The capability of carbon nanotubes (CNTs) to adsorb lead (Pb) in aqueous solution was investigated. Batch mode adsorption experiment was conducted to determine the effects of pH, agitation speed, CNTs dosage and c...The capability of carbon nanotubes (CNTs) to adsorb lead (Pb) in aqueous solution was investigated. Batch mode adsorption experiment was conducted to determine the effects of pH, agitation speed, CNTs dosage and contact time. The removal of Pb(II) reached maximum value 85% or 83% at pH 5 or 40 mg/L of CNTs, respectively. Higher correlation coefficients from Langmuir isotherm model indicates the strong adsorptions of Pb(II) on the surface of CNTs (adsorption capacity Xm = 102.04 mg/g). The results indicates that the highest percentage removal of Pb (96.03%) can be achieved at pH 5, 40 mg/L of CNTs, contact time 80 min, and agitation speed 50 r/min.展开更多
The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced b...The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation of activation time with 30 min at 800℃. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R^2=0.93) for removal of 2,4-dichlorophenol by the activated carbon rather than Freundlich isotherm (R^2=0.88).展开更多
The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃...The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃, agitation of 150 r/min, and pH of 5 were chosen as center point from the previous study of fungal treatment. The experimental data on chemical oxygen demand (COD) removal (%) were fitted into a quadratic polynomial model using multiple regression analysis. The optimum process conditions were determined by analyzing response surface three-dimensional surface plot and contour plot and by solving the regression model equation with Design Expert software. Box-Behnken design technique under RSM was used to optimize their interactions, which showed that an incubation temperature of 32.5℃, agitation of 105 r/min, and pH of 5.5 were the best conditions. Under these conditions, the maximum predicted yield of COD removal was 98.43%. These optimum conditions were used to evaluate the trail experiment, and the maximum yield of COD removal was recorded as 98.5%.展开更多
This study was undertaken to screen the filamentous fungi isolated from its relevant habitats(wastewater, sewage sludge and sludge cake) for the bioconversion of domestic wastewater sludge. A total of 35 fungal strain...This study was undertaken to screen the filamentous fungi isolated from its relevant habitats(wastewater, sewage sludge and sludge cake) for the bioconversion of domestic wastewater sludge. A total of 35 fungal strains were tested against wastewater sludge (total suspended solids, TSS 1%—5% w/w) to evaluate its potentiality for enhancing the biodegradability and dewaterability using liquid state bioconversion(LSB) process. The strains were divided into five groups i.e. Penicillium, Aspergillus, Trichoderma, Basidiomycete and Miscellaneous, respectively. The strains WWZP1003, SCahmA103, SCahmT105 and PC-9 among their respective groups of Penicillium, Aspergillus, Trichoderma and Basidiomycete played potential roles in terms of separation(formation of pellets/flocs/filaments), biodegradation(removal of COD) and filtration(filterability) of treated domestic wastewater sludge. The Miscellaneous group was not considered due to its unsatisfactory results as compared to the other groups. The pH value was also influenced by the microbial treatment during fermentation process. The filterability of treated sludge was improved by fungal treatment, and lowest filtration time was recorded for the strain WWZP1003 and SCahmA103 of Penicillium and Aspergillus groups respectively compared with other strains.展开更多
AIM: To examine the effect of pseudolaric acid B on the growth of human gastric cancer cell line, AGS, and its possible mechanism of action.METHODS: Growth inhibition by pseudolaric acid B was analyzed using MTT assay...AIM: To examine the effect of pseudolaric acid B on the growth of human gastric cancer cell line, AGS, and its possible mechanism of action.METHODS: Growth inhibition by pseudolaric acid B was analyzed using MTT assay. Apoptotic cells were detected using Hoechst 33258 staining, and confirmed by DNA fragmentation analysis. Western blot was used to detect the expression of apoptosis-regulated gene Bcl-2, caspase 3, and cleavage of poly (ADP-ribose)polymerase-1 (PARP-1).RESULTS: Pseudolaric acid B inhibited the growth of AGS cells in a time- and dose-dependent manner by arresting the cells at G2/M phase, which was accompanied with a decrease in the levels of cdc2.AGS cells treated with pseudolaric acid B showed typical characteristics of apoptosis including chromatin condensation and DNA fragmentation. Moreover,treatment of AGS cells with pseudolaric acid B was also associated with decreased levels of the anti-apoptotic protein Bcl-2, activation of caspase-3, and proteolytic cleavage of PARP-1.CONCLUSION: Pseudolaric acid B can dramatically suppress the AGS cell growth by inducing apoptosis after G2/M phase arrest. These findings are consistent with the possibility that G2/M phase arrest is mediated by the down-regulation of cdc2 levels. The data also suggest that pseudolaric acid B can trigger apoptosis by decreasing Bcl-2 levels and activating caspase-3 protease.展开更多
Objective: To verify possible associations between adenosine aminohydrolase(ADA) and AMP-aminohydrolase(AMPDA) to E3 SUMO-protein ligase NSE2(NSMCE2) in patients with renal stones. And to isolate, purify and character...Objective: To verify possible associations between adenosine aminohydrolase(ADA) and AMP-aminohydrolase(AMPDA) to E3 SUMO-protein ligase NSE2(NSMCE2) in patients with renal stones. And to isolate, purify and characterize ADA in patients with renal stones and healthy group.Methods: A total of 60 renal stones patients and 50 control were enrolled in a case-control study. The blood urea, creatinine, uric acid, protein, albumin, ADA and AMPDA were measured by colorimetric tests. The serum NSMCE2 was measured by ELISA.Results: Serum ADA, AMPDA and specii c activity of enzymes showed signii cant decrease(P < 0.05) in patients with renal stones compared to control group, mean levels of sera NSMCE2 and uric acid had a signii cant increase(P < 0.01 and P < 0.05, respectively) in patients compared to control group.Conclusions: The present study suggests that ADA, AMP deaminase and NSMCE2 can be used as a indicator to monitor the DNA damage and inl ammation disorders in the patients with kidney stones.展开更多
Significant attention has been given to biogas production, purification and upgrading as a renewable and clean fuel supplement. Biogas is a product of an anaerobic digestion process comprising methane, carbon dioxide,...Significant attention has been given to biogas production, purification and upgrading as a renewable and clean fuel supplement. Biogas is a product of an anaerobic digestion process comprising methane, carbon dioxide,and trace amounts of other gases. Biogas purification removes trace gases in biogas for safe utilisation. Biogas upgrading produces methane-rich biogas by removing bulk carbon dioxide from the gas mixture. Several carbon dioxide removal techniques can be applied for biogas upgrading. However, chemical absorption of carbon dioxide for biogas upgrading is of special significance due to its operation at ambient or near ambient temperature and pressure, thus reducing energy consumption. This paper reviews the chemical absorption of carbon dioxide using amine scrubbing, caustic solvent scrubbing, and amino acid salt solution scrubbing. Each of these techniques for biogas upgrading is discussed. The paper concludes that an optimised implementation of the chemical absorption techniques for biogas upgrading requires further research.展开更多
