期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Harnessing the Power of Artificial Intelligence in Neuromuscular Disease Rehabilitation: A Comprehensive Review and Algorithmic Approach
1
作者 Rocco de Filippis Abdullah Al Foysal 《Advances in Bioscience and Biotechnology》 CAS 2024年第5期289-309,共21页
Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligen... Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligence (AI) technology is revolutionizing rehabilitation for individuals with neuromuscular disorders. Through an extensive review, this paper elucidates a wide array of AI-driven interventions spanning robotic-assisted therapy, virtual reality rehabilitation, and intricately tailored machine learning algorithms. The aim is to delve into the nuanced applications of AI, unlocking its transformative potential in optimizing personalized treatment plans for those grappling with the complexities of neuromuscular diseases. By examining the multifaceted intersection of AI and rehabilitation, this paper not only contributes to our understanding of cutting-edge advancements but also envisions a future where technological innovations play a pivotal role in alleviating the challenges posed by neuromuscular diseases. From employing neural-fuzzy adaptive controllers for precise trajectory tracking amidst uncertainties to utilizing machine learning algorithms for recognizing patient motor intentions and adapting training accordingly, this research encompasses a holistic approach towards harnessing AI for enhanced rehabilitation outcomes. By embracing the synergy between AI and rehabilitation, we pave the way for a future where individuals with neuromuscular disorders can access tailored, effective, and technologically-driven interventions to improve their quality of life and functional independence. 展开更多
关键词 Neuromuscular Diseases REHABILITATION Artificial Intelligence Machine Learning Robotic-Assisted Therapy Virtual Reality Personalized Treatment Motor Function Assistive Technologies Algorithmic Rehabilitation
下载PDF
Evaluating Pharmacological and Rehabilitation Strategies for Effective Management of Bipolar Disorder: A Comprehensive Clinical Study
2
作者 Rocco de Filippis Abdullah Al Foysal 《Advances in Bioscience and Biotechnology》 CAS 2024年第7期406-431,共26页
Bipolar disorder presents significant challenges in clinical management, characterized by recurrent episodes of depression and mania often accompanied by impairment in functioning. This study investigates the efficacy... Bipolar disorder presents significant challenges in clinical management, characterized by recurrent episodes of depression and mania often accompanied by impairment in functioning. This study investigates the efficacy of pharmacological interventions and rehabilitation strategies to improve patient outcomes and quality of life. Utilizing a randomized controlled trial with multiple treatment arms, participants will receive pharmacotherapy, polypharmacotherapy, rehabilitation interventions, or combination treatments. Outcome measures will be assessed using standardized scales, including the Hamilton Depression Scale, Yale-Brown Obsessive Compulsive Scale (Y-BOCS), and Mania Scale. Preliminary data suggest improvements in symptom severity and functional outcomes with combination treatments. This research aims to inform clinical practice, guide treatment decisions, and ultimately enhance the quality of care for individuals living with bipolar disorder. Findings will be disseminated through peer-reviewed journals and scientific conferences to advance knowledge in this field. 展开更多
关键词 Bipolar Disorder (BD) Pharmacotherapy (PT) Rehabilitation Interventions (RI) Hamilton Depression Scale (HAM-D) Yale-Brown Obsessive Compulsive Scale (Y-BOCS) Mania Scale (MS) Machine learning (ML) and Artificial Intelligence (AI).
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部