期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
Dynamical behaviors in discrete memristor-coupled small-world neuronal networks
1
作者 鲁婕妤 谢小华 +3 位作者 卢亚平 吴亚联 李春来 马铭磷 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期729-734,共6页
The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating... The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating neuronal synapses with plasticity.In this paper,a memristor is used to simulate a synapse,a discrete small-world neuronal network is constructed based on Rulkov neurons and its dynamical behavior is explored.We explore the influence of system parameters on the dynamical behaviors of the discrete small-world network,and the system shows a variety of firing patterns such as spiking firing and triangular burst firing when the neuronal parameterαis changed.The results of a numerical simulation based on Matlab show that the network topology can affect the synchronous firing behavior of the neuronal network,and the higher the reconnection probability and number of the nearest neurons,the more significant the synchronization state of the neurons.In addition,by increasing the coupling strength of memristor synapses,synchronization performance is promoted.The results of this paper can boost research into complex neuronal networks coupled with memristor synapses and further promote the development of neuroscience. 展开更多
关键词 small-world networks Rulkov neurons MEMRISTOR SYNCHRONIZATION
下载PDF
A Comprehensive Survey on Advanced Persistent Threat (APT) Detection Techniques
2
作者 Singamaneni Krishnapriya Sukhvinder Singh 《Computers, Materials & Continua》 SCIE EI 2024年第8期2675-2719,共45页
The increase in number of people using the Internet leads to increased cyberattack opportunities.Advanced Persistent Threats,or APTs,are among the most dangerous targeted cyberattacks.APT attacks utilize various advan... The increase in number of people using the Internet leads to increased cyberattack opportunities.Advanced Persistent Threats,or APTs,are among the most dangerous targeted cyberattacks.APT attacks utilize various advanced tools and techniques for attacking targets with specific goals.Even countries with advanced technologies,like the US,Russia,the UK,and India,are susceptible to this targeted attack.APT is a sophisticated attack that involves multiple stages and specific strategies.Besides,TTP(Tools,Techniques,and Procedures)involved in the APT attack are commonly new and developed by an attacker to evade the security system.However,APTs are generally implemented in multiple stages.If one of the stages is detected,we may apply a defense mechanism for subsequent stages,leading to the entire APT attack failure.The detection at the early stage of APT and the prediction of the next step in the APT kill chain are ongoing challenges.This survey paper will provide knowledge about APT attacks and their essential steps.This follows the case study of known APT attacks,which will give clear information about the APT attack process—in later sections,highlighting the various detection methods defined by different researchers along with the limitations of the work.Data used in this article comes from the various annual reports published by security experts and blogs and information released by the enterprise networks targeted by the attack. 展开更多
关键词 Advanced persistent threats APT cyber security intrusion detection cyber attacks
下载PDF
Improving the Transmission Security of Vein Images Using a Bezier Curve and Long Short-Term Memory
3
作者 Ahmed H.Alhadethi Ikram Smaoui +1 位作者 Ahmed Fakhfakh Saad M.Darwish 《Computers, Materials & Continua》 SCIE EI 2024年第6期4825-4844,共20页
The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that c... The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced.This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images.The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression.This paper introduces a content-based image authentication mechanism that is suitable for usage across an untrusted network and resistant to data loss during transmission.By employing scale attributes and a key-dependent parametric Long Short-Term Memory(LSTM),it is feasible to improve the resilience of digital signatures against image deterioration and strengthen their security against malicious actions.Furthermore,the successful implementation of transmitting biometric data in a compressed format over a wireless network has been accomplished.For applications involving the transmission and sharing of images across a network.The suggested technique utilizes the scalability of a structural digital signature to attain a satisfactory equilibrium between security and picture transfer.An effective adaptive compression strategy was created to lengthen the overall lifetime of the network by sharing the processing of responsibilities.This scheme ensures a large reduction in computational and energy requirements while minimizing image quality loss.This approach employs multi-scale characteristics to improve the resistance of signatures against image deterioration.The proposed system attained a Gaussian noise value of 98%and a rotation accuracy surpassing 99%. 展开更多