Objective:The activity of enzymes participating in the systems of antioxidant protection was assayed in the peel and pulp of sunflower.The essential roles of proteases in food stimulate research to find other sources ...Objective:The activity of enzymes participating in the systems of antioxidant protection was assayed in the peel and pulp of sunflower.The essential roles of proteases in food stimulate research to find other sources of the enzyme especially from non-conventional sources.In the present work,we study several biochemical parameters in the pulp and peel of sunflower.Methods:Pulp and peel of sunflower was extracted,antioxidant enzymes and nonenzymatic antioxidant were measured.Alkaline protease was measured and purified from pulp in sunflower.Results:High carbohydrate concentration,beta-carotene,catalase and ascorbate peroxidase activities,free radical scavenging capacity and free flavonoid content were observed in the peel of sunflower.Whereas,MDA and ceruloplasmin activities were high in the pulp of sunflower.Conclusions:The present study concluded that peel in sunflower are strong radical scavengers and can be considered as good sources of natural antioxidants for medicinal and commercial uses.Further analysis showed that protease activity was a significantly high in the pulp compared to the peel.展开更多
Solid oxide catalysts derived from various renewable sources have produced significant yield of methyl esters of enhanced purity. These materials are sourced for due to their advantages ranging from low cost, recovera...Solid oxide catalysts derived from various renewable sources have produced significant yield of methyl esters of enhanced purity. These materials are sourced for due to their advantages ranging from low cost, recoverability and reusability, environmental benign-ness, thermal stability and high quality product generation. For a possible greener production process, many researchers in literature reported the use of biomass-derived heterogeneous catalyst in biodiesel synthesis producing high quality pure product. The catalysts were majorly modified through simple physical cost effective and energy saving operations. This paper explores some of these bio-based heterogeneous catalyst used in biodiesel production via transesterification and esterification approach and their performance in FAME yield and conversion. The feedstock consideration which warrant the route selection, various approaches that are adopted in biodiesel production, performance of renewable heterogeneous catalyst and the measures that were adopted to enhance efficiency of the catalyst were considerably highlighted. It is observed that the prospects of organic-based solid catalyst in biodiesel development is a promising enterprise compared to the conventional methods utilizing homogeneous chemical catalyst, which generates wastewater requiring treatment before disposal and generates product that may cause engine malfunction. This review work aimed at providing detailed and up-to-date record of the trend in renewable catalyst development in biodiesel synthesis. This is expected to inform a suitable selection and reaction conditions in the development of biodiesel from the very many feed stocks.展开更多
The increased global incidence of chronic metabolic diseases,a vital threat to human health and a burden on our healthcare systems,includes a series of clinical metabolic syndromes such as obesity,diabetes,hypertensio...The increased global incidence of chronic metabolic diseases,a vital threat to human health and a burden on our healthcare systems,includes a series of clinical metabolic syndromes such as obesity,diabetes,hypertension,and dyslipidemia.One of the well-known probiotic microorganisms,Lactiplantibacillus plantarum plays an important role in promoting human health,including inhibiting the occurrence and development of a variety of chronic metabolic diseases.The present study provides an overview of the preventive and therapeutic effects of L.plantarum on diabetes,obesity,non-alcoholic fatty liver disease,kidney stone disease,and cardiovascular diseases in animal models and human clinical trials.Ingesting L.plantarum demonstrated its ability to reduce inflammatory and oxidative stress levels by regulating the production of cytokines and short-chain fatty acids(SCFAs),the activity of antioxidant enzymes,and the balance of intestinal microbial communities to alleviate the symptoms of chronic metabolic diseases.Furthermore,updated applications and technologies of L.plantarum in food and biopharmaceutical industries are also discussed.Understanding the characteristics and functions of L.plantarum will guide the development of related probiotic products and explore the modulatory benefit of L.plantarum supplementations on the prevention and treatment of multiple chronic metabolic diseases.展开更多
Objective Nephrolithiasis is one of the most common disorders of the urinary tract. The aim of this study was to examine a possible relationship between DNase Ⅰ/Ⅱ activity and E3 SUMO-protein ligase NSE2 in the sera...Objective Nephrolithiasis is one of the most common disorders of the urinary tract. The aim of this study was to examine a possible relationship between DNase Ⅰ/Ⅱ activity and E3 SUMO-protein ligase NSE2 in the sera of nephrolithiasis patients to evaluate the possibility of a new biomarker for evaluating kidney damage. Methods Sixty nephrolithiasis patients and 50 control patients were enrolled in a case-control study. Their blood urea, creatinine, protein levels and DNase Ⅰ/Ⅱ activity levels were measured by spectrometry. Serum NSMCE2 levels were measured by ELISA. Blood was collected from patients of the government health clinics in Kuantan-Pahang and fulfilled the inclusion criteria. Results The result indicated that mean levels of sera NSMCE2 have a significantly increase(P〈0.01) in patients compared to control group. Compared with control subjects, activities and specific activities of serum DNase Ⅰ and Ⅱ were significantly elevated in nephrolithiasis patients(P〈0.01). Conclusion This study suggests that an increase in serum concentrations of DNase Ⅰ/Ⅱ and E3 SUMO-protein ligase NSE2 level can be used as indicators for the diagnosis of kidney injury in patients with nephrolithiasis.展开更多
Sludge palm oil (SPO) is an attractive feedstock and a significant raw material for biodiesel production. The use of SPO can lower the cost ofbiodiesel production significantly. In this study biodiesel fuel was prod...Sludge palm oil (SPO) is an attractive feedstock and a significant raw material for biodiesel production. The use of SPO can lower the cost ofbiodiesel production significantly. In this study biodiesel fuel was produced from SPO by esterification process using P-toluenesulfonic acid (PTSA) as acid catalyst in different dosages in presence of methanol to convert free fatty acid (FFA) to fatty acid methyl ester (FAME). Batch esterification process of SPO was carried out to study the influence of PTSA dosage (0.25-10% wt/wt), molar ratio of methanol to SPO (6:1-20:1), temperature (40-80 ℃), reaction time (30-120 min). The effects of those parameters on the yield of crude biodiesel and conversion of FFA to FAME were monitored. The optimum condition for batch esterification process was 0.75% wt/wt, 10:1 molar ratio, 60 ℃ temperature and 60 minutes reaction time.展开更多
