The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,batter...The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization.展开更多
All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)in...All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)into backbones of polymer donor(P_(D))or polymer acceptor(P_(A))has been demonstrated as an efficient approach to enhance both the photovoltaic(PV)and mechanical properties of the all-PSCs.However,length dependency of FCBS on certain all-PSC related properties has not been systematically explored.In this regard,we report a series of new non-conjugated P_(A)s by incorporating FCBS with various lengths(2,4,and 8 carbon atoms in thioalkyl segments).Unlike com-mon studies on so-called side-chain engineering,where longer side chains would lead to better solubility of those resulting polymers,in this work,we observe that the solubilities and the resulting photovoltaic/mechanical properties are optimized by a proper FCBS length(i.e.,C2)in P_(A) named PYTS-C2.Its all-PSC achieves a high efficiency of 11.37%,and excellent mechanical robustness with a crack onset strain of 12.39%,significantly superior to those of the other P_(A)s.These results firstly demonstrate the effects of FCBS lengths on the PV performance and mechanical properties of the all-PSCs,providing an effective strategy to fine-tune the structures of P_(A)s for highly efficient and mechanically robust PSCs.展开更多
Rechargeable metal-ion batteries, such as lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs),have raised more attention because of the large demand for energy storage solutions. Undoubtedly, electrode material...Rechargeable metal-ion batteries, such as lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs),have raised more attention because of the large demand for energy storage solutions. Undoubtedly, electrode materials and electrolytes are key parts of batteries, exhibiting critical influence on the reversible capacity and span life of the metal-ion battery. Nonetheless, researchers commonly express concerns regarding the stability of both electrodes and electrolytes. Given its commendable stability attributes,high-entropy materials have garnered widespread acclaim and have been applied in many fields since their inception, notably in energy storage. However, while certain high-entropy designs have achieved substantial breakthroughs, some have failed to meet anticipated outcomes within the high energy density energy storage materials. Moreover, there is a lack of comprehensive summary research on the corresponding mechanisms and design principles of high-entropy designs. This review examines the current high-entropy designs for cathodes, anodes, and electrolytes, aiming to summarize the design principle,potential mechanisms, and electrochemical performance. We focus on their structural characteristics,interface characteristics, and prospective development trends. At last, we provide a fair evaluation along-side succinct development suggestions.展开更多
Prussian blue analogues(PBAs) with inherent ordered structures and abundant metal ion sites are widely explored as precursors for various electrochemical applications,including oxygen evolution reaction(OER).Using a r...Prussian blue analogues(PBAs) with inherent ordered structures and abundant metal ion sites are widely explored as precursors for various electrochemical applications,including oxygen evolution reaction(OER).Using a range of characterization techniques including Fourier-transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD) and energy dispersive spectroscopy(EDS),this work discloses the process of replacement of K^(+)by NH4^(+)in the interstitial spaces of the CoFe PBA by a hot aqueous urea solution,which influences the transformation of PBAs under further heat treatment and the OER performance of the deriva tives.After heat treatment at 400℃ under Ar flow,high-resolution transmission electron microscopy(HRTEM) images reveal that CoFe alloy nanoparticles grew on the crystalline cubes of CoFe PBA with K^(+),while CoFe PBA cubes with NH4^(+)become amorphous.Besides,the derivative of CoFe PBA with NH4^(+)(Ar-U-CoFe PBA) performs better than the derivative of CoFe PBA with K^(+)(Ar-CoFe PBA) in OER,registering a lower overpotential of 305 mV at 10 mA cm^(-2),a smaller Tafel slope of 36.1 mV dec^(-1),and better stability over a testing course of 20 h in 1.0 M KOH.A single-cell alkaline electrolyzer,using Ar-U-CoFe PBA and Pt/C for the anodic and cathodic catalyst,respectively,requires an initial cell voltage of 1.66 V to achieve 100 mA cm^(-2)at 80℃,with negligible degradation after100 h.展开更多
A novel synthetic N-(9-fluorenyl methoxy carbonyl)-L-Cysteine (Fmoc-Cys(SH)-OH) receptor was pre- pared by co-polymerizing (9-fluorenyl methoxy carbonyl)-S-(1-propene-2-thiol)-L-Cysteine (Fmoc-Cys(SCH2CHCH2)-OH) and a...A novel synthetic N-(9-fluorenyl methoxy carbonyl)-L-Cysteine (Fmoc-Cys(SH)-OH) receptor was pre- pared by co-polymerizing (9-fluorenyl methoxy carbonyl)-S-(1-propene-2-thiol)-L-Cysteine (Fmoc-Cys(SCH2CHCH2)-OH) and a non-imprinted polymer prepared from 1-propene-1-thiol photo-chemically 15 h at room temperature and additional 3 h thermally at 80℃. Subsequently, disulfides were reduced with lithium aluminum hydride (LiAlH4) from imprinted polymers. The imprinted polymers selectively recognized Fmoc-Cys(SH)-OH with high binding constants in aqueous and protic solvents by thiol-disulfide exchange reactions. In order to estimate the covalent rebinding, particles were further extracted and disulfides reduced were estimated with the non-covalent recognized and covalently bounded analytes. From rebinding studies that were conducted, we observed that proved polymer particles could be reproducible and contain constant binding strengths and recognition properties. Furthermore, we proved that short incubation periods resulted in fast and efficient thiol-disulfide interchange reactions.展开更多
While lunar bases have been a focus of development in recent years,the complex and extreme environment of the lunar surface remains a considerable challenge for lunar exploration.Unlike those on Earth,lunar day and ni...While lunar bases have been a focus of development in recent years,the complex and extreme environment of the lunar surface remains a considerable challenge for lunar exploration.Unlike those on Earth,lunar day and night temperature variations cause the properties of materials,especially metallic materials,to evolve in completely different manners.In this study,we investigated the property evolution of nine typical highperformance metallic materials using laboratory simulations of the extremely long-period lunar temperature environment.While lunation treatment improves the properties of all metallic materials,the microscopic mechanisms vary for amorphous and crystalline alloys with different structures.The treatment reduces both the loosely packed regions and heterogeneity in amorphous alloys while causing significant phase changes in crystalline alloys.Furthermore,a conservative prediction of the service life of metallic materials on lunar bases is provided based on analyzing microplastic events,followed by the practical material selection recommendations in various lunar application scenarios.展开更多