关键词 Image transmission image compression text hiding Bezier curve Histogram of Oriented Gradients(HOG) LSTM image enhancement Gaussian noise ROTATION
下载PDF
Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning
4
作者 Aizaz Ali Maqbool Khan +2 位作者 Khalil Khan Rehan Ullah Khan Abdulrahman Aloraini 《Computers, Materials & Continua》 SCIE EI 2024年第4期713-733,共21页
Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentime... Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language. 展开更多
关键词 Urdu sentiment analysis convolutional neural networks recurrent neural network deep learning natural language processing neural networks
下载PDF
Cloud Datacenter Selection Using Service Broker Policies:A Survey
5
作者 Salam Al-E’mari Yousef Sanjalawe +2 位作者 Ahmad Al-Daraiseh Mohammad Bany Taha Mohammad Aladaileh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期1-41,共41页
Amid the landscape of Cloud Computing(CC),the Cloud Datacenter(DC)stands as a conglomerate of physical servers,whose performance can be hindered by bottlenecks within the realm of proliferating CC services.A linchpin ... Amid the landscape of Cloud Computing(CC),the Cloud Datacenter(DC)stands as a conglomerate of physical servers,whose performance can be hindered by bottlenecks within the realm of proliferating CC services.A linchpin in CC’s performance,the Cloud Service Broker(CSB),orchestrates DC selection.Failure to adroitly route user requests with suitable DCs transforms the CSB into a bottleneck,endangering service quality.To tackle this,deploying an efficient CSB policy becomes imperative,optimizing DC selection to meet stringent Qualityof-Service(QoS)demands.Amidst numerous CSB policies,their implementation grapples with challenges like costs and availability.This article undertakes a holistic review of diverse CSB policies,concurrently surveying the predicaments confronted by current policies.The foremost objective is to pinpoint research gaps and remedies to invigorate future policy development.Additionally,it extensively clarifies various DC selection methodologies employed in CC,enriching practitioners and researchers alike.Employing synthetic analysis,the article systematically assesses and compares myriad DC selection techniques.These analytical insights equip decision-makers with a pragmatic framework to discern the apt technique for their needs.In summation,this discourse resoundingly underscores the paramount importance of adept CSB policies in DC selection,highlighting the imperative role of efficient CSB policies in optimizing CC performance.By emphasizing the significance of these policies and their modeling implications,the article contributes to both the general modeling discourse and its practical applications in the CC domain. 展开更多
关键词 Cloud computing cloud service broker datacenter selection QUALITY-OF-SERVICE user request
下载PDF
New Approaches to the Prognosis and Diagnosis of Breast Cancer Using Fuzzy Expert Systems
6
作者 Elias Ayinbila Apasiya Abdul-Mumin Salifu Peter Awon-Natemi Agbedemnab 《Journal of Computer and Communications》 2024年第5期151-169,共19页
Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from li... Breast cancer remains a significant global health challenge, necessitating effective early detection and prognosis to enhance patient outcomes. Current diagnostic methods, including mammography and MRI, suffer from limitations such as uncertainty and imprecise data, leading to late-stage diagnoses. To address this, various expert systems have been developed, but many rely on type-1 fuzzy logic and lack mobile-based applications for data collection and feedback to healthcare practitioners. This research investigates the development of an Enhanced Mobile-based Fuzzy Expert system (EMFES) for breast cancer pre-growth prognosis. The study explores the use of type-2 fuzzy logic to enhance accuracy and model uncertainty effectively. Additionally, it evaluates the advantages of employing the python programming language over java for implementation and considers specific risk factors for data collection. The research aims to dynamically generate fuzzy rules, adapting to evolving breast cancer research and patient data. Key research questions focus on the comparative effectiveness of type-2 fuzzy logic, the handling of uncertainty and imprecise data, the integration of mobile-based features, the choice of programming language, and the creation of dynamic fuzzy rules. Furthermore, the study examines the differences between the Mamdani Inference System and the Sugeno Fuzzy Inference method and explores challenges and opportunities in deploying the EMFES on mobile devices. The research identifies a critical gap in existing breast cancer diagnostic systems, emphasizing the need for a comprehensive, mobile-enabled, and adaptable solution by developing an EMFES that leverages Type-2 fuzzy logic, the Sugeno Inference Algorithm, Python Programming, and dynamic fuzzy rule generation. This study seeks to enhance early breast cancer detection and ultimately reduce breast cancer-related mortality. 展开更多
关键词 EMFES Breast Cancer Type-2 Fl Soft Computing Membership Functions Fuzzy Set Fuzzy Rules Risk Factors.
