Smart containers have been extensively applied in the maritime industry by embracing the Internet of Things to realize container status monitoring and data offloading without human intervention.However, the offloading...Smart containers have been extensively applied in the maritime industry by embracing the Internet of Things to realize container status monitoring and data offloading without human intervention.However, the offloading rate and delay in the offshore region are limited by the coverage of the onshore base station(BS). In this paper, we investigate the unmanned aerial vehicle(UAV)-assisted data offloading for smart containers in offshore maritime communications where the UAV is as a relay node between smart containers and onshore BS. We first consider the mobility of container vessel in the offshore region and establish a UAV-assisted data offloading model. Based on this model, a data offloading algorithm is proposed to reduce the average offloading delay under data-size requirements and available energy constraints of smart containers. Specifically, the convex-concave procedure is used to update time-slot assignment,offloading approach selection, and power allocation in an iterative manner. Simulation results show that the proposed algorithm can efficiently reduce average offloading delay and increase offloading success ratio.Moreover, it is shown that the UAV relay cannot always bring the performance gain on offloading delay especially in the close-to-shore area, which could give an insight on the deployment of UAV relay in offshore communications.展开更多
Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid ma...Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid mass transfer, and strong structure stability for overall water splitting. Herein, an interface engineering coupled with shell-protection strategy was applied to construct three-dimensional(3D) core-shell NixSy@MnOxHy heterostructure nanorods grown on nickel foam(NixSy@MnOxHy/NF) as a bifunctional electrocatalyst. NixSy@MnOxHy/NF was synthesized via a facile hydrothermal reaction followed by an electrodeposition process. The X-ray absorption fine structure spectra reveal that abundant Mn-S bonds connect the heterostructure interfaces of N ixSy@MnOxHy, leading to a strong electronic interaction, which improves the intrinsic activities of hydrogen evolution reaction and oxygen evolution reaction(OER). Besides, as an efficient protective shell, the MnOxHy dramatically inhibits the electrochemical corrosion of the electrocatalyst at high current densities, which remarkably enhances the stability at high potentials. Furthermore, the 3D nanorod structure not only exposes enriched active sites, but also accelerates the electrolyte diffusion and bubble desorption. Therefore, NixSy@MnOxHy/NF exhibits exceptional bifunctional activity and stability for overall water splitting, with low overpotentials of 326 and 356 mV for OER at 100 and 500 mA cm^(–2), respectively, along with high stability of 150 h at 100 mA cm^(–2). Furthermore, for overall water splitting, it presents a low cell voltage of 1.529 V at 10 mA cm^(–2), accompanied by excellent stability at 100 mA cm^(–2) for 100 h. This work sheds a light on exploring highly active and stable bifunctional electrocatalysts by the interface engineering coupled with shell-protection strategy.展开更多
Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wid...Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wideband CR system where the Secondary User (SU) mini- raises its interference to the PU by jointly al- locating the optimal sensing threshold and sub- carrier power. A multi-parameter optimization problem is formulated to obtain the joint opt- imal allocation by alternating direction opti- mization, which minimises the total interfer- ence to the PU over all of the subcarriers sub- ject to the constraints on the throughput, Bit Error Rate (BER) and maximal total power of the SU, the subcarrier rate and interference power of the PU, and the false alarm and mis- detection probabilities of each subcarrier. The simulation results show that the proposed joint allocation algorithm can achieve the desired mitigation on the interference to the PU at the different subcarrier gains.展开更多
Cognitive radio is considered as an efficient way to improve the spectrum efficiency. As one of its key technologies,spectrum handoff can guarantee the transmission continuity of secondary users(SUs). In this paper,we...Cognitive radio is considered as an efficient way to improve the spectrum efficiency. As one of its key technologies,spectrum handoff can guarantee the transmission continuity of secondary users(SUs). In this paper,we address a new and more generalized spectrum handoff problem in cognitive radio networks(CRNs),by considering simultaneously energy efficiency,multiple spectrum handoffs and multiple channels. Furthermore,effects of the primary users'(PUs')arrival and service rate on the target channel sequence selection are also considered. In order to obtain the energy-efficient target channel sequence,we firstly analyze the energy consumption and the number of delivered bits per hertz in the spectrum handoff process,and formulate a ratio-type energy efficiency optimization problem,which can be transformed into a parametric problem by utilizing fractional programming. Then,we propose an algorithm combining dynamic programming with bisection(DPB)algorithm to solve the energy efficiency optimization problem. Our simulation results verify that the designed target channel sequence has better performance than the existing algorithms in terms of energy efficiency.展开更多