Drosophila melanogaster is often used as a model organism in evolution- ary biology and ecophysiology to study evolutionary processes and their physiological mechanisms. Diets used to feed Drosophila cultures differ b...Drosophila melanogaster is often used as a model organism in evolution- ary biology and ecophysiology to study evolutionary processes and their physiological mechanisms. Diets used to feed Drosophila cultures differ between laboratories and are often nutritious and distinct from food sources in the natural habitat, Here we rear D. melanogaster on a standard diet used in our laboratory and a field diet composed of decomposing apples collected in the field. Flies developed on these two diet compositions are tested for heat, cold, desiccation, and starvation resistance as well as developmental time, dry body mass and fat percentage. The nutritional compositions of the standard and field diets were analyzed, and discussed in relation to the phenotypic observations. Results showed marked differences in phenotype of flies from the two types of diets. Flies reared on the field diet are more starvation resistant and they are smaller, leaner, and have lower heat resistance compared to flies reared on the standard diet. Sex specific effects of diet type are observed for several of the investigated traits and the strong sexual dimorphism usually observed in desiccation resistance in D. melanogaster disappeared when rearing the flies on the field diet. Based on our results we conclude that care should be taken in extrapolating results from one type of diet to another and especially from laboratory to field diets.展开更多
The synthesis of hydroxy fatty acids(HFAs) from renewable oil feedstock by addition of water onto C_C bonds has attracted great attention in recent years. Given that selective asymmetric hydration of non-activated C_C...The synthesis of hydroxy fatty acids(HFAs) from renewable oil feedstock by addition of water onto C_C bonds has attracted great attention in recent years. Given that selective asymmetric hydration of non-activated C_C bonds has been proven difficult to achieve with chemical catalysts, enzymatic catalysis by fatty acid hydratases(FAHs) presents an attractive alternative approach to produce value-added HFAs with high regio-, enantioand stereospecificity, as well as excellent atom economy. Even though FAHs have just been investigated as a potential biocatalyst for a decade, remarkable information about FAHs in different aspects is available;however, a comprehensive review has not been archived. Herein, we summarize the research progresses on biochemical characterization, structural and mechanistic determination, enzyme engineering, as well as biotechnological application of FAHs. The current challenges and opportunities for an efficient utilization of FAHs in organic synthesis and industrial applications are critically discussed.展开更多
Decision trees and their ensembles became quite popular for data analysis during the past decade.One of the main reasons for that is current boom in big data,where traditional statistical methods(such as,e.g.,multiple...Decision trees and their ensembles became quite popular for data analysis during the past decade.One of the main reasons for that is current boom in big data,where traditional statistical methods(such as,e.g.,multiple linear regression)are not very efficient.However,in chemometrics these methods are still not very widespread,first of all because of several limitations related to the ratio between number of variables and observations.This paper presents several examples on how decision trees and their ensembles can be used in analysis of NIR spectroscopic data both for regression and classification.We will try to consider all important aspects including optimization and validation of models,evaluation of results,treating missing data and selection of most important variables.The performance and outcome of the decision tree-based methods are compared with more traditional approach based on partial least squares.展开更多
Despite its significance in both fundamental science and industrial applications,the glass-forming tran-sition in the Al_(2)O_(3)-Y_(2)O_(3)(AY)refractory system is not yet fully understood due to the elusive structur...Despite its significance in both fundamental science and industrial applications,the glass-forming tran-sition in the Al_(2)O_(3)-Y_(2)O_(3)(AY)refractory system is not yet fully understood due to the elusive structure evolution upon cooling.Here,atomic-scale structural changes in AY-bearing melts with different compo-sitions and temperatures are tracked by employing in situ high-energy synchrotron X-ray diffraction and empirical potential structure refinement simulation.We find that the glass-forming abilities(GFA)of AY-bearing melts are intriguingly correlated with the dependence of melt structure on temperature.In the case of the Al_(2)O_(3)and Y_(3)A_(l5)O_(12)(YAG),the observed large structural changes from superheating to under-cooling melt(i.e.,higher temperature susceptibility)correspond to a low GFA.Conversely,the 74Al_(2)O_(3)-26Y_(2)O_(3)(AY26)melt,with the smallest temperature susceptibility,exhibits the highest GFA.Simulation models illustrate that the temperature susceptibility of melt is associated with its atomic arrangement,especially the stability of cation-cation pairs.A balanced network(in AY26 melt),where the unsteady OAl3 tri-clusters are minimized and steady apex-to-apex connections between adjacent network units are abundant,contributes to stabilizing cationic interactions.This,in turn,fosters the formation of large-sized Al-O-Al rings,which topologically facilitates the subsequent glass-forming transition.Our findings provide new structural insight into the GFA of AY-bearing melts and may expand to other unconventional glass-forming systems to accelerate glassy materials design.展开更多