下载PDF
ABMRF:An Ensemble Model for Author Profiling Based on Stylistic Features Using Roman Urdu
7
作者 Aiman Muhammad Arshad +3 位作者 Bilal Khan Khalil Khan Ali Mustafa Qamar Rehan Ullah Khan 《Intelligent Automation & Soft Computing》 2024年第2期301-317,共17页
This study explores the area of Author Profiling(AP)and its importance in several industries,including forensics,security,marketing,and education.A key component of AP is the extraction of useful information from text... This study explores the area of Author Profiling(AP)and its importance in several industries,including forensics,security,marketing,and education.A key component of AP is the extraction of useful information from text,with an emphasis on the writers’ages and genders.To improve the accuracy of AP tasks,the study develops an ensemble model dubbed ABMRF that combines AdaBoostM1(ABM1)and Random Forest(RF).The work uses an extensive technique that involves textmessage dataset pretreatment,model training,and assessment.To evaluate the effectiveness of several machine learning(ML)algorithms in classifying age and gender,including Composite Hypercube on Random Projection(CHIRP),Decision Trees(J48),Na飗e Bayes(NB),K Nearest Neighbor,AdaboostM1,NB-Updatable,RF,andABMRF,they are compared.The findings demonstrate thatABMRFregularly beats the competition,with a gender classification accuracy of 71.14%and an age classification accuracy of 54.29%,respectively.Additional metrics like precision,recall,F-measure,Matthews Correlation Coefficient(MCC),and accuracy support ABMRF’s outstanding performance in age and gender profiling tasks.This study demonstrates the usefulness of ABMRF as an ensemble model for author profiling and highlights its possible uses in marketing,law enforcement,and education.The results emphasize the effectiveness of ensemble approaches in enhancing author profiling task accuracy,particularly when it comes to age and gender identification. 展开更多
关键词 Machine learning author profiling AdaBoostM1 random forest ensemble learning text classification
下载PDF
ResMHA-Net:Enhancing Glioma Segmentation and Survival Prediction Using a Novel Deep Learning Framework
8
作者 Novsheena Rasool Javaid Iqbal Bhat +4 位作者 Najib Ben Aoun Abdullah Alharthi Niyaz Ahmad Wani Vikram Chopra Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2024年第10期885-909,共25页
Gliomas are aggressive brain tumors known for their heterogeneity,unclear borders,and diverse locations on Magnetic Resonance Imaging(MRI)scans.These factors present significant challenges for MRI-based segmentation,a... Gliomas are aggressive brain tumors known for their heterogeneity,unclear borders,and diverse locations on Magnetic Resonance Imaging(MRI)scans.These factors present significant challenges for MRI-based segmentation,a crucial step for effective treatment planning and monitoring of glioma progression.This study proposes a novel deep learning framework,ResNet Multi-Head Attention U-Net(ResMHA-Net),to address these challenges and enhance glioma segmentation accuracy.ResMHA-Net leverages the strengths of both residual blocks from the ResNet architecture and multi-head attention mechanisms.This powerful combination empowers the network to prioritize informative regions within the 3D MRI data and capture long-range dependencies.By doing so,ResMHANet effectively segments intricate glioma sub-regions and reduces the impact of uncertain tumor boundaries.We rigorously trained and validated ResMHA-Net on the BraTS 2018,2019,2020 and 2021 datasets.Notably,ResMHA-Net achieved superior segmentation accuracy on the BraTS 2021 dataset compared to the previous years,demonstrating its remarkable adaptability and robustness across diverse datasets.Furthermore,we collected the predicted masks obtained from three datasets to enhance survival prediction,effectively