Objective: To verify possible relations between 5'-nucleotidase, xanthine oxidase to E3 small ubiquitin-like modifier-protein ligase non structural maintenance of chromosomes elements 2 in sera patients with kidne...Objective: To verify possible relations between 5'-nucleotidase, xanthine oxidase to E3 small ubiquitin-like modifier-protein ligase non structural maintenance of chromosomes elements 2 in sera patients with kidney stones and to evaluate the possibility of a new biomarker for the evaluation of kidney damage. Methods: A sixty patients with known kidney stones who appeared the government health clinics in Kuantan–Pahang and fifty apparently healthy were taken as control group. The 5'-nucleotidase,xanthine oxidase and other biochemical parameters were measured by colorimetric tests. The serum NSMCE2 were measured by enzyme linked immunosorbent assay.Results: The mean serum xanthine oxidase [(39.98±19.70) IU/L] and ecto-5'-nucleotidase activity(40.03±9.53 IU/L) were significantly higher than the controls' levels of(18.04 ±6.26) and(16.06 ±4.61) IU/L respectively. There were 85.00% and 83.33%, of patients with kidney stones who had abnormal ecto-5'-nucleotidase activity and uric acid respectively while xanthine oxidase activity was less sensitive 58.33%.Conclusions: The present study suggests that the increase in serum of xanthine oxidase,ecto-5'-nucleotidase activities E3 small ubiquitin-like modifier-protein ligase NSE2 concentration can be used as biomarkers for diagnosis of kidney damage in patients with kidney stone,also in developments of change DNA damage and inflammation disorders in these patients.展开更多
Increasing usage of foams in various industry sectors had causing serious disposal problems once it reaches the end of its life-cycle.Herein,PVA-MFC foam was prepared by freeze-drying using polyvinyl alcohol(PVA)and m...Increasing usage of foams in various industry sectors had causing serious disposal problems once it reaches the end of its life-cycle.Herein,PVA-MFC foam was prepared by freeze-drying using polyvinyl alcohol(PVA)and microfibrillated cellulose(MFC)as a reinforced material from sugarcane bagasse(SCB).In this study,the PVA-MFC foam was chemically silylated with Y-methacryloxypropyltrimethoxysilane(MPS)and tetraethoxysilane(TEOS).The wetting ability and mechanical strength of the silylated_(2,20)PVA-MFC foam was greatly enhanced compared with unmodified_(2,20)PVA-MFC foam.The silane chemicals(MPS and TEOS)had been confirmed grafted on_(2,20)PVA-MFC foam due to the presence of Si-C and Si-O-C stretching vibration as showed in Fourier Transform Infrared(FTIR)spectra and cloud-like coating of porous pore was observed in scanning electron microscopy(SEM)images.The silylated_(2,20)PVA-MFC foam(MPS and TEOS)exhibited a series of desirable properties such as lower swelling ratio and high absorption capacity of solvents and oils but had low thermal stability in thermogravimetric(TGA)analysis.The characterization of_(2,20)PVA-MFC foam using TEOS was further investigated.A significant difference in morphology was clearly observed between the unmodified and silylated_(2,20)PVA-MFC-TEOS foam through field emission scanning electron microscopy(FESEM)images.The X-ray photoelectron(XPS)analysis of silylated_(2,20)PVA-MFC-TEOS foam confirmed the presence of C,O and trace amount of Si elements.These synthesized_(2,20)PVA-MFC foam could be a promising material for broad range of polymer foam applications.展开更多
Phytase, also known as phytate-degrading enzyme, catalyzes the hydrolysis of phytate (inositol hexakisphosphate) with sequential release of phosphate and lower inositol phosphate. We report here a new plasmid construc...Phytase, also known as phytate-degrading enzyme, catalyzes the hydrolysis of phytate (inositol hexakisphosphate) with sequential release of phosphate and lower inositol phosphate. We report here a new plasmid construct designated as pMSuia from pBAD-TOPO that harbors a 1.1 kb phytase gene (phyMS) from Mycobacterium smegmatis, and expression as well as characterization of the purified recombinant M. smegmatis phytase. DNA sequencing analysis and multiple alignment exercise indicated that the M. smegmatis phytase is different from both known acid and alkaline phytases. The active ~45 kDa recombinant enzyme was expressed and confirmed by enzyme assay and Western blot analyses. Ni-NTA affinity purified recombinant M. smegmatis phytase exhibited specific activity of 233.51 U/mg, optimal pH of 3 and 7 and optimal temperature of 60°C. The purified enzyme retains almost 30% of the initial activity after incubation at 90°C for 60 min. The enzyme showed broad substrate specificity with Km and Vmax of the recombinant enzyme for sodium phytate substrate of 0.105 ± 0.016 mM and 26.93 ± 1.21 mM min-1, respectively.展开更多
Methicillin-resistant </span><i><span style="font-family:Verdana;">Staphylococcus aureus </span></i><span style="font-family:Verdana;">(MRSA) infection is a glob...Methicillin-resistant </span><i><span style="font-family:Verdana;">Staphylococcus aureus </span></i><span style="font-family:Verdana;">(MRSA) infection is a global health concern that has caused severe health threats over the past decade. Leaves extract of </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> odontophyllum </span></i><span style="font-family:Verdana;">has been proven previously as an anti MRSA agent. Proteomics provide a technique that used to analyze the differential of protein expression profile between untreated and treated MRSA with subinhibitory concentrations of acetone extract from </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> odontophyllum </span></i><span><span style="font-family:Verdana;">leaves. This study aims to determine the optimum parameter for analysis of protein expression profile using two-dimension gels electrophoresis (2-DE) for MRSA protein after treatment with acetone extract from </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> odontophyllu</span></i></span><i><span style="font-family:Verdana;">m </span></i><span style="font-family:Verdana;">leaves. Comparison of the Protein Expression Profile (PEP) between the untreated and treated MRSA was analyzed using PDQuest software. The optimum condition for MRSA protein treated with acetone extract from </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> odontophyllum </span></i><span style="font-family:Verdana;">leaves to produce the best resolution with greater spot distribution was as follows: 100 μg volume of MRSA protein that loaded after passive rehydration then was run until reaching 25 kVrhs during IEF using 17 cm IPG strip within ranges of pH 4 - 7. Analysis of protein expression from the 2-DE gel map shows that 9 protein spots up-regulated and 41 protein spots were down-regulated with more than 2-fold differences (p < 0.05). This preliminary study on the PEP of MRSA treated with acetone extract of </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> odontophyllum </span></i><span style="font-family:Verdana;">leave may provide an insight into the antimicrobial mechanism, which could lead to the identification of target protein for future novel therapeutic development against MRSA infections.展开更多
