Background:Increasing understanding on the functions of amino acids (AA) has led to new commercial applications and expansion of the worldwide markets.However,the current technologies rely heavily on non-food grade mi...Background:Increasing understanding on the functions of amino acids (AA) has led to new commercial applications and expansion of the worldwide markets.However,the current technologies rely heavily on non-food grade microorganism and chemical synthesis for the production of AA.Several studies reported that lactic acid bacteria (LAB) have the capability of producing AA owing to their well-established proteolytic system and amino acid biosynthesis genes.Hence,the objectives of this study were to explore the extracellular proteolytic activity of LAB isolated from various Malaysian fermented foods and their potential to produce AA extracellularly as feed supplements.Results:All the studied LAB isolates were versatile extracellular protease producers,whereby extracellular protease activities were detected from acidic to alkaline pH (pH 5,pH 6.5,pH 8) using qualitative and quantitative proteolytic assays.The highest proteolytic activity at pH 5 (15.76 U/mg) and pH 8 (19.42 U/mg) was achieved by Lactobacillus plantarum RG14,while Lactobacillus plantarum RS5 exhibited the highest proteolytic activity of 17.22 U/mg at pH 6.5.As for the results of AA production conducted in de Man,Rogosa and Sharpe medium and analysed by high pressure liquid chromatography system,all LAB isolates were capable of producing an array of AA.Generally,Pediococcus sp.showed greater ability for AA production as compared to Lactobacillus sp.Moreover,the studied LAB were able to produce a few major feed supplement AA such as methionine,lysine,threonine and tryptophan.P.pentosaceus TL-3 recorded the highest methionine and threonine productivity of 3.72 mg/L/h and 5.58 mg/L/h respectively.However,L.plantarum I-UL4 demonstrated a lysine productivity of 1.24 mg/L/h,while P.acidilactici TP-6 achieved up to 1.73 mg/L/h of tryptophan productivity.Conclusion:All the 17 studied LAB isolates possessed versatile extracellular proteolytic system and have vast capability of producing various amino acids including a few major feed supplement AA such as methionine,lysine,threonine and tryptophan.Despite AA production was strain dependent,the studied LAB isolates possessed vast potential and can be exploited further as a bio-agent or an alternative amino acids and bioactive peptide producers.展开更多
In recent years, zinc oxide nanoparticles(ZnO NPs) have gained tremendous attention attributed to their unique properties. Notably, evidence has shown that zinc is an important nutrient in living organisms. As such, b...In recent years, zinc oxide nanoparticles(ZnO NPs) have gained tremendous attention attributed to their unique properties. Notably, evidence has shown that zinc is an important nutrient in living organisms. As such, both prokaryotes and eukaryotes including bacteria, fungi and yeast are exploited for the synthesis of ZnO NPs by using microbial cells or enzyme, protein and other biomolecules compounds in either an intracellular or extracellular route. ZnO NPs exhibit antimicrobial properties, however, the properties of nanoparticles(NPs) are depended upon on their size and shape, which make them specific for various applications. Nevertheless, the desired size and shape of NPs can be obtained through the optimization process of microbes mediated synthesis by manipulating their reaction conditions. It should be noted that ZnO NPs are synthesized by various chemical and physical methods.Nonetheless, these methods are expensive and not environmentally friendly. On that account, the microbes mediated synthesis of ZnO NPs have rapidly evolved recently where the microbes are cleaner, eco-friendly, nontoxic and biocompatible as the alternatives to chemical and physical practices. Moreover, zinc in the form of NPs is more effective than their bulk counterparts and thus, they have been explored for many potential applications including in animals industry. Notably, with the advent of multi-drug resistant strains, ZnO NPs have emerged as the potential antimicrobial agents. This is mainly due to their superior properties in combating a broad spectrum of pathogens. Moreover, zinc is known as an essential trace element for most of the biological function in the animal’s body. As such, the applications of ZnO NPs have been reported to significantly enhance the health and production of the farm animals. Thus, this paper reviews the biological synthesis of ZnO NPs by the microbes, the mechanisms of the biological synthesis, parameters for the optimization process and their potential application as an antimicrobial agent and feed supplement in the animal industry as well as their toxicological hazards on animals.展开更多