augmenting the dataset size.Radiomic features were then extracted from these predicted masks and,along with clinical data,were used to train a novel ensemble learning-based machine learning model for survival prediction.This model employs a voting mechanism aggregating predictions from multiple models,leading to significant improvements over existing methods.This ensemble approach capitalizes on the strengths of various models,resulting in more accurate and reliable predictions for patient survival.Importantly,we achieved an impressive accuracy of 73%for overall survival(OS)prediction. 展开更多
关键词 GLIOMA MRI SEGMENTATION multihead attention survival prediction deep learning
下载PDF
Identification of Software Bugs by Analyzing Natural Language-Based Requirements Using Optimized Deep Learning Features
9
作者 Qazi Mazhar ul Haq Fahim Arif +4 位作者 Khursheed Aurangzeb Noor ul Ain Javed Ali Khan Saddaf Rubab Muhammad Shahid Anwar 《Computers, Materials & Continua》 SCIE EI 2024年第3期4379-4397,共19页
Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty requirements.Researchers are exploring machine learn... Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty requirements.Researchers are exploring machine learning to predict software bugs,but a more precise and general approach is needed.Accurate bug prediction is crucial for software evolution and user training,prompting an investigation into deep and ensemble learning methods.However,these studies are not generalized and efficient when extended to other datasets.Therefore,this paper proposed a hybrid approach combining multiple techniques to explore their effectiveness on bug identification problems.The methods involved feature selection,which is used to reduce the dimensionality and redundancy of features and select only the relevant ones;transfer learning is used to train and test the model on different datasets to analyze how much of the learning is passed to other datasets,and ensemble method is utilized to explore the increase in performance upon combining multiple classifiers in a model.Four National Aeronautics and Space Administration(NASA)and four Promise datasets are used in the study,showing an increase in the model’s performance by providing better Area Under the Receiver Operating Characteristic Curve(AUC-ROC)values when different classifiers were combined.It reveals that using an amalgam of techniques such as those used in this study,feature selection,transfer learning,and ensemble methods prove helpful in optimizing the software bug prediction models and providing high-performing,useful end mode. 展开更多
关键词 Natural language processing software bug prediction transfer learning ensemble learning feature selection
下载PDF
Computer Aided Analysis of Lectin Proteins from Various Fungal Groups
10
作者 Subramanian Third Nirai Senthil Kalayanaraman Rajagopal +1 位作者 Annamalai Jothi Thirunavukarasu Kamalakannan 《通讯和计算机(中英文版)》 2012年第2期134-136,共3页
关键词 血凝素蛋白 菌群体 计算机辅助 系统发育分析 碳水化合物 免疫球蛋白 氨基酸序列 凝集素
下载PDF
从计算机科学理论审视意识和通用人工智能 被引量:3
11
作者 Lenore Blum Manuel Blum 《Engineering》 SCIE EI CAS CSCD 2023年第6期12-16,共5页
1.Introduction We have defined the Conscious Turing Machine(CTM)for the purpose of investigating a theoretical computer science(TCS)approach to consciousness[1].For this,we have hewn to the TCS demand for simplicity a... 1.Introduction We have defined the Conscious Turing Machine(CTM)for the purpose of investigating a theoretical computer science(TCS)approach to consciousness[1].For this,we have hewn to the TCS demand for simplicity and understandability.The CTM is consequently and intentionally a simple machine.It is not a model of the brain,though its design has greatly benefited—and continues to benefit—from neuroscience and psychology. 展开更多
关键词 COMPUTER SIMPLICITY TURING
下载PDF
A Deep Learning Approach to Mesh Segmentation 被引量:1