There is a lack of understanding of both the conversion of an unstable glass into a metastable supercooled liquid(MSL) upon heating and the metastability of MSLs. In this study, we investigated the time-and temperatur...There is a lack of understanding of both the conversion of an unstable glass into a metastable supercooled liquid(MSL) upon heating and the metastability of MSLs. In this study, we investigated the time-and temperature-dependent metastability of an MSL using an advanced nano-calorimetric technique. The chosen Au-based metallic glass(Au MG) allowed adequate probing of its MSL in a temperature range between 10 and 70 K above the standard glass transition temperature. We found that the survival time of the MSL state is a quadratic function of temperature. Beyond this duration threshold, the sample undergoes fast crystallization even if it is below the crystallization temperature that is measured using differential scanning calorimetry.Employing transmission electron microscopy, we observed the formation of clusters with a partially ordered lattice structure during relaxation in the Au MG sample fabricated using a nano-calorimeter. The atomic ordering within the clusters was enhanced by increasing time and temperature in the MSL region. Once the as-produced glass entered the MSL stage upon heating followed by a quenching stage at a given rate, the mechanical properties of the quenched glass remained the same regardless of its holding temperature and duration within the MSL region. This work provides insights into the glass-MSL-crystal transformation and offers guidance for designing standard metallic glasses for property characterizations.展开更多
The stability of glass against crystallization is of importance in practical applications and theoretical understanding of the nature of glass materials.Annealing has complicated influences on glass stability.It induc...The stability of glass against crystallization is of importance in practical applications and theoretical understanding of the nature of glass materials.Annealing has complicated influences on glass stability.It induces either delayed or early crystallization,depending on detailed protocols and specific materials.By interrogating the thermal behaviors of twelve metallic glasses(MGs),we find that enhanced stability is correlated to another process:the so-called shadow glass transition and its evolution.Delayed crystallization can be observed when the shadow glass transition is shifted to cross the temperature of crystallization.Concurrently,the shadow glass transition evolves to an enthalpy overshoot.Molecular dynamics simulations support these findings and suggest that the suppressed string-like motion,relating to the shadow glass transition and the enthalpy overshoot,is likely the origin of the postponed nucleation ordering and enhanced glass stability.展开更多
The non-fully conjugated polymer as a new class of acceptor materials has shown some advantages over its small molecular counterpart when used in photoactive layers for all-polymer solar cells(all-PSCs),despite a low ...The non-fully conjugated polymer as a new class of acceptor materials has shown some advantages over its small molecular counterpart when used in photoactive layers for all-polymer solar cells(all-PSCs),despite a low power conversion efficiency(PCE)caused by its narrow absorption spectra.Herein,a novel non-fully conjugated polymer acceptor PFY-2TS with a low bandgap of~1.40 eV was developed,via polymerizing a largeπ-fused small molecule acceptor(SMA)building block(namely YBO)with a non-conjugated thioalkyl linkage.Compared with its precursor YBO,PFY-2TS retains a similar low bandgap but a higher LUMO level.Moreover,compared with the structural analog of YBO-based fully conjugated polymer acceptor PFY-DTC,PFY-2TS shows a similar absorption spectrum and electron mobility,but significantly different molecular crystallinity and aggregation properties,which results in optimal blend morphology with a polymer donor PBDB-T and physical processes of the device in all-PSCs.As a result,PFY-2TS-based all-PSCs achieved a PCE of 12.31%with a small energy loss of 0.56 eV enabled by the reduced non-radiative energy loss(0.24 eV),which is better than that of 11.08%for the PFY-DTC-based ones.Our work clearly demonstrated that non-fully conjugated polymers as a new class of acceptor materials are very promising for the development of high-performance all-PSCs.展开更多
Main observation and conclusion An enzyme-free amperometric sensor based on a heptadecapeptide possessing an electroactive ferrocene(Fc)linker as ferrocene-Gly-Gly-Gly-Gly-Phe-Gly-His-Ile-His-Glu-Gly-Tyr-Gly-Gly-Gly-G...Main observation and conclusion An enzyme-free amperometric sensor based on a heptadecapeptide possessing an electroactive ferrocene(Fc)linker as ferrocene-Gly-Gly-Gly-Gly-Phe-Gly-His-Ile-His-Glu-Gly-Tyr-Gly-Gly-Gly-Gly-Lys-(CH_(2))_(4)-dithiocyclopentane self-assembled on gold substrate was designed and fabricated for specific determination of L-arginine(L-Arg).The detection mechanism is based on conformational change of surface-immobilized peptide induced by the target L-Arg,which was confirmed via SEM,TEM,AFM,XPS,and SPR studies.The binding affinity and the recognition feasibility of immobilized specific and non-specific peptides were also assessed using electrochemical impedance spectroscopy(EIS),cyclic voltammetry(CV),and differential pulse voltammetry(DPV).The proposed method can serve as“signal-on”sensor for detection of L-Arg down to 31 pmol/L with broad linear range(0.0001 to 10μmol/L).Furthermore,the Fc-conjugated specific peptide sensor was successfully applied to the determination of L-Arg in pig serums with a recovery rate of 97.5%—106.9%,and its test results are in good agreement with that of chromatographic instrument,evidencing that the oligopeptide-based sensor can be served as a simple and enzyme-free biosensing platform towards L-Arg for future application.展开更多
Drying of fish to improve storage capabilities, often under hyperosmotic conditions, is a widespread and longstanding practice in many cultures throughout the world. Several drying practices are applied, and they ofte...Drying of fish to improve storage capabilities, often under hyperosmotic conditions, is a widespread and longstanding practice in many cultures throughout the world. Several drying practices are applied, and they often reflect a cultural influence. The purpose of drying is to preserve fish by lowering the availability of water to microorganisms. However, because drying of fish is globally widespread and drying procedures are very diverse, microbial communities occurring in the dried fish products might differ. In this study, 63 dried fish products, prepared from 8 different fish species, were collected from several parts of the world (Greenland, Iceland, Denmark, Norway, the Faroe Islands, Japan, and Bangladesh) and the microbiotas from these products were analysed and compared following amplification and sequencing of the V4-region of the 16S rRNA. Overall, the dominant bacterial taxa associated with the fish were the genera Photobacterium , Psychrobacteria , Vibrio , and Pseudomonas , but large differences occurred across samples with a strong influence of the country of origin (in particular samples from Bangladesh) and salinity of the fish products. Moreover, industrially processed filets were readily distinguishable from traditionally processed ones. In contrast, the fish species from which the filets were prepared appeared to have less effect. These results suggest that drying practices can have a strong effect on the microbiota of the resulting products. For several of the fish species tested, this constitutes the first report regarding the composition of the microbiota associated with the resulting fish products.展开更多