Biofilms, the preferred bacterial mode of living and survival, are employed by most microorganisms—which tend to attach to surfaces—to gain physical support, increase nutrient utilization and availability, and augme...Biofilms, the preferred bacterial mode of living and survival, are employed by most microorganisms—which tend to attach to surfaces—to gain physical support, increase nutrient utilization and availability, and augment their resistance against anti-bacterial agents. Rhodococcus ruber (C208) has been shown to form a dense biofilm on polyethylene surfaces while degrading them. Bacterial biofilms comprise bacterial cells embedded in self-secreted extracellular polymeric substances (EPS) whose main components are polysaccharides, proteins and nucleic acids. Revealing the roles of these components will enable further insight into biofilm development and, therefore, the EPS structure-function relationship. The current study focuses on contribution of extracellular DNA to biofilm formation and stability. This was approached by investigating the influence of nucleases on biofilm formation via degradation of their corresponding substrates within the biofilm of C208. RNase application to cultures of C208 decreased biofilm formation. Degradation of biofilm DNA by DNase reduced early-stage biofilm formation by 20% -25% but had no significant effect on established, mature biofilm. Likewise, the addition of DNA to cultures significantly enhanced early-stage biofilm formation by 50% -100%. RAPD-PCR analysis revealed different band patterns from intra-cellular DNA and extra-cellular DNA and also between the supernatant and biofilm fractions of extra-cellular DNA, indicating that perhaps only certain DNA molecules are utilized as part of the biofilm.展开更多
Cell disruption focuses on obtaining a desired bioproduct within a cell, and it is the cell wall that must be disrupted to allow access to the contents of the cell. In animal cells, the plasma membrane is the only bar...Cell disruption focuses on obtaining a desired bioproduct within a cell, and it is the cell wall that must be disrupted to allow access to the contents of the cell. In animal cells, the plasma membrane is the only barrier separating cell contents from the environment. Sound waves from sonication, a mechanical technique for cell disintegration, have been used to disrupt as well as to aggregate cells as a step towards purification of a desired bioproduct. In the present study, an improved sonication process for the high yield of Newcastle disease virus (NDV) propagated in tissue culture was described. DF-I cell was cultured in 25cm^2 T flask. When cells were about 80% confluent, a lentogenic strain of NDV (F strain) was used to infect the cell monolayer. With evident cytopathic effect, cells were subjected to cycles of freeze-thaw before sonicating with varying combinations of amplitude, temperature and time. Cells were sonicated using a water bath Sonicator, Jac Ultrasonic 1505 JEIO TECH 4 KHz. From ANOVA analysis, a significant interaction between sonication time and amplitude was observed. This also corresponds to the highest F value observed.展开更多
This study explored the antibiofilm efficacy of 3,3’-diindolylmethane(DIM)on Staphylococcus aureus and its disinfection on common food-contact surfaces.The minimum biofilm inhibitory concentration(MBIC)of DIM on S.au...This study explored the antibiofilm efficacy of 3,3’-diindolylmethane(DIM)on Staphylococcus aureus and its disinfection on common food-contact surfaces.The minimum biofilm inhibitory concentration(MBIC)of DIM on S.aureus was 62.5μmol/L,while it did not impede the bacterial growth evaluated by growth curve and XTT reduction assay.DIM in the concentration range of 31.2-62.5μmol/L demonstrated a dose-dependent antibiofilm activity to S.aureus,as confirmed by light microscopic(LM),confocal laser scanning microscopic(CLSM),and scanning electron microscopic(SEM)analyses.At DIM of62.5μmol/L,the biomass of S.aureus biofilm was significantly reduced by 97%and its average thickness by 58%(P<0.05).DIM of 62.5μmol/L inhibited the bacterial initial adhesion and proliferation,as well as cell motility;the release of extracellular DNA(eDNA)and extracellular polysaccharide(EPS)were reduced by 75%and 69%,respectively.DIM exhibited a strong inhibition to S.aureus biofilm formation on common food-contact surfaces,including 304 stainless steel,glass,and polyvinyl chloride(PVC)but not disperse the mature biofilm.Overall,our investigation identified DIM as a promising antibiofilm agent and its suitability to prevent the biofilm formation of S.aureus on common food-contact surfaces utilized during food processing.展开更多
Cost of biodiesel is primarily because of factors such as the feedstock, production process and materials. Apparently, the final biodiesel product is a bit expensive compared to fossil diesel fuel. While non-food feed...Cost of biodiesel is primarily because of factors such as the feedstock, production process and materials. Apparently, the final biodiesel product is a bit expensive compared to fossil diesel fuel. While non-food feedstock of high oil content such as <i><span style="font-family:Verdana;">Jatropha</span></i> <i><span style="font-family:Verdana;">curcas</span></i><span style="font-family:Verdana;"> has been proposed to reduce the cost due to the feedstock, a promising two-step approach of hydro-esterification can possibly offset the production cost for oil resource with high free fatty acids. Most importantly, optimization of the materials and process is expected to reduce wastage, enhance product purity and generate less wastewater. However, optimizing product generation has been dauntingly elusive because several parameters are needed to be considered holistically. In this study, Response Surface Methodology (RSM) was employed to optimize the yield and conversion of </span><i><span style="font-family:Verdana;">Jatropha</span></i><span style="font-family:Verdana;"> biodiesel from </span><i><span style="font-family:Verdana;">J</span></i><span style="font-family:Verdana;">.</span> <i><span style="font-family:Verdana;">curcas </span></i><span style="font-family:Verdana;">hydrolysate. An optimum Yield and conversion of 96% was achieved for both responses with an optimum temperature value of 60</span><span><span>°</span><span><span>C, 4 wt% for catalyst loading for 6 hrs reaction time. Findings imply that optimization study of </span><i><span>Jatropha curcas</span></i><span> hydrolysate for yield and conversion of fatty acid methyl esters using face centered central composite design of Design Expert 6.0.8 can ensure purity of product, conserve energy and reduce waste generation providing a significant frontier in biodiesel pricing.</span></span></span>展开更多
基金the Kulliyyah of Engineering(KOE) and Department of Biotechnology Engineering,IIUM for supporting and providing the laboratory facilities
文摘The capability of carbon nanotubes (CNTs) to adsorb lead (Pb) in aqueous solution was investigated. Batch mode adsorption experiment was conducted to determine the effects of pH, agitation speed, CNTs dosage and contact time. The removal of Pb(II) reached maximum value 85% or 83% at pH 5 or 40 mg/L of CNTs, respectively. Higher correlation coefficients from Langmuir isotherm model indicates the strong adsorptions of Pb(II) on the surface of CNTs (adsorption capacity Xm = 102.04 mg/g). The results indicates that the highest percentage removal of Pb (96.03%) can be achieved at pH 5, 40 mg/L of CNTs, contact time 80 min, and agitation speed 50 r/min.
