-life pavement.The future research direction is to explore the mesoscale characteristics of CSM using multiscale representation and analysis methods,to establish the connection between mesoscale characteristics and macroscopic mechanical properties.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52171247,51779022,52071057,51709054)the National Key Research and Development Program of China(Grant No.2022YFC3106101)。
文摘Accurate simulation of the horizontal-two-dimension(H2D)focused wave group in deep water requires high accuracy of a numerical model.The two-layer Boussinesq-type model(Liu and Fang,2016;Liu et al.,2018)with the highest spatial derivative of 2 has high accuracy in both linear and nonlinear properties.Based on the further development of the velocity equations(Liu et al.,2023),the H2D numerical model for water waves is established with the prediction-correction-iteration model in the finite difference method,and a composite fourth-order Adams-Bashforth-Moulton scheme is used for time integration.The wave generation method proposed by Hsiao et al.(2005)is applied and calibrated in this H2D model.The numerical calculations lead to the following three main conclusions:First,compared with the analytical solution of Stokes linear waves,the calculated velocity profiles show higher accuracy by using the improved velocity formulas.Second,the simulations of the focused multidirectional wave group are carried out,and good agreements are found,demonstrating that the present H2D numerical model shows high accuracy in simulating focused multidirectional wave groups,and the effectiveness of the improved velocity formulas is also validated.Furthermore,the velocity profiles throughout the computational domain at the time of maximum wave crest are given.Finally,the FFT method is used to obtain the amplitude with different frequencies for several locations,and the changes of the wavelet energy spectrum at different locations are presented for several cases.
文摘Currently, the comprehensive assessment of the communication troops’ camp planning project is primarily qualitative, with limited quantitative evaluation. Drawing upon the relevant spirit of the Military Commission’s documents and leveraging the author’s own work experience in branch offices, this article thoroughly explores the factors influencing the comprehensive assessment of the project and proposes quantitative representation methods for these factors. Utilizing the Analytic Hierarchy Process (AHP), a hierarchical structure model and judgment matrix for the evaluation factors of the communication troops’ camp construction planning project are constructed, enabling the determination of the weightage of each factor. This provides a certain level of support and reference for the project approval and management by branch offices, while also offering valuable insights for the approval and management of camp planning and construction projects in other types of troops and battlefield projects.
文摘The current space launch missions are intense, and the utilization of equipment is frequent, demanding increasingly higher responsiveness and capability in maintenance and support. The aerospace equipment maintenance and support chain relies on aerospace equipment maintenance and support facilities, deploying various maintenance and support resources rationally according to specific requirements and principles, ultimately forming a unidirectional functional chain or network from the supply side to the demand side. This system helps address the “bottleneck” issue in the generation of aerospace equipment support capability and significantly improves the level of aerospace equipment maintenance and support. The model construction is a prerequisite for analyzing the formation and operation mechanism of the chain, and identifying factors affecting the efficiency and effectiveness of maintenance and support. With consideration of the particularity of aerospace equipment maintenance and support, the paper extensively investigates the construction of the aerospace equipment maintenance and support chain model by drawing on research achievements in modern supply chain and logistics theories, as well as model construction methods. It develops a structural diagram-based chain model, with symbols as key elements, and establishes an evaluation indicator system, providing insights into understanding and grasping the composition of the aerospace equipment maintenance and support chain effectively. Furthermore, it offers a reference for solving other equipment support chains’ construction and optimization problems.
基金Project(52108363) supported by the National Natural Science Foundation of ChinaProjects(2021M700654, 2023T160074) supported by the Postdoctoral Research Foundation of China+2 种基金Project(TUL2022-01) supported by the Key Laboratory of Urban Underground Engineering of Ministry of Education,ChinaProject(XLYC1905015) supported by the Liaoning Revitalization Talents Program,ChinaProject(LJKZZ20220003) supported by the key Project of Liaoning Education Department,China。
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
基金Foundation item: Project(50608038) supported by the National Natural Science Foundation of China
文摘Boundary conditions for the classical solution of the Terzaghi one-dimensional consolidation equation conflict with the equation's initial condition. As such, the classical initial-boundary value problem for the Terzaghi one-dimensional consolidation equation is not well-posed. Moreover, the classical boundary conditions of the equation can only be applied to problems with either perfectly pervious or perfectly impervious boundaries. General boundary conditions are proposed to overcome these shortcomings and thus transfer the solution of the Terzaghi one-dimensional consolidation equation to a well-posed initial boundary value problem. The solution for proposed general boundary conditions is validated by comparing it to the classical solution. The actual field drainage conditions can be simulated by adjusting the values of parameters b and c given in the proposed general botmdary conditions. For relatively high coefficient of consolidation, just one term in series expansions is enough to obtain results with acceptable accuracy.
基金supported by Science and Technology Project of State Grid Corporation of China(Grant No.5200-202230098A1-1-ZN)。
文摘In order to accurately analyze vibration characteristics and site effects of loess hills under moving load of a highspeed train,four types of loess hill models under railway viaduct was established by ABAQUS of finite element analysis software by field test.The dynamic response and stability of loess hills under two different vibration sources under high-speed train load were studied by using two-dimensional equivalent linear response timehistory analysis,and the influence of the mechanical parameters of loess on the vibration of different types of loess hill was analyzed.Results show that there are obvious differences between peak displacement cloud maps of loess hills under the railway viaduct under gravity and train load action.We analyzed the influence of the change of elastic modulus on vibration propagation of soil of foundation and loess knoll,and found that the change of elastic modulus of soil in different position of foundation has more effect on vibration propagation than that of loess knoll soil.At the same time,the vertical acceleration cloud maps of the four types of loess hills are obviously different.