The knowledge on the ionic structure of YCl_(3)-KCl molten system is of guiding significance for the practical production of yttrium metals and yttrium alloys via molten salt electrolysis using this system as electrol...The knowledge on the ionic structure of YCl_(3)-KCl molten system is of guiding significance for the practical production of yttrium metals and yttrium alloys via molten salt electrolysis using this system as electrolyte.In this paper,the theoretical Raman spectra of the ionic groups which may exist in YCl_(3)-KCl molten system are simulated by quantum chemical calculation using Gaussian09 and Gauss View 5.0 programs based on density functional theory(DFT).Then the ionic structures of 20 mol%-60 mol%YCl_(3)-KCl molten salt systems are studied by comparing the Raman shift values of the bands in the theoretical Raman spectra of different ionic groups with the experimental spectra of this system.YCl_(6)^(3-),Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-)and Y_(2)Cl_(9)^(3-)are thought to exist in the molten system.With the increase of temperature,the relative content of YCl_(6)^(3-)ionic groups increases while those of Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-)and Y_(2)Cl_(9)^(3-)ionic groups decrease.Moreover,the"lifetime"of all ionic groups decreases within the temperature range of 692-730℃.Meanwhile,the relative contents of Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-)and Y_(2)Cl_(9)^(3-)increase with the increase of YCl_(3)content,while that of YCl_(6)^(3-)decreases.The wave function analysis of the four ionic groups(YCl_(6)^(3-),Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-),and Y_(2)Cl_(9)^(3-))is carried out by Multiwfn program.The net charge in each group,the direction of electron migration during the formation of each group,the sites where electrophilic and nucleophilic reactions are most likely to occur in each ionic group,and the order of bond breaking during chemical reactions for the four groups are obtained.展开更多
As a common but critical dynamic crossover in glass-forming liquids(GFLs),the discovery of fragile-to-strong(F-S)transition promises a novel route for understanding supercooled liquid and glass transition.The present ...As a common but critical dynamic crossover in glass-forming liquids(GFLs),the discovery of fragile-to-strong(F-S)transition promises a novel route for understanding supercooled liquid and glass transition.The present work,for the first time,successfully realizes the quantitative prediction of the F-S transition in nine metallic glass-forming liquids,by a counter-intuitive approach that focuses on local atomic activation events,rather than relaxation,upon cooling.The dynamic crossover originates from a disorder-to-order transition by self-regulating behavior of atomic position within a cage controlled by finite atomic activation events,due to the appearance of local cooperative motion of nearest neighborhood atoms.Moreover,the dominant role of entropy in this anomaly has been discovered,and the correspondence between the crossover of configuration entropy involved in activation events and the occurrence of F-S transition has been found.Our work implies that the feature of atomic energy fluctuations reflected by atomic activation events has a close linkage to complex dynamic behaviors of disordered systems.展开更多
ZnO-based photocatalytic materials have received widespread attention due to their usefulness than other photocatalytic materials in organic dye wastewater treatment.However,its photocatalytic efficiency and surface s...ZnO-based photocatalytic materials have received widespread attention due to their usefulness than other photocatalytic materials in organic dye wastewater treatment.However,its photocatalytic efficiency and surface stability limit further applicability.This paper uses a one-step carbonization method to prepare multifunctional ZnO/carbon hybrid nanofiber mats.The carbonization creates aπ-conjugated carbonaceous structure of the mats,which prolongs the electron recovery time of ZnO nanoparticles to yield improved photocatalytic efficiency.Further,the carbonization reduces the fiber diameter of the carbon hybrid nanofiber mats,which quadruples the specific surface area to yield enhanced adsorption and photocatalytic performance.At the same time,the prepared nanofiber mats can increase the evaporation rate of water under solar irradiation to a level of 1.46 kg·m^(-2)·h^(-1)with an efficiency of 91.9%.Thus,the nanofiber mats allow the facile incorporation of photocatalysts to clean contaminated water through adsorption,photodegradation,and interfacial heat-assisted distillation mechanisms.展开更多
Sulfur-containing organic compounds such as sulfides,sulfoxides and sulfones,have played significant roles in the fields of organic synthesis,pharmaceuticals,and agrochemicals.The selective oxidation of the parent sul...Sulfur-containing organic compounds such as sulfides,sulfoxides and sulfones,have played significant roles in the fields of organic synthesis,pharmaceuticals,and agrochemicals.The selective oxidation of the parent sulfides has been considered as one of the most straightforward methods for the construction of sulfoxides and sulfones.Therefore.展开更多
基金financially supported by the National Natural Science Foundation of China(NSFC)(52274295)the Natural Science Foundation of Hebei Province(E2020501001,E2021501029,A2021501007,E2022501028,E2022501029)+5 种基金the Natural Science Foundation-Steel,the Iron Foundation of Hebei Province(No.E2022501030)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(22567627H)the Science and Technology Project of Hebei Education Department(ZD2022158)the Central Guided Local Science and Technology Development Fund Project of Hebei province(226Z4401G)the China Scholarship Council(No.202206080061,202206050119)the 2023 Hebei Provincial Postgraduate Student Innovation Ability training funding project(CXZZSS2023195)。
文摘The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization.