文摘The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation of activation time with 30 min at 800℃. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R^2=0.93) for removal of 2,4-dichlorophenol by the activated carbon rather than Freundlich isotherm (R^2=0.88).
文摘The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃, agitation of 150 r/min, and pH of 5 were chosen as center point from the previous study of fungal treatment. The experimental data on chemical oxygen demand (COD) removal (%) were fitted into a quadratic polynomial model using multiple regression analysis. The optimum process conditions were determined by analyzing response surface three-dimensional surface plot and contour plot and by solving the regression model equation with Design Expert software. Box-Behnken design technique under RSM was used to optimize their interactions, which showed that an incubation temperature of 32.5℃, agitation of 105 r/min, and pH of 5.5 were the best conditions. Under these conditions, the maximum predicted yield of COD removal was 98.43%. These optimum conditions were used to evaluate the trail experiment, and the maximum yield of COD removal was recorded as 98.5%.
文摘This study was undertaken to screen the filamentous fungi isolated from its relevant habitats(wastewater, sewage sludge and sludge cake) for the bioconversion of domestic wastewater sludge. A total of 35 fungal strains were tested against wastewater sludge (total suspended solids, TSS 1%—5% w/w) to evaluate its potentiality for enhancing the biodegradability and dewaterability using liquid state bioconversion(LSB) process. The strains were divided into five groups i.e. Penicillium, Aspergillus, Trichoderma, Basidiomycete and Miscellaneous, respectively. The strains WWZP1003, SCahmA103, SCahmT105 and PC-9 among their respective groups of Penicillium, Aspergillus, Trichoderma and Basidiomycete played potential roles in terms of separation(formation of pellets/flocs/filaments), biodegradation(removal of COD) and filtration(filterability) of treated domestic wastewater sludge. The Miscellaneous group was not considered due to its unsatisfactory results as compared to the other groups. The pH value was also influenced by the microbial treatment during fermentation process. The filterability of treated sludge was improved by fungal treatment, and lowest filtration time was recorded for the strain WWZP1003 and SCahmA103 of Penicillium and Aspergillus groups respectively compared with other strains.
基金Supported by the National Natural Science Foundation of China, No. 30371243
文摘AIM: To examine the effect of pseudolaric acid B on the growth of human gastric cancer cell line, AGS, and its possible mechanism of action.METHODS: Growth inhibition by pseudolaric acid B was analyzed using MTT assay. Apoptotic cells were detected using Hoechst 33258 staining, and confirmed by DNA fragmentation analysis. Western blot was used to detect the expression of apoptosis-regulated gene Bcl-2, caspase 3, and cleavage of poly (ADP-ribose)polymerase-1 (PARP-1).RESULTS: Pseudolaric acid B inhibited the growth of AGS cells in a time- and dose-dependent manner by arresting the cells at G2/M phase, which was accompanied with a decrease in the levels of cdc2.AGS cells treated with pseudolaric acid B showed typical characteristics of apoptosis including chromatin condensation and DNA fragmentation. Moreover,treatment of AGS cells with pseudolaric acid B was also associated with decreased levels of the anti-apoptotic protein Bcl-2, activation of caspase-3, and proteolytic cleavage of PARP-1.CONCLUSION: Pseudolaric acid B can dramatically suppress the AGS cell growth by inducing apoptosis after G2/M phase arrest. These findings are consistent with the possibility that G2/M phase arrest is mediated by the down-regulation of cdc2 levels. The data also suggest that pseudolaric acid B can trigger apoptosis by decreasing Bcl-2 levels and activating caspase-3 protease.
基金Supported by the Research Management Center,International Islamic University Malaysia,Grant Scheme Project No.IIUM/504/5/29/1
文摘Objective: To verify possible associations between adenosine aminohydrolase(ADA) and AMP-aminohydrolase(AMPDA) to E3 SUMO-protein ligase NSE2(NSMCE2) in patients with renal stones. And to isolate, purify and characterize ADA in patients with renal stones and healthy group.Methods: A total of 60 renal stones patients and 50 control were enrolled in a case-control study. The blood urea, creatinine, uric acid, protein, albumin, ADA and AMPDA were measured by colorimetric tests. The serum NSMCE2 was measured by ELISA.Results: Serum ADA, AMPDA and specii c activity of enzymes showed signii cant decrease(P < 0.05) in patients with renal stones compared to control group, mean levels of sera NSMCE2 and uric acid had a signii cant increase(P < 0.01 and P < 0.05, respectively) in patients compared to control group.Conclusions: The present study suggests that ADA, AMP deaminase and NSMCE2 can be used as a indicator to monitor the DNA damage and inl ammation disorders in the patients with kidney stones.
