A general technique to obtain simple analytic approximations for the first kind of modified Bessel functions. The general procedure is shown, and the parameter determination is explained through the applications to th...A general technique to obtain simple analytic approximations for the first kind of modified Bessel functions. The general procedure is shown, and the parameter determination is explained through the applications to this particular case I1/6(x)and I1/7(x). In this way, it shows how to apply the technique to any particular orderν, in order to obtain an approximation valid for any positive value of the variable x. In the present method power series and asymptotic expansion are simultaneously used. The technique is an extension of the multipoint quasirational approximation method, MPQA. The main idea is to look for a bridge function between the power and asymptotic expansion of the I1/6(x), and similar procedure for I1/7(x). To perform this, rational functions are combined with hyperbolic ones and fractional powers. The number of parameters to be determined for each case is four. The maximum relative errors are 0.0049 for ν=1/6, and 0.0047 for ν=7. However, these relative errors decrease outside of the small region of the variables, wherein the maximum relative errors are reached. There is a clear advantage of this procedure compared with any other ones.展开更多
In this paper we study the projections of weak braided Hopf algebras using the notion of Yetter-Drinfeld module associated with a weak braided Hopf algebra. As a consequence, we complete the study ofthe structure of w...In this paper we study the projections of weak braided Hopf algebras using the notion of Yetter-Drinfeld module associated with a weak braided Hopf algebra. As a consequence, we complete the study ofthe structure of weak Hopf algebras with a projection in a braiding setting obtaining a categorical equivalencebetween the category of weak Hopf algebra projections associated with a weak Hopf algebra H living in abraided monoidal category and the category of Hopf algebras in the non-strict braided monoidal category ofleft-left Yetter-Drinfeld modules over H.展开更多
In this paper, we introduce several centralizer constructions in a monoidal context and establish a monoidal equivalence with the category of Yetter-Drinfeld modules over a weak braided Hopf monoid. We apply the gener...In this paper, we introduce several centralizer constructions in a monoidal context and establish a monoidal equivalence with the category of Yetter-Drinfeld modules over a weak braided Hopf monoid. We apply the general result to the calculus of the center in module categories.展开更多
Some classical results about linear representations of a finite group G have been also proved for representations of G on non-abelian groups (G-groups). In this paper we establish a decomposition theorem for irreduc...Some classical results about linear representations of a finite group G have been also proved for representations of G on non-abelian groups (G-groups). In this paper we establish a decomposition theorem for irreducible G-groups which expresses a suitable irreducible G-group as a tensor product of two projective G-groups in a similar way to the celebrated theorem of Clifford for linear representations. Moreover, we study the non-abelian minimal normal subgroups of G in which this decomposition is possible.展开更多
We prove weighted q-variation inequalities with 2<q<∞for sharp truncations of singular integral operators in higher dimensions.The vector-valued extensions of these inequalities are also given.Parallel results ...We prove weighted q-variation inequalities with 2<q<∞for sharp truncations of singular integral operators in higher dimensions.The vector-valued extensions of these inequalities are also given.Parallel results are proven for differential operators.展开更多
To decide when a graph is Gromov hyperbolic is,in general,a very hard problem.In this paper,we solve this problem for the set of short graphs(in an informal way,a graph G is r-short if the shortcuts in the cycles of ...To decide when a graph is Gromov hyperbolic is,in general,a very hard problem.In this paper,we solve this problem for the set of short graphs(in an informal way,a graph G is r-short if the shortcuts in the cycles of G have length less than r):an r-short graph G is hyperbolic if and only if S9r(G)is finite,where SR(G):=sup{L(C):C is an R-isometric cycle in G}and we say that a cycle C is R-isometric if dC(x,y)≤dG(x,y)+R for every x,y∈C.展开更多
In this paper, we present the general theory and universal properties of weak crossed biproducts. We prove that every weak projection of weak bialgebras induces one of these weak crossed structures. Finally, we comput...In this paper, we present the general theory and universal properties of weak crossed biproducts. We prove that every weak projection of weak bialgebras induces one of these weak crossed structures. Finally, we compute explicitly the weak crossed biproduct associated with a groupoid that admits an exact factorization.展开更多
Given a significative class F of commutative rings, we study the precise conditions under which a commutative ring R has an S-envelope. A full answer is obtained when F is the class of fields, semisimple commutative r...Given a significative class F of commutative rings, we study the precise conditions under which a commutative ring R has an S-envelope. A full answer is obtained when F is the class of fields, semisimple commutative rings or integral domains. When .F is the class of Noetherian rings, we give a full answer when the Krull dimension of R is zero and when the envelope is required to be epimorphic. The general problem is reduced to identifying the class of non-Noetherian rings having a monomorphic Noetherian envelope, which we conjecture is the empty class.展开更多
In this paper we obtain a new version of the Orlicz-Pettis theorem by using statistical convergence. To obtain this result we prove a theorem of uniform convergence on matrices related to the statistical convergence.