基金the Swedish Research Council (2016-06146,2019-02345)Swedish Research Council (grant no.2020-05223)+7 种基金the Swedish Research Council Formas,the Swedish Energy Agency (52473-1)the Wallenberg Foundation (2017.0186 and 2016.0059) for financial supportsupported by the National Research Foundation of Korea (NRF-2017M3A7B8065584 and 2020R1A4A1018516)Support from the National Natural Science Foundation of China (61774077)the Key Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province (2019B1515120073)the Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology (No.2020B1212030010)Support from Sino-Danish Center for Education and ResearchSwedish Energy Agency (grant no.45420-1)
文摘All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)into backbones of polymer donor(P_(D))or polymer acceptor(P_(A))has been demonstrated as an efficient approach to enhance both the photovoltaic(PV)and mechanical properties of the all-PSCs.However,length dependency of FCBS on certain all-PSC related properties has not been systematically explored.In this regard,we report a series of new non-conjugated P_(A)s by incorporating FCBS with various lengths(2,4,and 8 carbon atoms in thioalkyl segments).Unlike com-mon studies on so-called side-chain engineering,where longer side chains would lead to better solubility of those resulting polymers,in this work,we observe that the solubilities and the resulting photovoltaic/mechanical properties are optimized by a proper FCBS length(i.e.,C2)in P_(A) named PYTS-C2.Its all-PSC achieves a high efficiency of 11.37%,and excellent mechanical robustness with a crack onset strain of 12.39%,significantly superior to those of the other P_(A)s.These results firstly demonstrate the effects of FCBS lengths on the PV performance and mechanical properties of the all-PSCs,providing an effective strategy to fine-tune the structures of P_(A)s for highly efficient and mechanically robust PSCs.
基金financially National Natural Science Foundation of China (NSFC) (52274295)Natural Science Foundation of Hebei Province (E2021501029, E2020501001, A2021501007, E2022501028, E2022501029)+11 种基金Natural Science Foundation - Steel and Iron Foundation of Hebei Province (No. E2022501030)Fundamental Research Funds for the Central Universities (No. N2323025, N2323013, N2302016, N2223009, N2223010, N2123035, N2023040)Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province (22567627H)Science and Technology Project of Hebei Education Department (ZD2022158)2023 Hebei Provincial doctoral candidate Innovation Ability training funding project (CXZZBS2023163)2023 Hebei Provincial Postgraduate Student Innovation Ability training funding project (CXZZSS2023195)Central Guided Local Science and Technology Development Fund Project of Hebei province (226Z4401G)The Fundamental Research Funds for the Central Universities (N2423052)Hebei Provincial Doctoral Candidate Innovation Ability Training Funding Project(CXZZBS2024176)The Science and Technology Project of Qinhuangdao City (202302B006)Science and Technology Project of Hebei Education Department (ZD2022158 and QN2024238)The Basic Research Project of Shijiazhuang City。
文摘Rechargeable metal-ion batteries, such as lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs),have raised more attention because of the large demand for energy storage solutions. Undoubtedly, electrode materials and electrolytes are key parts of batteries, exhibiting critical influence on the reversible capacity and span life of the metal-ion battery. Nonetheless, researchers commonly express concerns regarding the stability of both electrodes and electrolytes. Given its commendable stability attributes,high-entropy materials have garnered widespread acclaim and have been applied in many fields since their inception, notably in energy storage. However, while certain high-entropy designs have achieved substantial breakthroughs, some have failed to meet anticipated outcomes within the high energy density energy storage materials. Moreover, there is a lack of comprehensive summary research on the corresponding mechanisms and design principles of high-entropy designs. This review examines the current high-entropy designs for cathodes, anodes, and electrolytes, aiming to summarize the design principle,potential mechanisms, and electrochemical performance. We focus on their structural characteristics,interface characteristics, and prospective development trends. At last, we provide a fair evaluation along-side succinct development suggestions.
基金Financial support from the China Scholarship Council(201806220068,201806650009) to F.Dthe Villum Experiment(grant No.35844) to X.X.
文摘Prussian blue analogues(PBAs) with inherent ordered structures and abundant metal ion sites are widely explored as precursors for various electrochemical applications,including oxygen evolution reaction(OER).Using a range of characterization techniques including Fourier-transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD) and energy dispersive spectroscopy(EDS),this work discloses the process of replacement of K^(+)by NH4^(+)in the interstitial spaces of the CoFe PBA by a hot aqueous urea solution,which influences the transformation of PBAs under further heat treatment and the OER performance of the deriva tives.After heat treatment at 400℃ under Ar flow,high-resolution transmission electron microscopy(HRTEM) images reveal that CoFe alloy nanoparticles grew on the crystalline cubes of CoFe PBA with K^(+),while CoFe PBA cubes with NH4^(+)become amorphous.Besides,the derivative of CoFe PBA with NH4^(+)(Ar-U-CoFe PBA) performs better than the derivative of CoFe PBA with K^(+)(Ar-CoFe PBA) in OER,registering a lower overpotential of 305 mV at 10 mA cm^(-2),a smaller Tafel slope of 36.1 mV dec^(-1),and better stability over a testing course of 20 h in 1.0 M KOH.A single-cell alkaline electrolyzer,using Ar-U-CoFe PBA and Pt/C for the anodic and cathodic catalyst,respectively,requires an initial cell voltage of 1.66 V to achieve 100 mA cm^(-2)at 80℃,with negligible degradation after100 h.
文摘A novel synthetic N-(9-fluorenyl methoxy carbonyl)-L-Cysteine (Fmoc-Cys(SH)-OH) receptor was pre- pared by co-polymerizing (9-fluorenyl methoxy carbonyl)-S-(1-propene-2-thiol)-L-Cysteine (Fmoc-Cys(SCH2CHCH2)-OH) and a non-imprinted polymer prepared from 1-propene-1-thiol photo-chemically 15 h at room temperature and additional 3 h thermally at 80℃. Subsequently, disulfides were reduced with lithium aluminum hydride (LiAlH4) from imprinted polymers. The imprinted polymers selectively recognized Fmoc-Cys(SH)-OH with high binding constants in aqueous and protic solvents by thiol-disulfide exchange reactions. In order to estimate the covalent rebinding, particles were further extracted and disulfides reduced were estimated with the non-covalent recognized and covalently bounded analytes. From rebinding studies that were conducted, we observed that proved polymer particles could be reproducible and contain constant binding strengths and recognition properties. Furthermore, we proved that short incubation periods resulted in fast and efficient thiol-disulfide interchange reactions.