文摘Significant attention has been given to biogas production, purification and upgrading as a renewable and clean fuel supplement. Biogas is a product of an anaerobic digestion process comprising methane, carbon dioxide,and trace amounts of other gases. Biogas purification removes trace gases in biogas for safe utilisation. Biogas upgrading produces methane-rich biogas by removing bulk carbon dioxide from the gas mixture. Several carbon dioxide removal techniques can be applied for biogas upgrading. However, chemical absorption of carbon dioxide for biogas upgrading is of special significance due to its operation at ambient or near ambient temperature and pressure, thus reducing energy consumption. This paper reviews the chemical absorption of carbon dioxide using amine scrubbing, caustic solvent scrubbing, and amino acid salt solution scrubbing. Each of these techniques for biogas upgrading is discussed. The paper concludes that an optimised implementation of the chemical absorption techniques for biogas upgrading requires further research.
文摘Objective:The activity of enzymes participating in the systems of antioxidant protection was assayed in the peel and pulp of sunflower.The essential roles of proteases in food stimulate research to find other sources of the enzyme especially from non-conventional sources.In the present work,we study several biochemical parameters in the pulp and peel of sunflower.Methods:Pulp and peel of sunflower was extracted,antioxidant enzymes and nonenzymatic antioxidant were measured.Alkaline protease was measured and purified from pulp in sunflower.Results:High carbohydrate concentration,beta-carotene,catalase and ascorbate peroxidase activities,free radical scavenging capacity and free flavonoid content were observed in the peel of sunflower.Whereas,MDA and ceruloplasmin activities were high in the pulp of sunflower.Conclusions:The present study concluded that peel in sunflower are strong radical scavengers and can be considered as good sources of natural antioxidants for medicinal and commercial uses.Further analysis showed that protease activity was a significantly high in the pulp compared to the peel.
文摘Solid oxide catalysts derived from various renewable sources have produced significant yield of methyl esters of enhanced purity. These materials are sourced for due to their advantages ranging from low cost, recoverability and reusability, environmental benign-ness, thermal stability and high quality product generation. For a possible greener production process, many researchers in literature reported the use of biomass-derived heterogeneous catalyst in biodiesel synthesis producing high quality pure product. The catalysts were majorly modified through simple physical cost effective and energy saving operations. This paper explores some of these bio-based heterogeneous catalyst used in biodiesel production via transesterification and esterification approach and their performance in FAME yield and conversion. The feedstock consideration which warrant the route selection, various approaches that are adopted in biodiesel production, performance of renewable heterogeneous catalyst and the measures that were adopted to enhance efficiency of the catalyst were considerably highlighted. It is observed that the prospects of organic-based solid catalyst in biodiesel development is a promising enterprise compared to the conventional methods utilizing homogeneous chemical catalyst, which generates wastewater requiring treatment before disposal and generates product that may cause engine malfunction. This review work aimed at providing detailed and up-to-date record of the trend in renewable catalyst development in biodiesel synthesis. This is expected to inform a suitable selection and reaction conditions in the development of biodiesel from the very many feed stocks.
基金supported by the National Key Research and Development Projects(2019YFE0103800)Sichuan Science and Technology Program(2021ZHFP0045,2021YFN0092)+2 种基金International Research and Development Program of Sichuan(2019YFH0113,2021YFH0060,2021YFH0072)Chinese Hungarian Bilateral Project(2018-2.1.14-TÉT-CN-2018-00011,Chinese No.8-4)Food Fermentation Technology Research Team of Luzhou Vocational and Technical College(2021YJTD02).
文摘The increased global incidence of chronic metabolic diseases,a vital threat to human health and a burden on our healthcare systems,includes a series of clinical metabolic syndromes such as obesity,diabetes,hypertension,and dyslipidemia.One of the well-known probiotic microorganisms,Lactiplantibacillus plantarum plays an important role in promoting human health,including inhibiting the occurrence and development of a variety of chronic metabolic diseases.The present study provides an overview of the preventive and therapeutic effects of L.plantarum on diabetes,obesity,non-alcoholic fatty liver disease,kidney stone disease,and cardiovascular diseases in animal models and human clinical trials.Ingesting L.plantarum demonstrated its ability to reduce inflammatory and oxidative stress levels by regulating the production of cytokines and short-chain fatty acids(SCFAs),the activity of antioxidant enzymes,and the balance of intestinal microbial communities to alleviate the symptoms of chronic metabolic diseases.Furthermore,updated applications and technologies of L.plantarum in food and biopharmaceutical industries are also discussed.Understanding the characteristics and functions of L.plantarum will guide the development of related probiotic products and explore the modulatory benefit of L.plantarum supplementations on the prevention and treatment of multiple chronic metabolic diseases.
基金supported by grants from the International Islamic University Malaysia,the research management centre(No.IIUM/504/5/29/1)
文摘Objective Nephrolithiasis is one of the most common disorders of the urinary tract. The aim of this study was to examine a possible relationship between DNase Ⅰ/Ⅱ activity and E3 SUMO-protein ligase NSE2 in the sera of nephrolithiasis patients to evaluate the possibility of a new biomarker for evaluating kidney damage. Methods Sixty nephrolithiasis patients and 50 control patients were enrolled in a case-control study. Their blood urea, creatinine, protein levels and DNase Ⅰ/Ⅱ activity levels were measured by spectrometry. Serum NSMCE2 levels were measured by ELISA. Blood was collected from patients of the government health clinics in Kuantan-Pahang and fulfilled the inclusion criteria. Results The result indicated that mean levels of sera NSMCE2 have a significantly increase(P〈0.01) in patients compared to control group. Compared with control subjects, activities and specific activities of serum DNase Ⅰ and Ⅱ were significantly elevated in nephrolithiasis patients(P〈0.01). Conclusion This study suggests that an increase in serum concentrations of DNase Ⅰ/Ⅱ and E3 SUMO-protein ligase NSE2 level can be used as indicators for the diagnosis of kidney injury in patients with nephrolithiasis.