In this paper,an energy-harvesting cognitive radio(CR) is considered,which allows the transmitter of the secondary user(SU) to harvest the primary signal energy from the transmitter of the primary user(PU) when the pr...In this paper,an energy-harvesting cognitive radio(CR) is considered,which allows the transmitter of the secondary user(SU) to harvest the primary signal energy from the transmitter of the primary user(PU) when the presence of the PU is detected.Then the harvested energy is converted into the electrical power to supply the transmission of the SU at the detected absence of the PU.By adopting the periodic spectrum sensing,the average total transmission rate of the SU is maximized through optimizing the sensing time,subject to the constraints of the probabilities of false alarm and detection,the harvested energy and the interference rate control.The simulation results show that there deed exists an optimal sensing time that maximizes the transmission rate,and the maximum transmission rate of the energy-harvesting CR can better approach to that of the traditional CR with the increasing of the detection probability.展开更多
The six-generation(6G)wireless network is expected to satisfy the requirements of ubiquitous connectivity and intelligent endogenous.Terrestrialsatellite networks(TSN)enable seamless coverage for terrestrial users in ...The six-generation(6G)wireless network is expected to satisfy the requirements of ubiquitous connectivity and intelligent endogenous.Terrestrialsatellite networks(TSN)enable seamless coverage for terrestrial users in a wide area,making it very promising in 6G.As data traffic in TSNs surges,the integrated management for caching,computing,and communication(3C)has attracted much research attention.In this paper,we investigate the multi-resource management in the uplink and downlink transmission of TSN,respectively.In particularly,we aim to guarantee both throughput fairness and data security in the uplink transmission of TSN.Considering the intermittent communication of the satellite,we introduce two kinds of relays,i.e.,terrestrial relays(TRs)and aerial relays(ARs)to improve the system throughput performance in the downlink transmission of TSN.Finally,we study a specific case of TSN with the uplink and downlink transmission,and the corresponding simulation results validate the effectiveness of our proposed schemes.展开更多
In this paper, we present a protocol, CEWEC (Collaborative, Event-Triggered, Weighted, Energy-Efficient Clustering) , based on collaborative beamfor^ning. It is designed for wireless sensor nodes to realize the long...In this paper, we present a protocol, CEWEC (Collaborative, Event-Triggered, Weighted, Energy-Efficient Clustering) , based on collaborative beamfor^ning. It is designed for wireless sensor nodes to realize the long-distance transmission. In order to save the energy of sensor nodes, a node "wakes up "when it has data to be uploaded. In our protocol, multi-layer structure is adopted: trigger-node layers, clusterhead-node layers, child- node layers. The number of child nodes and clusterheads depends on the distance of transmission. Clusterheads are selected according to the node 5 s weight which is based on its residual energy and distance to the trigger node. The main characteristic of this protocol is that clusterheads can directly communication with each other without the large-scale base station and antennas. Thus, the data from the trigger node would be able to be shared within the multi-layer structure. Considering the clustering process, energy model, and success rate, the simulation results show that the CEWEC protocol can effectively manage a large number of sensor nodes to share and transmit data.展开更多
In order to avoid the interference to the primary user(PU), in this paper Cognitive Radio (CR) periodically senses the presence of PU, and during one period, CR can sense all the sub-channels based on weighed data fus...In order to avoid the interference to the primary user(PU), in this paper Cognitive Radio (CR) periodically senses the presence of PU, and during one period, CR can sense all the sub-channels based on weighed data fusion and then use all the idle channels decided by the coordinator. The local sensing time of CR is divided into multi-slots in which CR can sense any sub-channel. Through reasonably allocating the sensing slots and users by mathematic optimization, the proposed algorithm can improve the total throughput of CR. The optimization problem of the proposed scheme which seeks to maximize the throughput subject to the constraint of the detected performance of each sub-channel is proposed in order to choose the optimum local sense time and the number of the cooperative CRs. The simulation results indicate that the proposed scheme can obtain higher throughput than the conventional single-channel sense, and there are the optimum local sense time and the number of cooperative CRs to make the throughput reach maximum.展开更多