Objective: To investigate the antibacterial effect of selected lactic acid bacteria(LAB)biofilms on the planktonic and biofilm population of methicillin-resistant Staphylococcus aureus(MRSA)(S547).Methods: In this stu...Objective: To investigate the antibacterial effect of selected lactic acid bacteria(LAB)biofilms on the planktonic and biofilm population of methicillin-resistant Staphylococcus aureus(MRSA)(S547).Methods: In this study, biofilm-forming LAB were isolated from tairu and kefir. Isolate Y1 and isolate KF were selected based on their prominent inhibition against test pathogens(using spot-on-agar method and agar-well-diffusion assay) and efficient biofilm production(using tissue culture plate method). They were then identified as Lactobacillus casei(L. casei) Y1 and Lactobacillus plantarum(L. plantarum) KF, respectively using16 S r DNA gene sequencing. The influence of incubation time, temperature and aeration on the biofilm production of L. casei Y1 and L. plantarum KF was also investigated using tissue culture plate method. The inhibitory activity of both the selected LAB biofilms was evaluated against MRSA(Institute for Medical Research code: S547) using L. plantarum ATCC 8014 as the reference strain.Results: L. casei Y1 showed the highest reduction of MRSA biofilms, by 3.53 log at48 h while L. plantarum KF records the highest reduction of 2.64 log at 36 h. In inhibiting planktonic population of MRSA(S547), both L. casei Y1 and L. plantarum KF biofilms recorded their maximum reduction of 4.13 log and 3.41 log at 24 h, respectively. Despite their inhibitory effects being time-dependent, both LAB biofilms exhibited good potential in controlling the biofilm and planktonic population of MRSA(S547).Conclusions: The results from this study could highlight the importance of analysing biofilms of LAB to enhance their antibacterial efficacy. Preferably, these protective biofilms of LAB could also be a better alternative to control the formation of biofilms by pathogens such as MRSA.展开更多
The study describes the effects of depulping the fruits and soaking the seeds of Terminalia belerica Roxb. on seed germination and seedling growth in nursery condition. Around half of the freshly collected fruits of T...The study describes the effects of depulping the fruits and soaking the seeds of Terminalia belerica Roxb. on seed germination and seedling growth in nursery condition. Around half of the freshly collected fruits of T. belerica were depulped by rotting the fleshy pulp in water. Depulped seeds or intact fruits were dried in sun following storage in airtight container. Effects pre-sowing treatments were explored by soaking the dry intact fruits or depulped seeds in cold water for 0, 24, 48 and 72 h and sowed in polybags filled with soil mixed with decomposed cow dung. The study revealed that depulping of fruits and soaking the seeds significantly enhanced the seed germination and seedling growth performance in nursery condition. The fastest seed germination was observed in depulped seeds soaked in cold water for 72 h (DT3) and slowest germination was in intact fruits without treatment (IT0). The highest germination percentage (93) was observed in depulped seeds soaked in cold water for 48 h (DT2) followed by 85.6% in depulped seeds soaked in water for 24 h (DT1), which was significantly higher than the other treatments including the control (36.7). Although growth parameters such as shoot length, root length, total height, leaf number, leaf area and collar diameter of the seedlings were maximum in the seedlings developed through DT3, the vigor index was maximum in DT2 and minimum in IT0. Total dry mass per seedling was also maximum in the seedlings developed from the treatment DT3. Considered the imbibition period, germination percentage, growth performance including vigor index and total biomass produced per seedling, depulping the fruits and soaking the dry seeds in cold water for 48 h was recommended for obtaining maximum seed germination and seedling growth performance.展开更多
Coir Fibres (CF) and Pineapple Leaf Fibres (PALF) are valuable natural fibres which are abundantly available in Malaysia as agricultural wastes. The aim of this study is to investigate the effects of alkali (6%)...Coir Fibres (CF) and Pineapple Leaf Fibres (PALF) are valuable natural fibres which are abundantly available in Malaysia as agricultural wastes. The aim of this study is to investigate the effects of alkali (6%), silane (2%), and calcium hydroxide (6%) on tensile, morphological, thermal, and structural properties of CF and PALF to improve their interfacial bonding with Polylactic Acid (PLA) matrix. Scanning electron microscopy and Fourier transform infrared spectroscopy were used to observe the effectiveness of the chemical treat- ments in the removal of impurities. Alkali treated fibres yield the lowest fibre diameter and the highest Interfacial Stress Strength (IFSS). Thermogravimetric Analysis (TGA) shows improved thermal stability in silane treated CF and alkali treated PALF. It is assumed that fibre treatments can help to develop biodegradable CF and PALF reinforced PLA biocomposites for industrial applications.展开更多