文摘Sludge palm oil (SPO) is an attractive feedstock and a significant raw material for biodiesel production. The use of SPO can lower the cost ofbiodiesel production significantly. In this study biodiesel fuel was produced from SPO by esterification process using P-toluenesulfonic acid (PTSA) as acid catalyst in different dosages in presence of methanol to convert free fatty acid (FFA) to fatty acid methyl ester (FAME). Batch esterification process of SPO was carried out to study the influence of PTSA dosage (0.25-10% wt/wt), molar ratio of methanol to SPO (6:1-20:1), temperature (40-80 ℃), reaction time (30-120 min). The effects of those parameters on the yield of crude biodiesel and conversion of FFA to FAME were monitored. The optimum condition for batch esterification process was 0.75% wt/wt, 10:1 molar ratio, 60 ℃ temperature and 60 minutes reaction time.
基金Support from the International Islamic University Malaysia,the research management center Grant Scheme project no.IIUM/504/5/29/1
文摘Objective: To verify possible relations between 5'-nucleotidase, xanthine oxidase to E3 small ubiquitin-like modifier-protein ligase non structural maintenance of chromosomes elements 2 in sera patients with kidney stones and to evaluate the possibility of a new biomarker for the evaluation of kidney damage. Methods: A sixty patients with known kidney stones who appeared the government health clinics in Kuantan–Pahang and fifty apparently healthy were taken as control group. The 5'-nucleotidase,xanthine oxidase and other biochemical parameters were measured by colorimetric tests. The serum NSMCE2 were measured by enzyme linked immunosorbent assay.Results: The mean serum xanthine oxidase [(39.98±19.70) IU/L] and ecto-5'-nucleotidase activity(40.03±9.53 IU/L) were significantly higher than the controls' levels of(18.04 ±6.26) and(16.06 ±4.61) IU/L respectively. There were 85.00% and 83.33%, of patients with kidney stones who had abnormal ecto-5'-nucleotidase activity and uric acid respectively while xanthine oxidase activity was less sensitive 58.33%.Conclusions: The present study suggests that the increase in serum of xanthine oxidase,ecto-5'-nucleotidase activities E3 small ubiquitin-like modifier-protein ligase NSE2 concentration can be used as biomarkers for diagnosis of kidney damage in patients with kidney stone,also in developments of change DNA damage and inflammation disorders in these patients.
基金support provided by the Ministry of Education of Malaysia under grant FRGS 16-044-0543 and FRGS19-091-0700.
文摘Increasing usage of foams in various industry sectors had causing serious disposal problems once it reaches the end of its life-cycle.Herein,PVA-MFC foam was prepared by freeze-drying using polyvinyl alcohol(PVA)and microfibrillated cellulose(MFC)as a reinforced material from sugarcane bagasse(SCB).In this study,the PVA-MFC foam was chemically silylated with Y-methacryloxypropyltrimethoxysilane(MPS)and tetraethoxysilane(TEOS).The wetting ability and mechanical strength of the silylated_(2,20)PVA-MFC foam was greatly enhanced compared with unmodified_(2,20)PVA-MFC foam.The silane chemicals(MPS and TEOS)had been confirmed grafted on_(2,20)PVA-MFC foam due to the presence of Si-C and Si-O-C stretching vibration as showed in Fourier Transform Infrared(FTIR)spectra and cloud-like coating of porous pore was observed in scanning electron microscopy(SEM)images.The silylated_(2,20)PVA-MFC foam(MPS and TEOS)exhibited a series of desirable properties such as lower swelling ratio and high absorption capacity of solvents and oils but had low thermal stability in thermogravimetric(TGA)analysis.The characterization of_(2,20)PVA-MFC foam using TEOS was further investigated.A significant difference in morphology was clearly observed between the unmodified and silylated_(2,20)PVA-MFC-TEOS foam through field emission scanning electron microscopy(FESEM)images.The X-ray photoelectron(XPS)analysis of silylated_(2,20)PVA-MFC-TEOS foam confirmed the presence of C,O and trace amount of Si elements.These synthesized_(2,20)PVA-MFC foam could be a promising material for broad range of polymer foam applications.
文摘Phytase, also known as phytate-degrading enzyme, catalyzes the hydrolysis of phytate (inositol hexakisphosphate) with sequential release of phosphate and lower inositol phosphate. We report here a new plasmid construct designated as pMSuia from pBAD-TOPO that harbors a 1.1 kb phytase gene (phyMS) from Mycobacterium smegmatis, and expression as well as characterization of the purified recombinant M. smegmatis phytase. DNA sequencing analysis and multiple alignment exercise indicated that the M. smegmatis phytase is different from both known acid and alkaline phytases. The active ~45 kDa recombinant enzyme was expressed and confirmed by enzyme assay and Western blot analyses. Ni-NTA affinity purified recombinant M. smegmatis phytase exhibited specific activity of 233.51 U/mg, optimal pH of 3 and 7 and optimal temperature of 60°C. The purified enzyme retains almost 30% of the initial activity after incubation at 90°C for 60 min. The enzyme showed broad substrate specificity with Km and Vmax of the recombinant enzyme for sodium phytate substrate of 0.105 ± 0.016 mM and 26.93 ± 1.21 mM min-1, respectively.
文摘Methicillin-resistant </span><i><span style="font-family:Verdana;">Staphylococcus aureus </span></i><span style="font-family:Verdana;">(MRSA) infection is a global health concern that has caused severe health threats over the past decade. Leaves extract of </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> odontophyllum </span></i><span style="font-family:Verdana;">has been proven previously as an anti MRSA agent. Proteomics provide a technique that used to analyze the differential of protein expression profile between untreated and treated MRSA with subinhibitory concentrations of acetone extract from </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> odontophyllum </span></i><span><span style="font-family:Verdana;">leaves. This study aims to determine the optimum parameter for analysis of protein expression profile using two-dimension gels electrophoresis (2-DE) for MRSA protein after treatment with acetone extract from </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> odontophyllu</span></i></span><i><span style="font-family:Verdana;">m </span></i><span style="font-family:Verdana;">leaves. Comparison of the Protein Expression Profile (PEP) between the untreated and treated MRSA was analyzed using PDQuest software. The optimum condition for MRSA protein treated with acetone extract from </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> odontophyllum </span></i><span style="font-family:Verdana;">leaves to produce the best resolution with greater spot distribution was as follows: 100 μg volume of MRSA protein that loaded after passive rehydration then was run until reaching 25 kVrhs during IEF using 17 cm IPG strip within ranges of pH 4 - 7. Analysis of protein expression from the 2-DE gel map shows that 9 protein spots up-regulated and 41 protein spots were down-regulated with more than 2-fold differences (p < 0.05). This preliminary study on the PEP of MRSA treated with acetone extract of </span><i><span style="font-family:Verdana;">C</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;"> odontophyllum </span></i><span style="font-family:Verdana;">leave may provide an insight into the antimicrobial mechanism, which could lead to the identification of target protein for future novel therapeutic development against MRSA infections.