In this paper, a simplified approach for implementing QO-STBC is proposed and evaluated with improved performance. It is based on the Hadamard matrix, in which the scheme exploits the Hadamard matrix property to attai...In this paper, a simplified approach for implementing QO-STBC is proposed and evaluated with improved performance. It is based on the Hadamard matrix, in which the scheme exploits the Hadamard matrix property to attain full diversity. Hadamard matrix has the characteristic that diagonalizes a quasi-cyclic matrix and consequently, a decoding matrix so that a diagonal matrix which permits linear decoding is achieved. Using quasicyclic matrices in designing QO-STBC systems requires that the codes should be rotated to reasonably separate one code from another such that error floor in the design can be minimized. It will be shown that, orthogonalizing the secondary codes and then imposing the Hadamard criteria of the scheme can be well diagonalized. The results of this simplified approach demonstrate full diversity and better performance than the interference-free QO-STBC. Results show about 4 dB gain with respect to the interference-free QO-STBC scheme and it performs alike with the earlier Hadamard based QO-STBC designed with rotation. These results achieve the consequent mathematical proposition of the Hadamard matrix and its property is also shown in this study.展开更多
To achieve multiple input multiple output (MIMO) in wireless communication, the orthogonal space-time block coding (OSTBC) is evaluated next. At first, the OSTBC design is extended to include Hadamard matrix, referred...To achieve multiple input multiple output (MIMO) in wireless communication, the orthogonal space-time block coding (OSTBC) is evaluated next. At first, the OSTBC design is extended to include Hadamard matrix, referred to in this work, as traditional Hadamard OSTBC. Next, the Hadamard matrix is imposed on the conventional OSTBC, which is referred to, in this work as, Alamouti-Hadamard STBC. Both the traditional Hadamard OSTBC and the conventional STBC are compared with the Alamouti-Hadamard STBC. It will be shown that imposing the Hadamard conditions over the conventional OSTBC, the performance of the OSTBC 2-transmit antenna scheme can be significantly improved in terms of BER performance. All propositions are well supported with analytical derivations.展开更多
The increasing demands in terms of high data rate and quality of services over the hybrid satellite-terrestrial relay networks(HSTRN)have pushed for the development of millimeter-wave(mmWave)band high-throughput satel...The increasing demands in terms of high data rate and quality of services over the hybrid satellite-terrestrial relay networks(HSTRN)have pushed for the development of millimeter-wave(mmWave)band high-throughput satellites(HTS)with multibeams.The next generation of mmWave multibeam HTS communication systems(HTSCS)is viewed as the backbone network to enhance the throughput of the HSTRN.The article first investigates the basic backbone topology architecture of HTSCS,and an M-state Markov channel for the Ka/Q/V band mmWave systems is reviewed.Then,we propose a long-term optimal power allocation scheme over two in-dependent and identical spot beams based on the partially observable Markov decision process(POMDP),which can partly mitigate the negative effects of severe weather conditions.The key conditions for selecting the optimal power allocation action in the multibeam HTSCS are given.Simulation results show that our POMDP-based power allocation scheme can enhance the long-term throughput of the HTSCS.展开更多
With the acceleration of a new round of global scientific,technological,and industrial revolution,the next generation of information and communication technology,i.e.,6G,will inject new momentum into industry transfor...With the acceleration of a new round of global scientific,technological,and industrial revolution,the next generation of information and communication technology,i.e.,6G,will inject new momentum into industry transformation and upgrading,as well as into economic innovation and development.This will subsequently promote a global industrial integration.Wireless communication will be ubiquitous in all areas of future society,supporting novel applications with various performance requirements.展开更多