12
作者 Abubakar Sulaiman Gezawa Qicong Wang +1 位作者 Haruna Chiroma Yunqi Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1745-1763,共19页
In the shape analysis community,decomposing a 3D shape intomeaningful parts has become a topic of interest.3D model segmentation is largely used in tasks such as shape deformation,shape partial matching,skeleton extra... In the shape analysis community,decomposing a 3D shape intomeaningful parts has become a topic of interest.3D model segmentation is largely used in tasks such as shape deformation,shape partial matching,skeleton extraction,shape correspondence,shape annotation and texture mapping.Numerous approaches have attempted to provide better segmentation solutions;however,the majority of the previous techniques used handcrafted features,which are usually focused on a particular attribute of 3Dobjects and so are difficult to generalize.In this paper,we propose a three-stage approach for using Multi-view recurrent neural network to automatically segment a 3D shape into visually meaningful sub-meshes.The first stage involves normalizing and scaling a 3D model to fit within the unit sphere and rendering the object into different views.Contrasting viewpoints,on the other hand,might not have been associated,and a 3D region could correlate into totally distinct outcomes depending on the viewpoint.To address this,we ran each view through(shared weights)CNN and Bolster block in order to create a probability boundary map.The Bolster block simulates the area relationships between different views,which helps to improve and refine the data.In stage two,the feature maps generated in the previous step are correlated using a Recurrent Neural network to obtain compatible fine detail responses for each view.Finally,a layer that is fully connected is used to return coherent edges,which are then back project to 3D objects to produce the final segmentation.Experiments on the Princeton Segmentation Benchmark dataset show that our proposed method is effective for mesh segmentation tasks. 展开更多
关键词 Deep learning mesh segmentation 3D shape shape features
下载PDF
Risk factors and prediction model for inpatient surgical site infection after elective abdominal surgery 被引量:1
13
作者 Jin Zhang Fei Xue +8 位作者 Si-Da Liu Dong Liu Yun-Hua Wu Dan Zhao Zhou-Ming Liu Wen-Xing Ma Ruo-Lin Han Liang Shan Xiang-Long Duan 《World Journal of Gastrointestinal Surgery》 SCIE 2023年第3期387-397,共11页
BACKGROUND Surgical site infections(SSIs) are the commonest healthcare-associated infection. In addition to increasing mortality, it also lengthens the hospital stay and raises healthcare expenses. SSIs are challengin... BACKGROUND Surgical site infections(SSIs) are the commonest healthcare-associated infection. In addition to increasing mortality, it also lengthens the hospital stay and raises healthcare expenses. SSIs are challenging to predict, with most models having poor predictability. Therefore, we developed a prediction model for SSI after elective abdominal surgery by identifying risk factors.AIM To analyse the data on inpatients undergoing elective abdominal surgery to identify risk factors and develop predictive models that will help clinicians assess patients preoperatively.METHODS We retrospectively analysed the inpatient records of Shaanxi Provincial People’s Hospital from January 1, 2018 to January 1, 2021. We included the demographic data of the patients and their haematological test results in our analysis. The attending physicians provided the Nutritional Risk Screening 2002(NRS 2002)scores. The surgeons and anaesthesiologists manually calculated the National Nosocomial Infections Surveillance(NNIS) scores. Inpatient SSI risk factors were evaluated using univariate analysis and multivariate logistic regression. Nomograms were used