基金financially supported by Taishan Scholars Program of Shandong Province(No.tsqn201909010)the Key Basic and Applied Research Program of Guangdong Province(No.2019B030302010)+1 种基金the National Natural Science Foundation of China(Nos.51901139,51971120 and U1902221)the Key R&D Program of Shandong Province(No.2022CXGC020308)。
文摘While lunar bases have been a focus of development in recent years,the complex and extreme environment of the lunar surface remains a considerable challenge for lunar exploration.Unlike those on Earth,lunar day and night temperature variations cause the properties of materials,especially metallic materials,to evolve in completely different manners.In this study,we investigated the property evolution of nine typical highperformance metallic materials using laboratory simulations of the extremely long-period lunar temperature environment.While lunation treatment improves the properties of all metallic materials,the microscopic mechanisms vary for amorphous and crystalline alloys with different structures.The treatment reduces both the loosely packed regions and heterogeneity in amorphous alloys while causing significant phase changes in crystalline alloys.Furthermore,a conservative prediction of the service life of metallic materials on lunar bases is provided based on analyzing microplastic events,followed by the practical material selection recommendations in various lunar application scenarios.
基金the Cultivation Project for Original Scientific Research Instruments and Equipments of Southwest Jiaotong University,China(No.XJ2021KJZK041)the Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences(No.IIMDKFJJ-19-08)the China Postdoctoral Science Foundation(No.2018T110993)。
文摘Drosophila melanogaster is often used as a model organism in evolution- ary biology and ecophysiology to study evolutionary processes and their physiological mechanisms. Diets used to feed Drosophila cultures differ between laboratories and are often nutritious and distinct from food sources in the natural habitat, Here we rear D. melanogaster on a standard diet used in our laboratory and a field diet composed of decomposing apples collected in the field. Flies developed on these two diet compositions are tested for heat, cold, desiccation, and starvation resistance as well as developmental time, dry body mass and fat percentage. The nutritional compositions of the standard and field diets were analyzed, and discussed in relation to the phenotypic observations. Results showed marked differences in phenotype of flies from the two types of diets. Flies reared on the field diet are more starvation resistant and they are smaller, leaner, and have lower heat resistance compared to flies reared on the standard diet. Sex specific effects of diet type are observed for several of the investigated traits and the strong sexual dimorphism usually observed in desiccation resistance in D. melanogaster disappeared when rearing the flies on the field diet. Based on our results we conclude that care should be taken in extrapolating results from one type of diet to another and especially from laboratory to field diets.
基金Financial Supports from Novo Nordisk Foundation(NNF16OC0021740)Aarhus Universitets Forskningsfond,AUFFNOVA(AUFF-E-2015-FLS-9-12)。
文摘The synthesis of hydroxy fatty acids(HFAs) from renewable oil feedstock by addition of water onto C_C bonds has attracted great attention in recent years. Given that selective asymmetric hydration of non-activated C_C bonds has been proven difficult to achieve with chemical catalysts, enzymatic catalysis by fatty acid hydratases(FAHs) presents an attractive alternative approach to produce value-added HFAs with high regio-, enantioand stereospecificity, as well as excellent atom economy. Even though FAHs have just been investigated as a potential biocatalyst for a decade, remarkable information about FAHs in different aspects is available;however, a comprehensive review has not been archived. Herein, we summarize the research progresses on biochemical characterization, structural and mechanistic determination, enzyme engineering, as well as biotechnological application of FAHs. The current challenges and opportunities for an efficient utilization of FAHs in organic synthesis and industrial applications are critically discussed.
文摘Decision trees and their ensembles became quite popular for data analysis during the past decade.One of the main reasons for that is current boom in big data,where traditional statistical methods(such as,e.g.,multiple linear regression)are not very efficient.However,in chemometrics these methods are still not very widespread,first of all because of several limitations related to the ratio between number of variables and observations.This paper presents several examples on how decision trees and their ensembles can be used in analysis of NIR spectroscopic data both for regression and classification.We will try to consider all important aspects including optimization and validation of models,evaluation of results,treating missing data and selection of most important variables.The performance and outcome of the decision tree-based methods are compared with more traditional approach based on partial least squares.
基金supported by the National Natural Science Foundation of China-Key Program(No.52234010)National Natural Science Foundation of China(No.51971138)+2 种基金National Natural Science Foundation of China-Distinguished Young Scholars(No.52325407)National Key Basic Research Program of China(No.2020YFA0406101)the fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP202102).
文摘Despite its significance in both fundamental science and industrial applications,the glass-forming tran-sition in the Al_(2)O_(3)-Y_(2)O_(3)(AY)refractory system is not yet fully understood due to the elusive structure evolution upon cooling.Here,atomic-scale structural changes in AY-bearing melts with different compo-sitions and temperatures are tracked by employing in situ high-energy synchrotron X-ray diffraction and empirical potential structure refinement simulation.We find that the glass-forming abilities(GFA)of AY-bearing melts are intriguingly correlated with the dependence of melt structure on temperature.In the case of the Al_(2)O_(3)and Y_(3)A_(l5)O_(12)(YAG),the observed large structural changes from superheating to under-cooling melt(i.e.,higher temperature susceptibility)correspond to a low GFA.Conversely,the 74Al_(2)O_(3)-26Y_(2)O_(3)(AY26)melt,with the smallest temperature susceptibility,exhibits the highest GFA.Simulation models illustrate that the temperature susceptibility of melt is associated with its atomic arrangement,especially the stability of cation-cation pairs.A balanced network(in AY26 melt),where the unsteady OAl3 tri-clusters are minimized and steady apex-to-apex connections between adjacent network units are abundant,contributes to stabilizing cationic interactions.This,in turn,fosters the formation of large-sized Al-O-Al rings,which topologically facilitates the subsequent glass-forming transition.Our findings provide new structural insight into the GFA of AY-bearing melts and may expand to other unconventional glass-forming systems to accelerate glassy materials design.
