The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a ...The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a comparably conservative rotary-scaling finetuning(RSFT)method,which introduces two design variables and an empirical formula,is proposed to fine-tune the traditional wheel profiles for improving their engineering applicability.For the second module,for the TRAXX locomotives serving on the Blankenburg–Rubeland line,an optimization function representing the relationship between the wheel profile and the wheel–rail wear number is established based on Kriging surrogate model(KSM).For the third module,a method combining the regression capability of KSM with the iterative computing power of particle swarm optimization(PSO)is proposed to quickly and reliably implement the task of optimizing wheel profiles.Finally,with the RSFT–KSM–PSO method,we propose two wear-resistant wheel profiles for the TRAXX locomotives serving on the Blankenburg–Rubeland line,namely S1002-S and S1002-M.The S1002-S profile minimizes the total wear number by 30%,while the S1002-M profile makes the wear distribution more uniform through a proper sacrifice of the tread wear number,and the total wear number is reduced by 21%.The quasi-static and hunting stability tests further demonstrate that the profile designed by the RSFT–KSM–PSO method is promising for practical engineering applications.展开更多
Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modu...Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing...One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing equation were obtained by applying Laplace transform with respect to time,and then the pore-pressure,strain and deformation of the aquitard could be calculated by Laplace inversion.A case was analyzed to validate the correctness of the present method.Finally,some consolidation properties of the problem were analyzed.Comparison of the average degree of consolidation defined by pore pressure with that defined by settlement shows that they are different and the maximum difference is 22.8%.The influences of parameters of Merchant model and the rate of the water level on the consolidation are great.The smaller the viscosity coefficient is,the later the rate of consolidation decreases.The rate of consolidation is decreased with the decrease of the rate of the water level fall.Therefore,the lagged effect of land subsidence should be considered in the actual project.展开更多
This paper develops a wheel profile fine-tuning system(WPFTS)that comprehensively considers the influence of wheel profile on wheel damage,vehicle stability,vehicle safety,and passenger comfort.WPFTS can recommend one...This paper develops a wheel profile fine-tuning system(WPFTS)that comprehensively considers the influence of wheel profile on wheel damage,vehicle stability,vehicle safety,and passenger comfort.WPFTS can recommend one or more optimized wheel profiles according to train operators’needs,e.g.,reducing wheel wear,mitigating the development of wheel out-of-roundness(OOR),improving the shape stability of the wheel profile.Specifically,WPFTS includes four modules:(I)a wheel profile generation module based on the rotary-scaling finetuning(RSFT)method;(II)a multi-objective generation module consisting of a rigid multi-body dynamics simulation(MBS)model,an analytical model,and a rigid–flexible MBS model,for generating 11 objectives related to wheel damage,vehicle stability,vehicle safety,and passenger comfort;(III)a weight assignment module consisting of an adaptive weight assignment strategy and a manual weight assignment strategy;and(IV)an optimization module based on radial basis function(RBF)and particle swarm optimization(PSO).Finally,three cases are introduced to show how WPTFS recommends a wheel profile according to train operators’needs.Among them,a wheel profile with high shape stability,a wheel profile for mitigating the development of wheel OOR,and a wheel profile considering hunting stability and derailment safety are developed,respectively.展开更多
The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. ...The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3 D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view.展开更多