in the predictive models. The receiver operating characteristic and area under the curve values were used to measure the specificity and accuracy of the model.RESULTS A total of 3018 patients met the inclusion criteria. The surgical sites included the uterus(42.2%), the liver(27.6%), the gastrointestinal tract(19.1%), the appendix(5.9%), the kidney(3.7%), and the groin area(1.4%). SSI occurred in 5% of the patients(n = 150). The risk factors associated with SSI were as follows: Age;gender;marital status;place of residence;history of diabetes;surgical season;surgical site;NRS 2002 score;preoperative white blood cell, procalcitonin(PCT), albumin, and low-density lipoprotein cholesterol(LDL) levels;preoperative antibiotic use;anaesthesia method;incision grade;NNIS score;intraoperative blood loss;intraoperative drainage tube placement;surgical operation items. Multivariate logistic regression revealed the following independent risk factors: A history of diabetes [odds ratio(OR) = 5.698, 95% confidence interval(CI): 3.305-9.825, P = 0.001], antibiotic use(OR = 14.977, 95%CI: 2.865-78.299, P = 0.001), an NRS 2002 score of ≥ 3(OR = 2.426, 95%CI: 1.199-4.909, P = 0.014), general anaesthesia(OR = 3.334, 95%CI: 1.134-9.806, P = 0.029), an NNIS score of ≥ 2(OR = 2.362, 95%CI: 1.019-5.476, P = 0.045), PCT ≥ 0.05 μg/L(OR = 1.687, 95%CI: 1.056-2.695, P = 0.029), LDL < 3.37 mmol/L(OR = 1.719, 95%CI: 1.039-2.842, P = 0.035), intraoperative blood loss ≥ 200 mL(OR = 29.026, 95%CI: 13.751-61.266, P < 0.001), surgical season(P < 0.05), surgical site(P < 0.05), and incision grade I or Ⅲ(P < 0.05). The overall area under the receiver operating characteristic curve of the predictive model was 0.926, which is significantly higher than the NNIS score(0.662).CONCLUSION The patient’s condition and haematological test indicators form the bases of our prediction model. It is a novel, efficient, and highly accurate predictive model for preventing postoperative SSI, thereby improving the prognosis in patients undergoing abdominal surgery. 展开更多
关键词 Surgical site infections Risk factors Abdominal surgery Prediction model
下载PDF
MDNN:Predicting Student Engagement via Gaze Direction and Facial Expression in Collaborative Learning
14
作者 Yi Chen Jin Zhou +2 位作者 Qianting Gao Jing Gao Wei Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期381-401,共21页
Prediction of students’engagement in aCollaborative Learning setting is essential to improve the quality of learning.Collaborative learning is a strategy of learning through groups or teams.When cooperative learning ... Prediction of students’engagement in aCollaborative Learning setting is essential to improve the quality of learning.Collaborative learning is a strategy of learning through groups or teams.When cooperative learning behavior occurs,each student in the group should participate in teaching activities.Researchers showed that students who are actively involved in a class gain more.Gaze behavior and facial expression are important nonverbal indicators to reveal engagement in collaborative learning environments.Previous studies require the wearing of sensor devices or eye tracker devices,which have cost barriers and technical interference for daily teaching practice.In this paper,student engagement is automatically analyzed based on computer vision.We tackle the problem of engagement in collaborative learning using a multi-modal deep neural network(MDNN).We combined facial expression and gaze direction as two individual components of MDNN to predict engagement levels in collaborative learning environments.Our multi-modal solution was evaluated in a real collaborative environment.The results show that the model can accurately predict students’performance in the collaborative learning environment. 展开更多
关键词 ENGAGEMENT facial expression deep network GAZE