Efficient,low-cost,and stable electrocatalysts for water splitting are highly desirable.Herein,three-dimensional(3D)Ni_(2)P nanosheet arrays were fabricated and simultaneously modulated by heterostructure engineering ...Efficient,low-cost,and stable electrocatalysts for water splitting are highly desirable.Herein,three-dimensional(3D)Ni_(2)P nanosheet arrays were fabricated and simultaneously modulated by heterostructure engineering and Mn doping(Mn-doped Ni_(2)O_(3)/Ni_(2)P and Mn-doped Ni_(x)S_(y)/Ni_(2)P)via a facile hydrothermal reaction and subsequent phosphorization and sulfurization.Due to the Mn doping,synergistic effect in the heterostructures,and abundantly exposed active sites from the 3D-nanosheet arrays,Mn-doped Ni_(2)O_(3)/Ni_(2)P and Mn-doped Ni_(x)S_(y)/Ni_(2)P exhibit excellent properties for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),respectively.The former achieves an excellent current density of-10 mA cm^(-2) at a low overpotential of 104 mV for HER,while the latter attains 100 mA cm^(-2) for OER at an ultralow overpotential of 290 mV and exhibits superior stability at 50 mA cm^(-2) for 160 h.Impressively,the Mndoped Ni_(2)O_(3)/Ni_(2)P//Mn-doped Ni_(x)S_(y)/Ni_(2)P couple show high overall-water-splitting activity with a cell voltage of 1.65 V at 10 mA cm^(-2) and outstanding durability at 50 mA cm^(-2) for 120 h in an alkaline electrolyzer.This work presents an effective strategy to design and synthesize low-cost and highly active non-noble metal electrocatalysts for overall water splitting through the simultaneous application of heterostructure engineering,foreign-metal-atom doping,and a 3Dnanoarray structure.The strategy brings a paradigm shift toward the mass production of low-cost non-noble metal electrocatalysts for renewable energy devices.展开更多
基金supported in part by National Key Research and Development Program of China under Grant 2019YFE0111600in part by National Natural Science Foundation of China under Grants 62101089, 62002042, 61971083, and 51939001+4 种基金in part by China Postdoctoral Science Foundation under Grants 2021M700655 and 2021M690022in part by Cooperative Scientific Research Project, Chunhui Program of Ministry of Education, P. R. Chinain part by LiaoNing Revitalization Talents Program under Grant XLYC2002078in part by Dalian Science and Technology Innovation Fund under Grant 2019J11CY015in part by the Fundamental Research Funds for Central Universities under Grants 3132021237 and 3132021223。
文摘Smart containers have been extensively applied in the maritime industry by embracing the Internet of Things to realize container status monitoring and data offloading without human intervention.However, the offloading rate and delay in the offshore region are limited by the coverage of the onshore base station(BS). In this paper, we investigate the unmanned aerial vehicle(UAV)-assisted data offloading for smart containers in offshore maritime communications where the UAV is as a relay node between smart containers and onshore BS. We first consider the mobility of container vessel in the offshore region and establish a UAV-assisted data offloading model. Based on this model, a data offloading algorithm is proposed to reduce the average offloading delay under data-size requirements and available energy constraints of smart containers. Specifically, the convex-concave procedure is used to update time-slot assignment,offloading approach selection, and power allocation in an iterative manner. Simulation results show that the proposed algorithm can efficiently reduce average offloading delay and increase offloading success ratio.Moreover, it is shown that the UAV relay cannot always bring the performance gain on offloading delay especially in the close-to-shore area, which could give an insight on the deployment of UAV relay in offshore communications.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021A1515110859)the Research Fund Program of Key Laboratory of Fuel Cell Technology of Guangdong Province+2 种基金the Natural Sciences and Engineering Research Council of Canada(NSERC)Institut National de la Recherche Scientifique(INRS)。
文摘Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid mass transfer, and strong structure stability for overall water splitting. Herein, an interface engineering coupled with shell-protection strategy was applied to construct three-dimensional(3D) core-shell NixSy@MnOxHy heterostructure nanorods grown on nickel foam(NixSy@MnOxHy/NF) as a bifunctional electrocatalyst. NixSy@MnOxHy/NF was synthesized via a facile hydrothermal reaction followed by an electrodeposition process. The X-ray absorption fine structure spectra reveal that abundant Mn-S bonds connect the heterostructure interfaces of N ixSy@MnOxHy, leading to a strong electronic interaction, which improves the intrinsic activities of hydrogen evolution reaction and oxygen evolution reaction(OER). Besides, as an efficient protective shell, the MnOxHy dramatically inhibits the electrochemical corrosion of the electrocatalyst at high current densities, which remarkably enhances the stability at high potentials. Furthermore, the 3D nanorod structure not only exposes enriched active sites, but also accelerates the electrolyte diffusion and bubble desorption. Therefore, NixSy@MnOxHy/NF exhibits exceptional bifunctional activity and stability for overall water splitting, with low overpotentials of 326 and 356 mV for OER at 100 and 500 mA cm^(–2), respectively, along with high stability of 150 h at 100 mA cm^(–2). Furthermore, for overall water splitting, it presents a low cell voltage of 1.529 V at 10 mA cm^(–2), accompanied by excellent stability at 100 mA cm^(–2) for 100 h. This work sheds a light on exploring highly active and stable bifunctional electrocatalysts by the interface engineering coupled with shell-protection strategy.