A dynamic programming-sequential quadratic programming(DP-SQP)combined algorithm is proposed to address the problem that the traditional continuous control method has high computational complexity and is easy to fall ...A dynamic programming-sequential quadratic programming(DP-SQP)combined algorithm is proposed to address the problem that the traditional continuous control method has high computational complexity and is easy to fall into local optimal solution.To solve the globally optimal control law sequence,we use the dynamic programming algorithm to discretize the separation control decision-making process into a series of sub-stages based on the time characteristics of the separation allocation model,and recursion from the end stage to the initial stage.The sequential quadratic programming algorithm is then used to solve the optimal return function and the optimal control law for each sub-stage.Comparative simulations of the combined algorithm and the traditional algorithm are designed to validate the superiority of the combined algorithm.Aircraft-following and cross-conflict simulation examples are created to demonstrate the combined algorithm’s adaptability to various conflict scenarios.The simulation results demonstrate the separation deploy strategy’s effectiveness,efficiency,and adaptability.展开更多
In this paper,we propose a new method to analyze airport pavement bearing capacity using vibration in runways during aircraft taxiing.The new method overcomes shortcomings of existing tests,such as flight suspension a...In this paper,we propose a new method to analyze airport pavement bearing capacity using vibration in runways during aircraft taxiing.The new method overcomes shortcomings of existing tests,such as flight suspension and simulated loading.Between aircraft take-off and landing,acceleration sensors are arranged on the surface of the pavement far from the centerline,and the in-situ responses of the pavement under aircraft loads are collected during aircraft operations.The fundamental frequencies of the pavement are obtained by fast Fourier transformation of the measured accelerations,and are used to modify the parameters of a pavement finite element model built according to a design blueprint.By comparing the fundamental frequencies of the measured and calculated signals,the soil modulus is back-calculated.To implement this test method and ensure the accuracy of bearing capacity evaluation,aircraft dynamic loads are obtained by solving dynamic balance equations of the aircraft-pavement coupled system,and the vibration response of the pavement and sensitivity analysis of the fundamental frequencies are introduced.The results show that the fundamental frequencies at the center of the pavement are basically the same as those at the far side on the cross section;the fundamental frequencies in the depth direction remain constant,but the amplitude of the frequency spectrum decreases.The effect of the soil resilient modulus on the vibration frequency is most significant.The fundamental frequency increases from 6.02 to 10.55 Hz when the soil dynamic resilient modulus changes from 91 to 303 MPa.The effects of surface thickness and base thickness on the vibration frequency are less significant,and there is minimal influence when changing the dynamic elastic moduli of the surface layer or base layer.Field test results indicate the efficacy of the method of vibration measurement at the pavement surface to estimate the layer modulus of airport pavement.展开更多
The formation and growth of cracks in concrete dams are mainly induced by hydrostatic and temperature loads.As cracks es-pecially unstable cracks are of great danger to the safety of dams,it is critical to avoid extre...The formation and growth of cracks in concrete dams are mainly induced by hydrostatic and temperature loads.As cracks es-pecially unstable cracks are of great danger to the safety of dams,it is critical to avoid extremely adverse load combinations during the dam operations to achieve the stability of cracks.Conventionally,the adverse load combinations have to be deter-mined empirically by experts based on specific dam site conditions.Therefore,it is attractive to apply quantitative instead of empirical methods to identify the adverse loading conditions.In this study,we employ an adaptive neuro-fuzzy inference sys-tem(ANFIS) to Chencun concrete dam.The ANFIS is able to help us build a relationship between the model inputs(reservoir water level and air temperature) and the model output(crack opening displacement).Based on this relationship,the rules of the adverse load combinations to the crack are generated directly from the monitoring data.The accuracy of the trained ANFIS is proved by comparing the modeling results and the monitoring data.Our work demonstrates that the ANFIS is a useful ap-proach for accurately recognizing the rules of the adverse load combinations that can be used in the knowledge base of dam safety expert system.展开更多
基金the Assets4Rail Project which is funded by the Shift2Rail Joint Undertaking under the EU’s H2020 program(Grant No.826250)the Open Research Fund of State Key Laboratory of Traction Power of Southwest Jiaotong University(Grant No.TPL2011)+1 种基金part of the experiment data concerning the railway line is supported by the DynoTRAIN Project,funded by European Commission(Grant No.234079)The first author is also supported by the China Scholarship Council(Grant No.201707000113).