下载PDF
Spatial Correlation Module for Classification of Multi-Label Ocular Diseases Using Color Fundus Images
15
作者 Ali Haider Khan Hassaan Malik +3 位作者 Wajeeha Khalil Sayyid Kamran Hussain Tayyaba Anees Muzammil Hussain 《Computers, Materials & Continua》 SCIE EI 2023年第7期133-150,共18页
To prevent irreversible damage to one’s eyesight,ocular diseases(ODs)need to be recognized and treated immediately.Color fundus imaging(CFI)is a screening technology that is both effective and economical.According to... To prevent irreversible damage to one’s eyesight,ocular diseases(ODs)need to be recognized and treated immediately.Color fundus imaging(CFI)is a screening technology that is both effective and economical.According to CFIs,the early stages of the disease are characterized by a paucity of observable symptoms,which necessitates the prompt creation of automated and robust diagnostic algorithms.The traditional research focuses on image-level diagnostics that attend to the left and right eyes in isolation without making use of pertinent correlation data between the two sets of eyes.In addition,they usually only target one or a few different kinds of eye diseases at the same time.In this study,we design a patient-level multi-label OD(PLML_ODs)classification model that is based on a spatial correlation network(SCNet).This model takes into consideration the relevance of patient-level diagnosis combining bilateral eyes and multi-label ODs classification.PLML_ODs is made up of three parts:a backbone convolutional neural network(CNN)for feature extraction i.e.,DenseNet-169,a SCNet for feature correlation,and a classifier for the development of classification scores.The DenseNet-169 is responsible for retrieving two separate sets of attributes,one from each of the left and right CFI.After then,the SCNet will record the correlations between the two feature sets on a pixel-by-pixel basis.After the attributes have been analyzed,they are integrated to provide a representation at the patient level.Throughout the whole process of ODs categorization,the patient-level representation will be used.The efficacy of the PLML_ODs is examined using a soft margin loss on a dataset that is readily accessible to the public,and the results reveal that the classification performance is significantly improved when compared to several baseline approaches. 展开更多
关键词 Ocular disease MULTI-LABEL spatial correlation CNN eye disease
下载PDF
A New Image Watermarking Scheme Using Genetic Algorithm and Residual Numbers with Discrete Wavelet Transform
16
作者 Peter Awonnatemi Agbedemnab Mohammed Akolgo Moses Apambila Agebure 《Journal of Information Security》 2023年第4期422-436,共15页
Transmission of data over the internet has become a critical issue as a result of the advancement in technology, since it is possible for pirates to steal the intellectual property of content owners. This paper presen... Transmission of data over the internet has become a critical issue as a result of the advancement in technology, since it is possible for pirates to steal the intellectual property of content owners. This paper presents a new digital watermarking scheme that combines some operators of the Genetic Algorithm (GA) and the Residue Number (RN) System (RNS) to perform encryption on an image, which is embedded into a cover image for the purposes of watermarking. Thus, an image watermarking scheme uses an encrypted image. The secret image is embedded in decomposed frames of the cover image achieved by applying a three-level Discrete Wavelet Transform (DWT). This is to ensure that the secret information is not exposed even when there is a successful attack on the cover information. Content creators can prove ownership of the multimedia content by unveiling the secret information in a court of law. The proposed scheme was tested with sample data using MATLAB2022 and the results of the simulation show a great deal of imperceptibility and robustness as compared to similar existing schemes. 展开更多