The paper is devoted to the analysis of certain dynamical properties of a family of iterative Newton type methods used to find roots of non-linear equations. We present a procedure for constructing polynomials in such...The paper is devoted to the analysis of certain dynamical properties of a family of iterative Newton type methods used to find roots of non-linear equations. We present a procedure for constructing polynomials in such a way that superattracting cycles of any prescribed length occur when these iterative methods are applied. This paper completes the study begun in Amat, Bermúclez, Busquier, et al., (2009).展开更多
文摘A general technique to obtain simple analytic approximations for the first kind of modified Bessel functions. The general procedure is shown, and the parameter determination is explained through the applications to this particular case I1/6(x)and I1/7(x). In this way, it shows how to apply the technique to any particular orderν, in order to obtain an approximation valid for any positive value of the variable x. In the present method power series and asymptotic expansion are simultaneously used. The technique is an extension of the multipoint quasirational approximation method, MPQA. The main idea is to look for a bridge function between the power and asymptotic expansion of the I1/6(x), and similar procedure for I1/7(x). To perform this, rational functions are combined with hyperbolic ones and fractional powers. The number of parameters to be determined for each case is four. The maximum relative errors are 0.0049 for ν=1/6, and 0.0047 for ν=7. However, these relative errors decrease outside of the small region of the variables, wherein the maximum relative errors are reached. There is a clear advantage of this procedure compared with any other ones.
基金supported by Ministerio de Ciencia e Innovación,project MTM2010-15634 and by FEDER
文摘In this paper we study the projections of weak braided Hopf algebras using the notion of Yetter-Drinfeld module associated with a weak braided Hopf algebra. As a consequence, we complete the study ofthe structure of weak Hopf algebras with a projection in a braiding setting obtaining a categorical equivalencebetween the category of weak Hopf algebra projections associated with a weak Hopf algebra H living in abraided monoidal category and the category of Hopf algebras in the non-strict braided monoidal category ofleft-left Yetter-Drinfeld modules over H.
基金Supported by Ministerio de Ciencia e Innovación,project MTM2010-15634Supported by FEDER
文摘In this paper, we introduce several centralizer constructions in a monoidal context and establish a monoidal equivalence with the category of Yetter-Drinfeld modules over a weak braided Hopf monoid. We apply the general result to the calculus of the center in module categories.
文摘Some classical results about linear representations of a finite group G have been also proved for representations of G on non-abelian groups (G-groups). In this paper we establish a decomposition theorem for irreducible G-groups which expresses a suitable irreducible G-group as a tensor product of two projective G-groups in a similar way to the celebrated theorem of Clifford for linear representations. Moreover, we study the non-abelian minimal normal subgroups of G in which this decomposition is possible.
基金supported by National Natural Science Foundation of China(Grant Nos.11671308 and 11431011)Ministerio de Economia y Competitividad/al Fondo Europeo de Desarrollo Regional(Grant No.MTM2015-66157-C2-1-P)
文摘We prove weighted q-variation inequalities with 2<q<∞for sharp truncations of singular integral operators in higher dimensions.The vector-valued extensions of these inequalities are also given.Parallel results are proven for differential operators.
基金Supported by Ministerio de Ciencia e Innovación of Spain(Grant No.MTM 2009-07800)a grant from Consejo Nacional De Ciencia Y Tecnologia of México(Grant No.CONACYT-UAG I0110/62/10)
文摘To decide when a graph is Gromov hyperbolic is,in general,a very hard problem.In this paper,we solve this problem for the set of short graphs(in an informal way,a graph G is r-short if the shortcuts in the cycles of G have length less than r):an r-short graph G is hyperbolic if and only if S9r(G)is finite,where SR(G):=sup{L(C):C is an R-isometric cycle in G}and we say that a cycle C is R-isometric if dC(x,y)≤dG(x,y)+R for every x,y∈C.
基金supported by Xunta de Galicia (Grant No. PGIDT07PXB322079PR)Ministerio de Educación (Grant Nos. MTM2007-62427, MTM2006-14908-CO2-01)FEDER
文摘In this paper, we present the general theory and universal properties of weak crossed biproducts. We prove that every weak projection of weak bialgebras induces one of these weak crossed structures. Finally, we compute explicitly the weak crossed biproduct associated with a groupoid that admits an exact factorization.
基金supported by research projects from the Fundación ‘Sneca’ of Murcia (Programa de Ayudas a Grupos de Excelencia)the Spanish Ministry of Science and Innovation (Programa Nacional de Proyectos de Investigación Fundamental), with a part of FEDER funds
文摘Given a significative class F of commutative rings, we study the precise conditions under which a commutative ring R has an S-envelope. A full answer is obtained when F is the class of fields, semisimple commutative rings or integral domains. When .F is the class of Noetherian rings, we give a full answer when the Krull dimension of R is zero and when the envelope is required to be epimorphic. The general problem is reduced to identifying the class of non-Noetherian rings having a monomorphic Noetherian envelope, which we conjecture is the empty class.
基金Supported by Junta de Andalucia grant FQM 257supported by MEC Project MTM-2006-15546-C02-01
文摘In this paper we obtain a new version of the Orlicz-Pettis theorem by using statistical convergence. To obtain this result we prove a theorem of uniform convergence on matrices related to the statistical convergence.
基金supported in part by Spanish Grants MTM2007-62945Fondecyt Grant 1095025, Chile
文摘The paper is devoted to the analysis of certain dynamical properties of a family of iterative Newton type methods used to find roots of non-linear equations. We present a procedure for constructing polynomials in such a way that superattracting cycles of any prescribed length occur when these iterative methods are applied. This paper completes the study begun in Amat, Bermúclez, Busquier, et al., (2009).