文摘To develop the initial sandplay picture system for Chinese young internet addicts (ISPSCYIA) for the diagnosis and testing studies on internet addiction, 22 pictures were selected from the used pictures of initial sandplay in existing research results of initial sandplay of Chinese young Internet addicts. 54 normal adolescents were recruited to evaluate the valence of the pictures on a nine-point scale in terms of clarity, pleasure and arousal. Results were shown that there were no significant differences between addiction pictures and non-addiction pictures in clarity, while there were significant differences in pleasure and arousal, as the scores of non-addiction pictures were higher. Correlation analysis indicated that there was obvious positive correlation among clarity, pleasure and arousal of addiction pictures & non-addiction pictures. The coefficients of internal consistency reliability and split-half reliability of 22 pictures’ scores exhibited both over 0.90. ISPSCYIA has proved typical and distinctive through valence assessment, which could be preliminarily applied to measure the characteristics of Chinese adolescents’ internet addiction.
文摘This paper makes an analysis of the impact on the structure of the corridortype train working diagram by increasing the 350 km/h train pairs of Beijing-Shanghai High-speed Railway(HSR).According to the requirements of operation speed diversity,the multi-station receiving characteristics of cross-line trains and different train stopping schemes,this paper proposes a scheme of adding 350 km/h train pairs via computer analysis of carrying capability mode.The scheme is divided into three stages:(1)Initial stage:It is planned to increase trains running at 350 km/h,with 15~26 pairs of trains put into operation;(2)Rapid increase stage:27~142 pairs of 350 km/h trains are put into operation;(3)Full replacement stage:143~195 pairs of 350 km/h trains are put into operation,during which the number of cross-line trains under operation is controlled,the number of cross-line trains in each section is determined,the operation and connection scheme of cross-line trains is adjusted and the train stopping scheme is optimized.The results of this study were used for the adjustment of the train working diagram in the third quarter of June 25,2021 to increase the number of 350 km/h train pairs from 19 to 30 on Beijing-Shanghai HSR.350 km/h trains are evenly arranged during 7:00—19:00 on the train working diagram and 300 km/h trains are arranged by making full use of every time and space,to improve the travelling speed on Beijing-Shanghai HSR as a whole.
基金funded by the Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)of Zhang Jiang Laboratory and Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghai Rising Star Program(21QC1400900)Tongji–Westwell Autonomous Vehicle Joint Lab Project。
文摘Through vehicle-to-vehicle(V2V)communication,autonomizing a vehicle platoon can significantly reduce the distance between vehicles,thereby reducing air resistance and improving road traffic efficiency.The gradual maturation of platoon control technology is enabling vehicle platoons to achieve basic driving functions,thereby permitting large-scale vehicle platoon scheduling and planning,which is essential for industrialized platoon applications and generates significant economic benefits.Scheduling and planning are required in many aspects of vehicle platoon operation;here,we outline the advantages and challenges of a number of the most important applications,including platoon formation scheduling,lane-change planning,passing traffic light scheduling,and vehicle resource allocation.This paper’s primary objective is to integrate current independent platoon scheduling and planning techniques into an integrated architecture to meet the demands of large-scale platoon applications.To this end,we first summarize the general techniques of vehicle platoon scheduling and planning,then list the primary scenarios for scheduling and planning technique application,and finally discuss current challenges and future development trends in platoon scheduling and planning.We hope that this paper can encourage related platoon researchers to conduct more systematic research and integrate multiple platoon scheduling and planning technologies and applications.
基金This work was supported by the National Key Research and Development Program of China(Nos.2021YFB2601000,2021YFF0502100)the National Natural Science Foundation of China(No.52208415)the Natural Science Foundation of Shaanxi Province,China(Nos.2021JQ-255,2022JQ-303).
文摘The CRTS Ⅱ slab track, which is connected in a longitudinal direction, is one of the main ballastless tracks in China, with approximately 7365 km of operational track. Temperature loading is a very vital factor leading to slab track damages such as warping and cracking. While existing research on temperature distribution rests on either site tests in special environments or theoretical analysis, the long-term temperature field characteristics are not clear. Therefore, a long-term temperature field test for the CRTS Ⅱ slab track on bridge-subgrade transition section was conducted to analyze the temperature field. A GA-BP(genetic algorithm optimized back propagation) neural network was trained on the test data to predict the temperature field. The vertical and lateral temperature distributions in four typical days were carried out. We found that the temperature along the track was distributed in a nonlinear manner. This was particularly distinct in the vertical direction for depths of less than 300 mm. The highest and lowest daily temperatures and the daily range of the temperature were analyzed. With the increasing depth, the daily highest temperatures and range of the temperature were smaller, the daily lowest temperatures were higher, and the time corresponding to this peak value appeared later in the day. Both the highest and lowest daily temperature could be predicted using the GA-BP neural network, though the accuracy in predicting the highest temperature was higher than that in predicting the lowest temperature.