基金supported by the National Natural Science Foundation of China under Grant No. 61201143the Scientific Research Foundation for Introduced Talent of Nanjing University of Aeronautics and Astronautics under Grant No. 56YAH13029
文摘Cognitive Radio (CR) can use the fre- quency band allocated to a Primary User (PU) on the premise that it will prevent significant of avoiding causing great interference to the PU. In this paper, we consider a wideband CR system where the Secondary User (SU) mini- raises its interference to the PU by jointly al- locating the optimal sensing threshold and sub- carrier power. A multi-parameter optimization problem is formulated to obtain the joint opt- imal allocation by alternating direction opti- mization, which minimises the total interfer- ence to the PU over all of the subcarriers sub- ject to the constraints on the throughput, Bit Error Rate (BER) and maximal total power of the SU, the subcarrier rate and interference power of the PU, and the false alarm and mis- detection probabilities of each subcarrier. The simulation results show that the proposed joint allocation algorithm can achieve the desired mitigation on the interference to the PU at the different subcarrier gains.
基金Heilongjiang Province Natural Science Foundation(Grant No.F2016019);National Natural Science Foundation of China(Grant No.61571162);Major National Science and Technology Project(2015ZX03004002004); China Postdoctoral Science Foundation(Grant No.2014M561347).
文摘Cognitive radio is considered as an efficient way to improve the spectrum efficiency. As one of its key technologies,spectrum handoff can guarantee the transmission continuity of secondary users(SUs). In this paper,we address a new and more generalized spectrum handoff problem in cognitive radio networks(CRNs),by considering simultaneously energy efficiency,multiple spectrum handoffs and multiple channels. Furthermore,effects of the primary users'(PUs')arrival and service rate on the target channel sequence selection are also considered. In order to obtain the energy-efficient target channel sequence,we firstly analyze the energy consumption and the number of delivered bits per hertz in the spectrum handoff process,and formulate a ratio-type energy efficiency optimization problem,which can be transformed into a parametric problem by utilizing fractional programming. Then,we propose an algorithm combining dynamic programming with bisection(DPB)algorithm to solve the energy efficiency optimization problem. Our simulation results verify that the designed target channel sequence has better performance than the existing algorithms in terms of energy efficiency.
基金supported by the National Natural Science Foundation of China under Grant Nos.61201143,61402416,611301132and 61471194the Natural Science Foundation of Jiangsu Province under Grant No.BK20140828+2 种基金the Natural Science Foundation of Zhejiang Province under Grant No.LQ14F010003the Chinese Postdoctoral Science Foundation under Grant No.2015M580425the Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry
文摘In this paper,an energy-harvesting cognitive radio(CR) is considered,which allows the transmitter of the secondary user(SU) to harvest the primary signal energy from the transmitter of the primary user(PU) when the presence of the PU is detected.Then the harvested energy is converted into the electrical power to supply the transmission of the SU at the detected absence of the PU.By adopting the periodic spectrum sensing,the average total transmission rate of the SU is maximized through optimizing the sensing time,subject to the constraints of the probabilities of false alarm and detection,the harvested energy and the interference rate control.The simulation results show that there deed exists an optimal sensing time that maximizes the transmission rate,and the maximum transmission rate of the energy-harvesting CR can better approach to that of the traditional CR with the increasing of the detection probability.