关键词 Discrete Wavelet Transform (DWT) Digital Watermarking Encryption Genetic Algorithm (GA) Residue Number System (RNS) GARN
下载PDF
基于R-Tree的高效异常轨迹检测算法 被引量:15
17
作者 刘良旭 乔少杰 +2 位作者 刘宾 乐嘉锦 唐常杰 《软件学报》 EI CSCD 北大核心 2009年第9期2426-2435,共10页
提出了异常轨迹检测算法,通过检测轨迹的局部异常程度来判断两条轨迹是否全局匹配,进而检测异常轨迹.算法要点如下:(1)为了有效地表示轨迹的局部特征,以k个连续轨迹点作为基本比较单元,提出一种计算两个基本比较单元间不匹配程度的距离... 提出了异常轨迹检测算法,通过检测轨迹的局部异常程度来判断两条轨迹是否全局匹配,进而检测异常轨迹.算法要点如下:(1)为了有效地表示轨迹的局部特征,以k个连续轨迹点作为基本比较单元,提出一种计算两个基本比较单元间不匹配程度的距离函数,并在此基础上定义了局部匹配、全局匹配和异常轨迹的概念;(2)针对异常轨迹检测算法普遍存在计算代价高的不足,提出了一种基于R-Tree的异常轨迹检测算法,其优势在于利用R-Tree和轨迹间的距离特征矩阵找出所有可能匹配的基本比较单元对,然后再通过计算距离确定其是否局部匹配,从而消除大量不必要的距离计算.实验结果表明,该算法不仅具有很好的效率,而且检测出来的异常轨迹也具有实际意义. 展开更多
关键词 异常轨迹检测 R树 基于平移的最小Hausdorff距离 全局匹配 局部匹配
下载PDF
面向随机模型检验的模型抽象技术 被引量:2
18
作者 刘阳 李宣东 马艳 《软件学报》 EI CSCD 北大核心 2015年第8期1853-1870,共18页
随机模型检验是经典模型检验理论的延伸和推广,由于其结合了经典模型检验算法和线性方程组求解或线性规划算法等,并且运算处理的是关于状态的概率向量而非经典模型检验中的位向量,所以状态爆炸问题在随机模型检验中更为严重.抽象作为缓... 随机模型检验是经典模型检验理论的延伸和推广,由于其结合了经典模型检验算法和线性方程组求解或线性规划算法等,并且运算处理的是关于状态的概率向量而非经典模型检验中的位向量,所以状态爆炸问题在随机模型检验中更为严重.抽象作为缓解状态空间爆炸问题的重要技术之一,已经开始被应用到随机模型检验领域并取得了一定的进展.以面向随机模型检验的模型抽象技术为研究对象,首先给出了模型抽象技术的问题描述,然后按抽象模型构造技术分类归纳了其研究方向及目前的研究进展,最后对比了目前的模型抽象技术及其关系,总结出其还未能给出模型抽象问题的满意答案,并指出了有效解决模型抽象问题未来的研究方向. 展开更多
关键词 随机模型检验 状态空间爆炸 模型抽象 定量抽象精化
下载PDF
A Scalable Adaptive Approach to Multi-Vehicle Formation Control with Obstacle Avoidance 被引量:9
19
作者 Xiaohua Ge Qing-Long Han +1 位作者 Jun Wang Xian-Ming Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第6期990-1004,共15页
This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems(MVSs)in complex obstacle-laden environments.The MVS under consideration consists of a leader v... This paper deals with the problem of distributed formation tracking control and obstacle avoidance of multivehicle systems(MVSs)in complex obstacle-laden environments.The MVS under consideration consists of a leader vehicle with an unknown control input and a group of follower vehicles,connected via a directed interaction topology,subject to simultaneous unknown heterogeneous nonlinearities and external disturbances.The central aim is to achieve effective and collisionfree formation tracking control for the nonlinear and uncertain MVS with obstacles encountered in formation maneuvering,while not demanding global information of the interaction topology.Toward this goal,a radial basis function neural network is used to model the unknown nonlinearity of vehicle dynamics in each vehicle and repulsive potentials are employed for obstacle avoidance.Furthermore,a scalable distributed adaptive formation tracking control protocol with a built-in obstacle avoidance mechanism is developed.It is proved that,with the proposed protocol,the resulting formation tracking errors are uniformly ultimately bounded and obstacle collision avoidance is guaranteed.Comprehensive simulation results are elaborated to substantiate the effectiveness and the promising collision avoidance performance of the proposed scalable adaptive formation control approach. 展开更多
关键词 Adaptive control collision avoidance distributed formation control multi-vehicle systems neural networks obstacle avoidance repulsive potential
下载PDF
应用纹理三角条形以改进真实感图形绘制性能(英文) 被引量:2
20
作者 杨宇 Tulika Mitra 黄智勇 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2004年第6期740-746,共7页
改进真实感图形绘制性能是计算机图形系统的一个基本问题 文中探讨了一些几何压缩算法对真实感图形绘制性能的影响 ,这些算法是为了优化使用形体顶点高速缓冲存储器而设计的 ;研究了这些算法和计算机芯片上纹理高速缓冲存储器的相互作... 改进真实感图形绘制性能是计算机图形系统的一个基本问题 文中探讨了一些几何压缩算法对真实感图形绘制性能的影响 ,这些算法是为了优化使用形体顶点高速缓冲存储器而设计的 ;研究了这些算法和计算机芯片上纹理高速缓冲存储器的相互作用 ;提出了一个基于三角条形的简单方法 ,以通过平衡使用形体顶点和纹理高速缓冲存储器而改进真实感图形绘制性能 最后 。 展开更多
关键词 真实感图形绘制性能 几何压缩 纹理映射 高速缓冲存储
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部