期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于深度学习的人工智能胸部CT肺结节检测效能评估 被引量:95
1
作者 李欣菱 郭芳芳 +6 位作者 周振 张番栋 王卿 彭志君 苏大同 范亚光 王颖 《中国肺癌杂志》 CAS CSCD 北大核心 2019年第6期336-340,共5页
背景与目的肺结节精确检测是实现肺癌早诊的基础。基于深度学习的人工智能在肺内结节检测领域发展迅速,对其效能进行验证是促进其应用于临床的前提。本研究旨在评估基于深度学习技术的人工智能软件在胸部计算机断层扫描(computed tomogr... 背景与目的肺结节精确检测是实现肺癌早诊的基础。基于深度学习的人工智能在肺内结节检测领域发展迅速,对其效能进行验证是促进其应用于临床的前提。本研究旨在评估基于深度学习技术的人工智能软件在胸部计算机断层扫描(computed tomography, CT)恶性及非钙化结节检出中的价值。方法由天津医科大学总医院自建胸部CT肺结节数据库中随机抽取200例胸部CT数据,包含病理证实的肺癌及随访结节病例,导入肺结节人工智能识别系统,记录软件自动识别结节,并与原始影像报告结果进行对比。人工智能软件及阅片者检测到的结节由2名胸部专家进行评估并记录其大小及特征。计算灵敏度、假阳性率评估人工智能软件及医师的结节检测效能,应用McNemar检验确定二者之间是否存在显著性差异。结果 200例胸部多层螺旋CT共包含非钙化结节889枚,其中肺癌结节133枚,小于5 mm结节442枚。人工智能及放射科医师肺癌检出率皆为100%。人工智能软件结节检测灵敏度明显高于放射科医师(99.1%vs 43%, P<0.001)。人工智能总体假阳性率为每例CT 4.9个,排除5 mm以下结节后降为1.5个。结论基于深度学习的人工智能软件能实现恶性肺结节的无漏诊检出,具有较医师更高的结节检出灵敏度,在排除微小结节后可降低假阳性率。 展开更多
关键词 计算机体层成像 肺结节 深度学习 人工智能 检出
下载PDF
Structural Connectivity Enhanced Anisotropic 3D Network for Brain Midline Delineation
2
作者 Yufan Liu Kongming Liang +6 位作者 Yinuo Jing Shen Wang Zhanyu Ma Yiming Li Yizhou Yu Yizhou Wang Jun Guo 《Journal of Beijing Institute of Technology》 EI CAS 2023年第5期562-578,共17页
Brain midline delineation can facilitate the clinical evaluation of brain midline shift,which has a pivotal role in the diagnosis and prognosis of various brain pathology.However,there are still challenges for brain m... Brain midline delineation can facilitate the clinical evaluation of brain midline shift,which has a pivotal role in the diagnosis and prognosis of various brain pathology.However,there are still challenges for brain midline delineation:1)the largely deformed midline is hard to localize if mixed with severe cerebral hemorrhage;2)the predicted midlines of recent methods are not smooth and continuous which violates the structural priority.To overcome these challenges,we propose an anisotropic three dimensional(3D)network with context-aware refinement(A3D-CAR)for brain midline modeling.The proposed network fuses 3D context from different two dimensional(2D)slices through asymmetric context fusion.To exploit the elongated structure of the midline,an anisotropic block is designed to balance the difference between the adjacent pixels in the horizontal and vertical directions.For maintaining the structural priority of a brain midline,we present a novel 3D connectivity regular loss(3D CRL)to penalize the disconnectivity between nearby coordinates.Extensive experiments on the CQ dataset and one in-house dataset show that the proposed method outperforms three state-of-the-art methods on four evaluation metrics without excessive computational burden. 展开更多
关键词 brain midline delineation refinement network structure prior connectivity regular loss
下载PDF
The long-term health outcomes, pathophysiological mechanisms and multidisciplinary management of long COVID 被引量:1
3
作者 Jingwei Li Yun Zhou +6 位作者 Jiechao Ma Qin Zhang Jun Shao Shufan Liang Yizhou Yu Weimin Li Chengdi Wang 《Signal Transduction and Targeted Therapy》 SCIE CSCD 2023年第12期5584-5602,共19页
There have been hundreds of millions of cases of coronavirus disease 2019(COVID-19),which is caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).With the growing population of recovered patients,it i... There have been hundreds of millions of cases of coronavirus disease 2019(COVID-19),which is caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).With the growing population of recovered patients,it is crucial to understand the long-term consequences of the disease and management strategies.Although COVID-19 was initially considered an acute respiratory illness,recent evidence suggests that manifestations including but not limited to those of the cardiovascular,respiratory,neuropsychiatric,gastrointestinal,reproductive,and musculoskeletal systems may persist long after the acute phase.These persistent manifestations,also referred to as long COVID,could impact all patients with COVID-19 across the full spectrum of illness severity.Herein,we comprehensively review the current literature on long COVID,highlighting its epidemiological understanding,the impact of vaccinations,organ-specific sequelae,pathophysiological mechanisms,and multidisciplinary management strategies.In addition,the impact of psychological and psychosomatic factors is also underscored.Despite these crucial findings on long COVID,the current diagnostic and therapeutic strategies based on previous experience and pilot studies remain inadequate,and well-designed clinical trials should be prioritized to validate existing hypotheses.Thus,we propose the primary challenges concerning biological knowledge gaps and efficient remedies as well as discuss the corresponding recommendations. 展开更多
关键词 MECHANISMS consequences hundreds
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部