基金the National Natural Science Foundation of China under Grant 61701054the Fundamental Research Funds for the Central University under Grants 2020CDJQY-A001 and 2021CDJQY-013。
文摘The six-generation(6G)wireless network is expected to satisfy the requirements of ubiquitous connectivity and intelligent endogenous.Terrestrialsatellite networks(TSN)enable seamless coverage for terrestrial users in a wide area,making it very promising in 6G.As data traffic in TSNs surges,the integrated management for caching,computing,and communication(3C)has attracted much research attention.In this paper,we investigate the multi-resource management in the uplink and downlink transmission of TSN,respectively.In particularly,we aim to guarantee both throughput fairness and data security in the uplink transmission of TSN.Considering the intermittent communication of the satellite,we introduce two kinds of relays,i.e.,terrestrial relays(TRs)and aerial relays(ARs)to improve the system throughput performance in the downlink transmission of TSN.Finally,we study a specific case of TSN with the uplink and downlink transmission,and the corresponding simulation results validate the effectiveness of our proposed schemes.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61301100)
文摘In this paper, we present a protocol, CEWEC (Collaborative, Event-Triggered, Weighted, Energy-Efficient Clustering) , based on collaborative beamfor^ning. It is designed for wireless sensor nodes to realize the long-distance transmission. In order to save the energy of sensor nodes, a node "wakes up "when it has data to be uploaded. In our protocol, multi-layer structure is adopted: trigger-node layers, clusterhead-node layers, child- node layers. The number of child nodes and clusterheads depends on the distance of transmission. Clusterheads are selected according to the node 5 s weight which is based on its residual energy and distance to the trigger node. The main characteristic of this protocol is that clusterheads can directly communication with each other without the large-scale base station and antennas. Thus, the data from the trigger node would be able to be shared within the multi-layer structure. Considering the clustering process, energy model, and success rate, the simulation results show that the CEWEC protocol can effectively manage a large number of sensor nodes to share and transmit data.
基金Sponored by the National Natural Science Foundation of China ( Grant No. 61071104)the Fundamental Research Funds for the Central Universities( Grant No. HIT. NSRIF. 201149)
文摘In order to avoid the interference to the primary user(PU), in this paper Cognitive Radio (CR) periodically senses the presence of PU, and during one period, CR can sense all the sub-channels based on weighed data fusion and then use all the idle channels decided by the coordinator. The local sensing time of CR is divided into multi-slots in which CR can sense any sub-channel. Through reasonably allocating the sensing slots and users by mathematic optimization, the proposed algorithm can improve the total throughput of CR. The optimization problem of the proposed scheme which seeks to maximize the throughput subject to the constraint of the detected performance of each sub-channel is proposed in order to choose the optimum local sense time and the number of the cooperative CRs. The simulation results indicate that the proposed scheme can obtain higher throughput than the conventional single-channel sense, and there are the optimum local sense time and the number of cooperative CRs to make the throughput reach maximum.
文摘In this paper, a simplified approach for implementing QO-STBC is proposed and evaluated with improved performance. It is based on the Hadamard matrix, in which the scheme exploits the Hadamard matrix property to attain full diversity. Hadamard matrix has the characteristic that diagonalizes a quasi-cyclic matrix and consequently, a decoding matrix so that a diagonal matrix which permits linear decoding is achieved. Using quasicyclic matrices in designing QO-STBC systems requires that the codes should be rotated to reasonably separate one code from another such that error floor in the design can be minimized. It will be shown that, orthogonalizing the secondary codes and then imposing the Hadamard criteria of the scheme can be well diagonalized. The results of this simplified approach demonstrate full diversity and better performance than the interference-free QO-STBC. Results show about 4 dB gain with respect to the interference-free QO-STBC scheme and it performs alike with the earlier Hadamard based QO-STBC designed with rotation. These results achieve the consequent mathematical proposition of the Hadamard matrix and its property is also shown in this study.