文摘The existing multi-objective wheel profile optimization methods mainly consist of three sub-modules:(1)wheel profile generation,(2)multi-body dynamics simulation,and(3)an optimization algorithm.For the first module,a comparably conservative rotary-scaling finetuning(RSFT)method,which introduces two design variables and an empirical formula,is proposed to fine-tune the traditional wheel profiles for improving their engineering applicability.For the second module,for the TRAXX locomotives serving on the Blankenburg–Rubeland line,an optimization function representing the relationship between the wheel profile and the wheel–rail wear number is established based on Kriging surrogate model(KSM).For the third module,a method combining the regression capability of KSM with the iterative computing power of particle swarm optimization(PSO)is proposed to quickly and reliably implement the task of optimizing wheel profiles.Finally,with the RSFT–KSM–PSO method,we propose two wear-resistant wheel profiles for the TRAXX locomotives serving on the Blankenburg–Rubeland line,namely S1002-S and S1002-M.The S1002-S profile minimizes the total wear number by 30%,while the S1002-M profile makes the wear distribution more uniform through a proper sacrifice of the tread wear number,and the total wear number is reduced by 21%.The quasi-static and hunting stability tests further demonstrate that the profile designed by the RSFT–KSM–PSO method is promising for practical engineering applications.
基金Major Program of the National Natural Science Foundation of China under Grant No.52192675 and the 111 Project of China under Grant No.D21001。
文摘Soil nonlinear behavior displays noticeable effects on the site seismic response.This study proposes a new functional expression of the skeleton curve to replace the hyperbolic skeleton curve.By integrating shear modulus and combining the dynamic skeleton curve and the damping degradation coefficient,the constitutive equation of the logarithmic dynamic skeleton can be obtained,which considers the damping effect in a soil dynamics problem.Based on the finite difference method and the multi-transmitting boundary condition,a 1D site seismic response analysis program called Soilresp1D has been developed herein and used to analyze the time-domain seismic response in three types of sites.At the same time,this study also provides numerical simulation results based on the hyperbolic constitutive model and the equivalent linear method.The results verify the rationality of the new soil dynamic constitutive model.It can analyze the mucky soil site nonlinear seismic response,reflecting the deformation characteristics and damping effect of the silty soil.The hysteresis loop area is more extensive,and the residual strain is evident.
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
基金Project(50608038/E0806) supported by the National Natural Science Foundation of China
文摘One-dimensional consolidation of visco-elastic aquitard due to withdrawal of deep-groundwater was studied.Merchant model was used to simulate visco-elastic characteristic of aquitard.General solutions of the governing equation were obtained by applying Laplace transform with respect to time,and then the pore-pressure,strain and deformation of the aquitard could be calculated by Laplace inversion.A case was analyzed to validate the correctness of the present method.Finally,some consolidation properties of the problem were analyzed.Comparison of the average degree of consolidation defined by pore pressure with that defined by settlement shows that they are different and the maximum difference is 22.8%.The influences of parameters of Merchant model and the rate of the water level on the consolidation are great.The smaller the viscosity coefficient is,the later the rate of consolidation decreases.The rate of consolidation is decreased with the decrease of the rate of the water level fall.Therefore,the lagged effect of land subsidence should be considered in the actual project.
基金This work was supported by China Scholarship Council(Grant No.201707000113).
文摘This paper develops a wheel profile fine-tuning system(WPFTS)that comprehensively considers the influence of wheel profile on wheel damage,vehicle stability,vehicle safety,and passenger comfort.WPFTS can recommend one or more optimized wheel profiles according to train operators’needs,e.g.,reducing wheel wear,mitigating the development of wheel out-of-roundness(OOR),improving the shape stability of the wheel profile.Specifically,WPFTS includes four modules:(I)a wheel profile generation module based on the rotary-scaling finetuning(RSFT)method;(II)a multi-objective generation module consisting of a rigid multi-body dynamics simulation(MBS)model,an analytical model,and a rigid–flexible MBS model,for generating 11 objectives related to wheel damage,vehicle stability,vehicle safety,and passenger comfort;(III)a weight assignment module consisting of an adaptive weight assignment strategy and a manual weight assignment strategy;and(IV)an optimization module based on radial basis function(RBF)and particle swarm optimization(PSO).Finally,three cases are introduced to show how WPTFS recommends a wheel profile according to train operators’needs.Among them,a wheel profile with high shape stability,a wheel profile for mitigating the development of wheel OOR,and a wheel profile considering hunting stability and derailment safety are developed,respectively.
基金Funded by the National Natural Science Foundation of China(Nos.51108237 and 51178112)
文摘The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3 D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view.