基金The Long-Term Research Grant(LRGS)of the Ministry of Education of Malaysia supported this work
文摘Background:Increasing understanding on the functions of amino acids (AA) has led to new commercial applications and expansion of the worldwide markets.However,the current technologies rely heavily on non-food grade microorganism and chemical synthesis for the production of AA.Several studies reported that lactic acid bacteria (LAB) have the capability of producing AA owing to their well-established proteolytic system and amino acid biosynthesis genes.Hence,the objectives of this study were to explore the extracellular proteolytic activity of LAB isolated from various Malaysian fermented foods and their potential to produce AA extracellularly as feed supplements.Results:All the studied LAB isolates were versatile extracellular protease producers,whereby extracellular protease activities were detected from acidic to alkaline pH (pH 5,pH 6.5,pH 8) using qualitative and quantitative proteolytic assays.The highest proteolytic activity at pH 5 (15.76 U/mg) and pH 8 (19.42 U/mg) was achieved by Lactobacillus plantarum RG14,while Lactobacillus plantarum RS5 exhibited the highest proteolytic activity of 17.22 U/mg at pH 6.5.As for the results of AA production conducted in de Man,Rogosa and Sharpe medium and analysed by high pressure liquid chromatography system,all LAB isolates were capable of producing an array of AA.Generally,Pediococcus sp.showed greater ability for AA production as compared to Lactobacillus sp.Moreover,the studied LAB were able to produce a few major feed supplement AA such as methionine,lysine,threonine and tryptophan.P.pentosaceus TL-3 recorded the highest methionine and threonine productivity of 3.72 mg/L/h and 5.58 mg/L/h respectively.However,L.plantarum I-UL4 demonstrated a lysine productivity of 1.24 mg/L/h,while P.acidilactici TP-6 achieved up to 1.73 mg/L/h of tryptophan productivity.Conclusion:All the 17 studied LAB isolates possessed versatile extracellular proteolytic system and have vast capability of producing various amino acids including a few major feed supplement AA such as methionine,lysine,threonine and tryptophan.Despite AA production was strain dependent,the studied LAB isolates possessed vast potential and can be exploited further as a bio-agent or an alternative amino acids and bioactive peptide producers.
基金Universiti Putra Malaysia(UPM)for financing this work through Putra Graduate Initiative(IPS)
文摘In recent years, zinc oxide nanoparticles(ZnO NPs) have gained tremendous attention attributed to their unique properties. Notably, evidence has shown that zinc is an important nutrient in living organisms. As such, both prokaryotes and eukaryotes including bacteria, fungi and yeast are exploited for the synthesis of ZnO NPs by using microbial cells or enzyme, protein and other biomolecules compounds in either an intracellular or extracellular route. ZnO NPs exhibit antimicrobial properties, however, the properties of nanoparticles(NPs) are depended upon on their size and shape, which make them specific for various applications. Nevertheless, the desired size and shape of NPs can be obtained through the optimization process of microbes mediated synthesis by manipulating their reaction conditions. It should be noted that ZnO NPs are synthesized by various chemical and physical methods.Nonetheless, these methods are expensive and not environmentally friendly. On that account, the microbes mediated synthesis of ZnO NPs have rapidly evolved recently where the microbes are cleaner, eco-friendly, nontoxic and biocompatible as the alternatives to chemical and physical practices. Moreover, zinc in the form of NPs is more effective than their bulk counterparts and thus, they have been explored for many potential applications including in animals industry. Notably, with the advent of multi-drug resistant strains, ZnO NPs have emerged as the potential antimicrobial agents. This is mainly due to their superior properties in combating a broad spectrum of pathogens. Moreover, zinc is known as an essential trace element for most of the biological function in the animal’s body. As such, the applications of ZnO NPs have been reported to significantly enhance the health and production of the farm animals. Thus, this paper reviews the biological synthesis of ZnO NPs by the microbes, the mechanisms of the biological synthesis, parameters for the optimization process and their potential application as an antimicrobial agent and feed supplement in the animal industry as well as their toxicological hazards on animals.