文摘Biofilms, the preferred bacterial mode of living and survival, are employed by most microorganisms—which tend to attach to surfaces—to gain physical support, increase nutrient utilization and availability, and augment their resistance against anti-bacterial agents. Rhodococcus ruber (C208) has been shown to form a dense biofilm on polyethylene surfaces while degrading them. Bacterial biofilms comprise bacterial cells embedded in self-secreted extracellular polymeric substances (EPS) whose main components are polysaccharides, proteins and nucleic acids. Revealing the roles of these components will enable further insight into biofilm development and, therefore, the EPS structure-function relationship. The current study focuses on contribution of extracellular DNA to biofilm formation and stability. This was approached by investigating the influence of nucleases on biofilm formation via degradation of their corresponding substrates within the biofilm of C208. RNase application to cultures of C208 decreased biofilm formation. Degradation of biofilm DNA by DNase reduced early-stage biofilm formation by 20% -25% but had no significant effect on established, mature biofilm. Likewise, the addition of DNA to cultures significantly enhanced early-stage biofilm formation by 50% -100%. RAPD-PCR analysis revealed different band patterns from intra-cellular DNA and extra-cellular DNA and also between the supernatant and biofilm fractions of extra-cellular DNA, indicating that perhaps only certain DNA molecules are utilized as part of the biofilm.
文摘Cell disruption focuses on obtaining a desired bioproduct within a cell, and it is the cell wall that must be disrupted to allow access to the contents of the cell. In animal cells, the plasma membrane is the only barrier separating cell contents from the environment. Sound waves from sonication, a mechanical technique for cell disintegration, have been used to disrupt as well as to aggregate cells as a step towards purification of a desired bioproduct. In the present study, an improved sonication process for the high yield of Newcastle disease virus (NDV) propagated in tissue culture was described. DF-I cell was cultured in 25cm^2 T flask. When cells were about 80% confluent, a lentogenic strain of NDV (F strain) was used to infect the cell monolayer. With evident cytopathic effect, cells were subjected to cycles of freeze-thaw before sonicating with varying combinations of amplitude, temperature and time. Cells were sonicated using a water bath Sonicator, Jac Ultrasonic 1505 JEIO TECH 4 KHz. From ANOVA analysis, a significant interaction between sonication time and amplitude was observed. This also corresponds to the highest F value observed.
基金supported by the National Key Research and Development Projects(2019YFE0103800)Sichuan Science and Technology Program(2019YFH0113,2021YFH0060,2021YFH0072,2021ZHFP0045,2021YFN0092)the Fundamental Research Funds for the Central Universities(2018CDLZ-07,2018CDPZH-9,2019CDPZH-23,2020CDLZ-17)。
文摘This study explored the antibiofilm efficacy of 3,3’-diindolylmethane(DIM)on Staphylococcus aureus and its disinfection on common food-contact surfaces.The minimum biofilm inhibitory concentration(MBIC)of DIM on S.aureus was 62.5μmol/L,while it did not impede the bacterial growth evaluated by growth curve and XTT reduction assay.DIM in the concentration range of 31.2-62.5μmol/L demonstrated a dose-dependent antibiofilm activity to S.aureus,as confirmed by light microscopic(LM),confocal laser scanning microscopic(CLSM),and scanning electron microscopic(SEM)analyses.At DIM of62.5μmol/L,the biomass of S.aureus biofilm was significantly reduced by 97%and its average thickness by 58%(P<0.05).DIM of 62.5μmol/L inhibited the bacterial initial adhesion and proliferation,as well as cell motility;the release of extracellular DNA(eDNA)and extracellular polysaccharide(EPS)were reduced by 75%and 69%,respectively.DIM exhibited a strong inhibition to S.aureus biofilm formation on common food-contact surfaces,including 304 stainless steel,glass,and polyvinyl chloride(PVC)but not disperse the mature biofilm.Overall,our investigation identified DIM as a promising antibiofilm agent and its suitability to prevent the biofilm formation of S.aureus on common food-contact surfaces utilized during food processing.
文摘Cost of biodiesel is primarily because of factors such as the feedstock, production process and materials. Apparently, the final biodiesel product is a bit expensive compared to fossil diesel fuel. While non-food feedstock of high oil content such as <i><span style="font-family:Verdana;">Jatropha</span></i> <i><span style="font-family:Verdana;">curcas</span></i><span style="font-family:Verdana;"> has been proposed to reduce the cost due to the feedstock, a promising two-step approach of hydro-esterification can possibly offset the production cost for oil resource with high free fatty acids. Most importantly, optimization of the materials and process is expected to reduce wastage, enhance product purity and generate less wastewater. However, optimizing product generation has been dauntingly elusive because several parameters are needed to be considered holistically. In this study, Response Surface Methodology (RSM) was employed to optimize the yield and conversion of </span><i><span style="font-family:Verdana;">Jatropha</span></i><span style="font-family:Verdana;"> biodiesel from </span><i><span style="font-family:Verdana;">J</span></i><span style="font-family:Verdana;">.</span> <i><span style="font-family:Verdana;">curcas </span></i><span style="font-family:Verdana;">hydrolysate. An optimum Yield and conversion of 96% was achieved for both responses with an optimum temperature value of 60</span><span><span>°</span><span><span>C, 4 wt% for catalyst loading for 6 hrs reaction time. Findings imply that optimization study of </span><i><span>Jatropha curcas</span></i><span> hydrolysate for yield and conversion of fatty acid methyl esters using face centered central composite design of Design Expert 6.0.8 can ensure purity of product, conserve energy and reduce waste generation providing a significant frontier in biodiesel pricing.</span></span></span>