基金supported in part by the National Natural Science Foundation of China(Nos.61773202,52072174)the Foundation of National Defense Science and Technology Key Laboratory of Avionics System Integrated Technology of China Institute of Aeronautical Radio Electronics(No.6142505180407)+1 种基金the Open Fund for Civil Aviation General Aviation Operation Key Laboratory of China Civil Aviation Management Cadre Institute(No.CAMICKFJJ-2019-04)the National key R&D plan(No.2021YFB1600500)。
文摘A dynamic programming-sequential quadratic programming(DP-SQP)combined algorithm is proposed to address the problem that the traditional continuous control method has high computational complexity and is easy to fall into local optimal solution.To solve the globally optimal control law sequence,we use the dynamic programming algorithm to discretize the separation control decision-making process into a series of sub-stages based on the time characteristics of the separation allocation model,and recursion from the end stage to the initial stage.The sequential quadratic programming algorithm is then used to solve the optimal return function and the optimal control law for each sub-stage.Comparative simulations of the combined algorithm and the traditional algorithm are designed to validate the superiority of the combined algorithm.Aircraft-following and cross-conflict simulation examples are created to demonstrate the combined algorithm’s adaptability to various conflict scenarios.The simulation results demonstrate the separation deploy strategy’s effectiveness,efficiency,and adaptability.
基金Project supported by the National Natural Science Foundation of China(No.51178456)the Fundamental Research Funds for the Central Universities(No.3122017039),China。
文摘In this paper,we propose a new method to analyze airport pavement bearing capacity using vibration in runways during aircraft taxiing.The new method overcomes shortcomings of existing tests,such as flight suspension and simulated loading.Between aircraft take-off and landing,acceleration sensors are arranged on the surface of the pavement far from the centerline,and the in-situ responses of the pavement under aircraft loads are collected during aircraft operations.The fundamental frequencies of the pavement are obtained by fast Fourier transformation of the measured accelerations,and are used to modify the parameters of a pavement finite element model built according to a design blueprint.By comparing the fundamental frequencies of the measured and calculated signals,the soil modulus is back-calculated.To implement this test method and ensure the accuracy of bearing capacity evaluation,aircraft dynamic loads are obtained by solving dynamic balance equations of the aircraft-pavement coupled system,and the vibration response of the pavement and sensitivity analysis of the fundamental frequencies are introduced.The results show that the fundamental frequencies at the center of the pavement are basically the same as those at the far side on the cross section;the fundamental frequencies in the depth direction remain constant,but the amplitude of the frequency spectrum decreases.The effect of the soil resilient modulus on the vibration frequency is most significant.The fundamental frequency increases from 6.02 to 10.55 Hz when the soil dynamic resilient modulus changes from 91 to 303 MPa.The effects of surface thickness and base thickness on the vibration frequency are less significant,and there is minimal influence when changing the dynamic elastic moduli of the surface layer or base layer.Field test results indicate the efficacy of the method of vibration measurement at the pavement surface to estimate the layer modulus of airport pavement.
基金supported by the National Natural Science Foundation of China (Grant Nos.50909041 and 41072217)
文摘The formation and growth of cracks in concrete dams are mainly induced by hydrostatic and temperature loads.As cracks es-pecially unstable cracks are of great danger to the safety of dams,it is critical to avoid extremely adverse load combinations during the dam operations to achieve the stability of cracks.Conventionally,the adverse load combinations have to be deter-mined empirically by experts based on specific dam site conditions.Therefore,it is attractive to apply quantitative instead of empirical methods to identify the adverse loading conditions.In this study,we employ an adaptive neuro-fuzzy inference sys-tem(ANFIS) to Chencun concrete dam.The ANFIS is able to help us build a relationship between the model inputs(reservoir water level and air temperature) and the model output(crack opening displacement).Based on this relationship,the rules of the adverse load combinations to the crack are generated directly from the monitoring data.The accuracy of the trained ANFIS is proved by comparing the modeling results and the monitoring data.Our work demonstrates that the ANFIS is a useful ap-proach for accurately recognizing the rules of the adverse load combinations that can be used in the knowledge base of dam safety expert system.