基金Funding for this project was provided by Fundamental Research Grant Scheme(FRGS)of the Ministry of Higher Education,Malaysia(zuhainis@upm.edu.my)(Grant number:5524488)
文摘Objective: To investigate the antibacterial effect of selected lactic acid bacteria(LAB)biofilms on the planktonic and biofilm population of methicillin-resistant Staphylococcus aureus(MRSA)(S547).Methods: In this study, biofilm-forming LAB were isolated from tairu and kefir. Isolate Y1 and isolate KF were selected based on their prominent inhibition against test pathogens(using spot-on-agar method and agar-well-diffusion assay) and efficient biofilm production(using tissue culture plate method). They were then identified as Lactobacillus casei(L. casei) Y1 and Lactobacillus plantarum(L. plantarum) KF, respectively using16 S r DNA gene sequencing. The influence of incubation time, temperature and aeration on the biofilm production of L. casei Y1 and L. plantarum KF was also investigated using tissue culture plate method. The inhibitory activity of both the selected LAB biofilms was evaluated against MRSA(Institute for Medical Research code: S547) using L. plantarum ATCC 8014 as the reference strain.Results: L. casei Y1 showed the highest reduction of MRSA biofilms, by 3.53 log at48 h while L. plantarum KF records the highest reduction of 2.64 log at 36 h. In inhibiting planktonic population of MRSA(S547), both L. casei Y1 and L. plantarum KF biofilms recorded their maximum reduction of 4.13 log and 3.41 log at 24 h, respectively. Despite their inhibitory effects being time-dependent, both LAB biofilms exhibited good potential in controlling the biofilm and planktonic population of MRSA(S547).Conclusions: The results from this study could highlight the importance of analysing biofilms of LAB to enhance their antibacterial efficacy. Preferably, these protective biofilms of LAB could also be a better alternative to control the formation of biofilms by pathogens such as MRSA.
文摘The study describes the effects of depulping the fruits and soaking the seeds of Terminalia belerica Roxb. on seed germination and seedling growth in nursery condition. Around half of the freshly collected fruits of T. belerica were depulped by rotting the fleshy pulp in water. Depulped seeds or intact fruits were dried in sun following storage in airtight container. Effects pre-sowing treatments were explored by soaking the dry intact fruits or depulped seeds in cold water for 0, 24, 48 and 72 h and sowed in polybags filled with soil mixed with decomposed cow dung. The study revealed that depulping of fruits and soaking the seeds significantly enhanced the seed germination and seedling growth performance in nursery condition. The fastest seed germination was observed in depulped seeds soaked in cold water for 72 h (DT3) and slowest germination was in intact fruits without treatment (IT0). The highest germination percentage (93) was observed in depulped seeds soaked in cold water for 48 h (DT2) followed by 85.6% in depulped seeds soaked in water for 24 h (DT1), which was significantly higher than the other treatments including the control (36.7). Although growth parameters such as shoot length, root length, total height, leaf number, leaf area and collar diameter of the seedlings were maximum in the seedlings developed through DT3, the vigor index was maximum in DT2 and minimum in IT0. Total dry mass per seedling was also maximum in the seedlings developed from the treatment DT3. Considered the imbibition period, germination percentage, growth performance including vigor index and total biomass produced per seedling, depulping the fruits and soaking the dry seeds in cold water for 48 h was recommended for obtaining maximum seed germination and seedling growth performance.
文摘Coir Fibres (CF) and Pineapple Leaf Fibres (PALF) are valuable natural fibres which are abundantly available in Malaysia as agricultural wastes. The aim of this study is to investigate the effects of alkali (6%), silane (2%), and calcium hydroxide (6%) on tensile, morphological, thermal, and structural properties of CF and PALF to improve their interfacial bonding with Polylactic Acid (PLA) matrix. Scanning electron microscopy and Fourier transform infrared spectroscopy were used to observe the effectiveness of the chemical treat- ments in the removal of impurities. Alkali treated fibres yield the lowest fibre diameter and the highest Interfacial Stress Strength (IFSS). Thermogravimetric Analysis (TGA) shows improved thermal stability in silane treated CF and alkali treated PALF. It is assumed that fibre treatments can help to develop biodegradable CF and PALF reinforced PLA biocomposites for industrial applications.