基金supported by the Songshan Lake Materials Laboratory (Grant No. 2021SLABFN05)the National Natural Science Foundation of China (Grant Nos. 51971120, 51901139)+2 种基金the Taishan Scholars Program of Shandong Province (Grant No. tsqn201909010)the Key Basic and Applied Research Program of Guangdong Province(Grant No. 2019B030302010)the Sao Paulo Research Foundation–FAPESP (Grant No.#2013/07793-6)。
文摘There is a lack of understanding of both the conversion of an unstable glass into a metastable supercooled liquid(MSL) upon heating and the metastability of MSLs. In this study, we investigated the time-and temperature-dependent metastability of an MSL using an advanced nano-calorimetric technique. The chosen Au-based metallic glass(Au MG) allowed adequate probing of its MSL in a temperature range between 10 and 70 K above the standard glass transition temperature. We found that the survival time of the MSL state is a quadratic function of temperature. Beyond this duration threshold, the sample undergoes fast crystallization even if it is below the crystallization temperature that is measured using differential scanning calorimetry.Employing transmission electron microscopy, we observed the formation of clusters with a partially ordered lattice structure during relaxation in the Au MG sample fabricated using a nano-calorimeter. The atomic ordering within the clusters was enhanced by increasing time and temperature in the MSL region. Once the as-produced glass entered the MSL stage upon heating followed by a quenching stage at a given rate, the mechanical properties of the quenched glass remained the same regardless of its holding temperature and duration within the MSL region. This work provides insights into the glass-MSL-crystal transformation and offers guidance for designing standard metallic glasses for property characterizations.
基金supported by the National Thousand Young Talents Program of China,the National Natural Science Foundation of China(52071147 and 52201180)the China Postdoctoral Science Foundation(2023T160241 and2023M731176)S.W.thanks the support of Novo Nordisk Foundation(NNF21OC0071257)
文摘The stability of glass against crystallization is of importance in practical applications and theoretical understanding of the nature of glass materials.Annealing has complicated influences on glass stability.It induces either delayed or early crystallization,depending on detailed protocols and specific materials.By interrogating the thermal behaviors of twelve metallic glasses(MGs),we find that enhanced stability is correlated to another process:the so-called shadow glass transition and its evolution.Delayed crystallization can be observed when the shadow glass transition is shifted to cross the temperature of crystallization.Concurrently,the shadow glass transition evolves to an enthalpy overshoot.Molecular dynamics simulations support these findings and suggest that the suppressed string-like motion,relating to the shadow glass transition and the enthalpy overshoot,is likely the origin of the postponed nucleation ordering and enhanced glass stability.
基金This work was supported by the Swedish Research Council(2015-04853,2016-06146,2019-04683)the Swedish Research Council Formas,the Knut and Alice Wallenberg Foundation(2017.0186,2016.0059)+5 种基金the Open Fund of the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology,2020-skllmd-07)E.Moons thanks the Swedish Energy Council for financial support(project 48598-1)W.Su thanks the project funded by China Postdoctoral Science Foundation(2020M673054)Postdoctoral Fund of Jinan University,and the National Natural Science Foundation of China(22005121)L.Hou thanks the National Natural Science Foundation of China(61774077)Support from Sino-Danish Centre for Education and Research is fully acknowledged by D.Yu.Y.Li thanks the financial support from the Science and Technology Program of Shanxi Province(2019JQ-244).
文摘The non-fully conjugated polymer as a new class of acceptor materials has shown some advantages over its small molecular counterpart when used in photoactive layers for all-polymer solar cells(all-PSCs),despite a low power conversion efficiency(PCE)caused by its narrow absorption spectra.Herein,a novel non-fully conjugated polymer acceptor PFY-2TS with a low bandgap of~1.40 eV was developed,via polymerizing a largeπ-fused small molecule acceptor(SMA)building block(namely YBO)with a non-conjugated thioalkyl linkage.Compared with its precursor YBO,PFY-2TS retains a similar low bandgap but a higher LUMO level.Moreover,compared with the structural analog of YBO-based fully conjugated polymer acceptor PFY-DTC,PFY-2TS shows a similar absorption spectrum and electron mobility,but significantly different molecular crystallinity and aggregation properties,which results in optimal blend morphology with a polymer donor PBDB-T and physical processes of the device in all-PSCs.As a result,PFY-2TS-based all-PSCs achieved a PCE of 12.31%with a small energy loss of 0.56 eV enabled by the reduced non-radiative energy loss(0.24 eV),which is better than that of 11.08%for the PFY-DTC-based ones.Our work clearly demonstrated that non-fully conjugated polymers as a new class of acceptor materials are very promising for the development of high-performance all-PSCs.
基金supported by the projects of the National Natural Science Foundation of China(Nos.31527803,21545010,21275022 and 21645009)the Natural Science Foundation of Hunan Province,China(Nos.2020JJ4599,2019JJ50651).
文摘Main observation and conclusion An enzyme-free amperometric sensor based on a heptadecapeptide possessing an electroactive ferrocene(Fc)linker as ferrocene-Gly-Gly-Gly-Gly-Phe-Gly-His-Ile-His-Glu-Gly-Tyr-Gly-Gly-Gly-Gly-Lys-(CH_(2))_(4)-dithiocyclopentane self-assembled on gold substrate was designed and fabricated for specific determination of L-arginine(L-Arg).The detection mechanism is based on conformational change of surface-immobilized peptide induced by the target L-Arg,which was confirmed via SEM,TEM,AFM,XPS,and SPR studies.The binding affinity and the recognition feasibility of immobilized specific and non-specific peptides were also assessed using electrochemical impedance spectroscopy(EIS),cyclic voltammetry(CV),and differential pulse voltammetry(DPV).The proposed method can serve as“signal-on”sensor for detection of L-Arg down to 31 pmol/L with broad linear range(0.0001 to 10μmol/L).Furthermore,the Fc-conjugated specific peptide sensor was successfully applied to the determination of L-Arg in pig serums with a recovery rate of 97.5%—106.9%,and its test results are in good agreement with that of chromatographic instrument,evidencing that the oligopeptide-based sensor can be served as a simple and enzyme-free biosensing platform towards L-Arg for future application.
