期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Learning to optimize:A tutorial for continuous and mixed-integer optimization 被引量:1
1
作者 Xiaohan Chen Jialin Liu Wotao Yin 《Science China Mathematics》 SCIE CSCD 2024年第6期1191-1262,共72页
Learning to optimize(L2O)stands at the intersection of traditional optimization and machine learning,utilizing the capabilities of machine learning to enhance conventional optimization techniques.As real-world optimiz... Learning to optimize(L2O)stands at the intersection of traditional optimization and machine learning,utilizing the capabilities of machine learning to enhance conventional optimization techniques.As real-world optimization problems frequently share common structures,L2O provides a tool to exploit these structures for better or faster solutions.This tutorial dives deep into L2O techniques,introducing how to accelerate optimization algorithms,promptly estimate the solutions,or even reshape the optimization problem itself,making it more adaptive to real-world applications.By considering the prerequisites for successful applications of L2O and the structure of the optimization problems at hand,this tutorial provides a comprehensive guide for practitioners and researchers alike. 展开更多
关键词 AI for mathematics(AI4Math) learning to optimize algorithm unrolling plug-and-play methods differentiable programming machine learning for combinatorial optimization(ML4CO)
原文传递
机场终端空域航空流量热区云图模型及其北京首都国际机场案例研究 被引量:1
2
作者 杜欣儒 路紫 +2 位作者 董雅晴 丁疆辉 Wu Dianshuang 《地球科学进展》 CAS CSCD 北大核心 2019年第8期879-888,共10页
大型枢纽机场终端空域航空流密度计算与热点空域识别是智能化时代一个新的挑战性研究课题,旨在利用航迹大数据自动生成航空流并解读其运行规律。针对机场终端空域航空流密度及其与空域资源占用之间的关系问题,设计了一个机场终端空域航... 大型枢纽机场终端空域航空流密度计算与热点空域识别是智能化时代一个新的挑战性研究课题,旨在利用航迹大数据自动生成航空流并解读其运行规律。针对机场终端空域航空流密度及其与空域资源占用之间的关系问题,设计了一个机场终端空域航空流量热区云图模型,以北京首都国际机场为案例,构建了由飞行航迹点构成的航空流经度、纬度和高度基本参数以及角度(转向)、速度(速差)额外参数与时间参数的时空数据集,通过航迹聚类和航迹点次数叠加生成4D流量热区云图,进而用细胞单元对应的基本参数和时间参数属性识别了热点空域范围,又用航迹网格识别了额外参数的变化以补充解释其影响,最后用概率密度拟合验证了4D识别的结果。这项研究识别出北京首都机场局部进近空域的热区分布和2个高度层上的热点空域峰值以及飞行转向、速差的影响,揭示出由飞行占用时长差异引起的热点空域范围变化规律。应用4D流量热区云图模型实现了细致准确的信息构建、热点空域变化的阶梯性表达、时空密度及其范围的多参数可视化,可辅助自动动态空域分区和空域资源配置决策,对缓解当前空中交通需求和空域资源限制的矛盾具有一定参考意义。 展开更多
关键词 航空流密度 热点空域 流量热区云图模型 航迹网格 北京首都国际机场
原文传递
China’s corridors-in-the-sky design and space-time congestion identification and the influence of air routes’ traffic flow 被引量:3
3
作者 DONG Yaqing LU Zi +2 位作者 LIU Yuan ZHANG Qiuluan WU Dianshuang 《Journal of Geographical Sciences》 SCIE CSCD 2019年第12期1999-2014,共16页
With rapid development of air transportation,the airspace structure of the future will need to be flexible and dynamic to accommodate the increase in traffic demand.The corridors-in-the-sky has become a new technology... With rapid development of air transportation,the airspace structure of the future will need to be flexible and dynamic to accommodate the increase in traffic demand.The corridors-in-the-sky has become a new technology to support the full exploitation and utilization of airspace resources.This paper proposes a method of designing corridor,identifying congestion state,and analyzing the influence of air routes’traffic flow.From this,we have reached a number of conclusions.(1)The congestion periods present the multi-peak"wavy"scattered distributions and the peaks back-end agglomeration characteristics in the whole day.(2)The congestion segments present the structural characteristics of unbalanced coverage and concentrated distribution to the crossing points.The corridors with high congestion level present as an italic"N-shaped"frame,which presents incomplete penetration of short segments.(3)For the temporal and spatial interaction,there are two types of congestion segments,and there are some common congestion periods in different congestion segments of multiple corridors.The high-density air route plays a relatively decisive role in corridor congestion,and the influence of two directions is unbalanced.This research can provide a basis for the dynamic evaluation of China’s airspace resources and corridors construction in the future. 展开更多
关键词 corridors-in-the-sky CONGESTION IDENTIFICATION AIR routes traffic flow SPACE-TIME map China
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部