文摘To achieve multiple input multiple output (MIMO) in wireless communication, the orthogonal space-time block coding (OSTBC) is evaluated next. At first, the OSTBC design is extended to include Hadamard matrix, referred to in this work, as traditional Hadamard OSTBC. Next, the Hadamard matrix is imposed on the conventional OSTBC, which is referred to, in this work as, Alamouti-Hadamard STBC. Both the traditional Hadamard OSTBC and the conventional STBC are compared with the Alamouti-Hadamard STBC. It will be shown that imposing the Hadamard conditions over the conventional OSTBC, the performance of the OSTBC 2-transmit antenna scheme can be significantly improved in terms of BER performance. All propositions are well supported with analytical derivations.
基金supported in part by the National Natural Sciences Foundation of China(Nos.61771158,61871147,61831008,91638204 and 61525103)the Shenzhen Basic Research Program(Nos.JCYJ20170811154309920,JCYJ20170811160142808,and ZDSYS201707280903305)Guangdong Science and Technology Planning Project(No.2018B030322004).
文摘The increasing demands in terms of high data rate and quality of services over the hybrid satellite-terrestrial relay networks(HSTRN)have pushed for the development of millimeter-wave(mmWave)band high-throughput satellites(HTS)with multibeams.The next generation of mmWave multibeam HTS communication systems(HTSCS)is viewed as the backbone network to enhance the throughput of the HSTRN.The article first investigates the basic backbone topology architecture of HTSCS,and an M-state Markov channel for the Ka/Q/V band mmWave systems is reviewed.Then,we propose a long-term optimal power allocation scheme over two in-dependent and identical spot beams based on the partially observable Markov decision process(POMDP),which can partly mitigate the negative effects of severe weather conditions.The key conditions for selecting the optimal power allocation action in the multibeam HTSCS are given.Simulation results show that our POMDP-based power allocation scheme can enhance the long-term throughput of the HTSCS.
文摘With the acceleration of a new round of global scientific,technological,and industrial revolution,the next generation of information and communication technology,i.e.,6G,will inject new momentum into industry transformation and upgrading,as well as into economic innovation and development.This will subsequently promote a global industrial integration.Wireless communication will be ubiquitous in all areas of future society,supporting novel applications with various performance requirements.
基金supported by the Department of Science and Technology of Guangdong Province(2019A050510043)the Department of Science and Technology of Zhuhai City(ZH22017001200059PWC)。
文摘Efficient,low-cost,and stable electrocatalysts for water splitting are highly desirable.Herein,three-dimensional(3D)Ni_(2)P nanosheet arrays were fabricated and simultaneously modulated by heterostructure engineering and Mn doping(Mn-doped Ni_(2)O_(3)/Ni_(2)P and Mn-doped Ni_(x)S_(y)/Ni_(2)P)via a facile hydrothermal reaction and subsequent phosphorization and sulfurization.Due to the Mn doping,synergistic effect in the heterostructures,and abundantly exposed active sites from the 3D-nanosheet arrays,Mn-doped Ni_(2)O_(3)/Ni_(2)P and Mn-doped Ni_(x)S_(y)/Ni_(2)P exhibit excellent properties for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),respectively.The former achieves an excellent current density of-10 mA cm^(-2) at a low overpotential of 104 mV for HER,while the latter attains 100 mA cm^(-2) for OER at an ultralow overpotential of 290 mV and exhibits superior stability at 50 mA cm^(-2) for 160 h.Impressively,the Mndoped Ni_(2)O_(3)/Ni_(2)P//Mn-doped Ni_(x)S_(y)/Ni_(2)P couple show high overall-water-splitting activity with a cell voltage of 1.65 V at 10 mA cm^(-2) and outstanding durability at 50 mA cm^(-2) for 120 h in an alkaline electrolyzer.This work presents an effective strategy to design and synthesize low-cost and highly active non-noble metal electrocatalysts for overall water splitting through the simultaneous application of heterostructure engineering,foreign-metal-atom doping,and a 3Dnanoarray structure.The strategy brings a paradigm shift toward the mass production of low-cost non-noble metal electrocatalysts for renewable energy devices.