基金We thank the Aalborg Zoo Conservation Foundation(AZCF)of Denmark for supporting this workthe Bangladesh Academy of Sciences-United States Department of Agriculture Endowment Program(4th phase BAS-USDA PSTU FI-17)for support for sample collection and other research process in Bangladesh.
文摘Drying of fish to improve storage capabilities, often under hyperosmotic conditions, is a widespread and longstanding practice in many cultures throughout the world. Several drying practices are applied, and they often reflect a cultural influence. The purpose of drying is to preserve fish by lowering the availability of water to microorganisms. However, because drying of fish is globally widespread and drying procedures are very diverse, microbial communities occurring in the dried fish products might differ. In this study, 63 dried fish products, prepared from 8 different fish species, were collected from several parts of the world (Greenland, Iceland, Denmark, Norway, the Faroe Islands, Japan, and Bangladesh) and the microbiotas from these products were analysed and compared following amplification and sequencing of the V4-region of the 16S rRNA. Overall, the dominant bacterial taxa associated with the fish were the genera Photobacterium , Psychrobacteria , Vibrio , and Pseudomonas , but large differences occurred across samples with a strong influence of the country of origin (in particular samples from Bangladesh) and salinity of the fish products. Moreover, industrially processed filets were readily distinguishable from traditionally processed ones. In contrast, the fish species from which the filets were prepared appeared to have less effect. These results suggest that drying practices can have a strong effect on the microbiota of the resulting products. For several of the fish species tested, this constitutes the first report regarding the composition of the microbiota associated with the resulting fish products.
基金financially supported by the National Natural Science Foundation of China (No.51974081)the Fundamental Research Funds for the Central Universities (No.N2225045)MOE of China and WEIQIAO Industry-Education Cooperation Project (No.2021021800102)。
文摘The knowledge on the ionic structure of YCl_(3)-KCl molten system is of guiding significance for the practical production of yttrium metals and yttrium alloys via molten salt electrolysis using this system as electrolyte.In this paper,the theoretical Raman spectra of the ionic groups which may exist in YCl_(3)-KCl molten system are simulated by quantum chemical calculation using Gaussian09 and Gauss View 5.0 programs based on density functional theory(DFT).Then the ionic structures of 20 mol%-60 mol%YCl_(3)-KCl molten salt systems are studied by comparing the Raman shift values of the bands in the theoretical Raman spectra of different ionic groups with the experimental spectra of this system.YCl_(6)^(3-),Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-)and Y_(2)Cl_(9)^(3-)are thought to exist in the molten system.With the increase of temperature,the relative content of YCl_(6)^(3-)ionic groups increases while those of Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-)and Y_(2)Cl_(9)^(3-)ionic groups decrease.Moreover,the"lifetime"of all ionic groups decreases within the temperature range of 692-730℃.Meanwhile,the relative contents of Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-)and Y_(2)Cl_(9)^(3-)increase with the increase of YCl_(3)content,while that of YCl_(6)^(3-)decreases.The wave function analysis of the four ionic groups(YCl_(6)^(3-),Y_(2)Cl_(7)^(-),Y_(2)Cl_(8)^(2-),and Y_(2)Cl_(9)^(3-))is carried out by Multiwfn program.The net charge in each group,the direction of electron migration during the formation of each group,the sites where electrophilic and nucleophilic reactions are most likely to occur in each ionic group,and the order of bond breaking during chemical reactions for the four groups are obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.51901139,U1902221,51971120,and 51971093)the Taishan Scholars Program of Shandong Province(Grant No.tsqn201909010)the Key Basic and Applied Research Program of Guangdong Province(Grant No.2019B030302010)。
文摘As a common but critical dynamic crossover in glass-forming liquids(GFLs),the discovery of fragile-to-strong(F-S)transition promises a novel route for understanding supercooled liquid and glass transition.The present work,for the first time,successfully realizes the quantitative prediction of the F-S transition in nine metallic glass-forming liquids,by a counter-intuitive approach that focuses on local atomic activation events,rather than relaxation,upon cooling.The dynamic crossover originates from a disorder-to-order transition by self-regulating behavior of atomic position within a cage controlled by finite atomic activation events,due to the appearance of local cooperative motion of nearest neighborhood atoms.Moreover,the dominant role of entropy in this anomaly has been discovered,and the correspondence between the crossover of configuration entropy involved in activation events and the occurrence of F-S transition has been found.Our work implies that the feature of atomic energy fluctuations reflected by atomic activation events has a close linkage to complex dynamic behaviors of disordered systems.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB 0303000)the New Materials Research Key Program of Tianjin(Grant No.16ZXCLGX00090).
文摘ZnO-based photocatalytic materials have received widespread attention due to their usefulness than other photocatalytic materials in organic dye wastewater treatment.However,its photocatalytic efficiency and surface stability limit further applicability.This paper uses a one-step carbonization method to prepare multifunctional ZnO/carbon hybrid nanofiber mats.The carbonization creates aπ-conjugated carbonaceous structure of the mats,which prolongs the electron recovery time of ZnO nanoparticles to yield improved photocatalytic efficiency.Further,the carbonization reduces the fiber diameter of the carbon hybrid nanofiber mats,which quadruples the specific surface area to yield enhanced adsorption and photocatalytic performance.At the same time,the prepared nanofiber mats can increase the evaporation rate of water under solar irradiation to a level of 1.46 kg·m^(-2)·h^(-1)with an efficiency of 91.9%.Thus,the nanofiber mats allow the facile incorporation of photocatalysts to clean contaminated water through adsorption,photodegradation,and interfacial heat-assisted distillation mechanisms.
文摘Sulfur-containing organic compounds such as sulfides,sulfoxides and sulfones,have played significant roles in the fields of organic synthesis,pharmaceuticals,and agrochemicals.The selective oxidation of the parent sulfides has been considered as one of the most straightforward methods for the construction of sulfoxides and sulfones.Therefore.