期刊文献+
共找到8,908篇文章
< 1 2 250 >
每页显示 20 50 100
Fabrication of Graphene/Cu Composite by Chemical Vapor Deposition and Effects of Graphene Layers on Resultant Electrical Conductivity
1
作者 Xinyue Liu Yaling Huang +2 位作者 Yuyao Li Jie Liu Quanfang Chen 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期16-25,共10页
Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the pro... Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil. 展开更多
关键词 chemical vapor deposition(CVD) Gr/Cu Gr/Cu/Gr graphene layers graphene volume fraction electrical conductivity
下载PDF
Exploring the synergy of the eyebrain connection:neuromodulation approaches for neurodegenerative disorders through transcorneal electrical stimulation
2
作者 Antara Verma Stephen K.Agadagba Leanne Lai-Hang Chan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2097-2098,共2页
The connection and interaction between the eye and the brain are crucial to understanding brain disorders(Marchesi et al.,2021).Both the eye and the brain have a limited regenerative capacity as there are few progenit... The connection and interaction between the eye and the brain are crucial to understanding brain disorders(Marchesi et al.,2021).Both the eye and the brain have a limited regenerative capacity as there are few progenitor cells,and nerve cells do not replicate.Hence,neurodegeneration implicates irreversible damage to the central nervous system,as observed in several neurodegenerative diseases(Marchesi et al.,2021). 展开更多
关键词 STIMULATION DEGENERATIVE
下载PDF
Electrical Installation Safety Assessment of Buildings in Kumasi, Ghana
3
作者 Bismark Mante Francois Sekyere +2 位作者 Prince Asabere Isaac Prempeh Willie K. Ofosu 《Journal of Power and Energy Engineering》 2024年第9期84-101,共18页
This study aims to evaluate the safety status of electrical installations in residential and commercial buildings within the Suame ECG strategic business unit, Ghana, focusing on compliance with international and Ghan... This study aims to evaluate the safety status of electrical installations in residential and commercial buildings within the Suame ECG strategic business unit, Ghana, focusing on compliance with international and Ghanaian wiring standards. The research assesses key factors influencing safety, including the certification of electricians, the quality of cable brands used, proper cable sizing, adherence to wiring color codes, the awareness and use of Residual Current Circuit Breakers (RCCBs), and the protection of earth electrodes. A descriptive research design was utilized, involving extensive field surveys and electrical installation audits. Data were collected using standardized tools and analyzed with SPSS software to evaluate the professional competencies of artisans and their adherence to safety standards. The findings indicate significant safety risks, with 69.7% of electricians lacking proper certification, leading to the widespread use of non-approved cable brands, improper cable sizing, and deviations from wiring color codes. Additionally, deficiencies were found in the awareness and use of RCCBs and the protection of earth electrodes. The study concludes with recommendations to enhance electrical safety, including mandatory certification for electricians, public awareness campaigns, regular inspections, and ongoing training and development programs. These measures are crucial for improving the overall safety and quality of electrical installations in the Suame area, Ghana. 展开更多
关键词 Earthing System Energy Commission Ghana Wiring Code Residual Current Circuit Breaker Safety
下载PDF
When Does Sora Show:The Beginning of TAO to Imaginative Intelligence and Scenarios Engineering 被引量:13
4
作者 Fei-Yue Wang Qinghai Miao +6 位作者 Lingxi Li Qinghua Ni Xuan Li Juanjuan Li Lili Fan Yonglin Tian Qing-Long Han 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期809-815,共7页
DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in... DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in the direction of Imaginative Intelligence(II),i.e.,something similar to automatic wordsto-videos generation or intelligent digital movies/theater technology that could be used for conducting new“Artificiofactual Experiments”[2]to replace conventional“Counterfactual Experiments”in scientific research and technical development for both natural and social studies[2]-[6].Now we have OpenAI’s Sora,so soon,but this is not the final,actually far away,and it is just the beginning. 展开更多
关键词 SOMETHING INTELLIGENCE replace
下载PDF
Low-Cost Federated Broad Learning for Privacy-Preserved Knowledge Sharing in the RIS-Aided Internet of Vehicles 被引量:1
5
作者 Xiaoming Yuan Jiahui Chen +4 位作者 Ning Zhang Qiang(John)Ye Changle Li Chunsheng Zhu Xuemin Sherman Shen 《Engineering》 SCIE EI CAS CSCD 2024年第2期178-189,共12页
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency... High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV. 展开更多
关键词 Knowledge sharing Internet of Vehicles Federated learning Broad learning Reconfigurable intelligent surfaces Resource allocation
下载PDF
Laser‑Induced and MOF‑Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature 被引量:1
6
作者 Hyeongtae Lim Hyeokjin Kwon +2 位作者 Hongki Kang Jae Eun Jang Hyuk‑Jun Kwon 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期210-220,共11页
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing... Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices. 展开更多
关键词 Metal-organic frameworks Metal oxide Carbon composite LASER Gas sensor
下载PDF
Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition 被引量:1
7
作者 Yi-Chun Lai Shu-Yin Chiang +1 位作者 Yao-Chiang Kan Hsueh-Chun Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期3783-3803,共21页
Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr... Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications. 展开更多
关键词 Human activity recognition artificial intelligence support vector machine random forest adaptive neuro-fuzzy inference system convolution neural network recursive feature elimination
下载PDF
A blockchain based privacy-preserving federated learning scheme for Internet of Vehicles 被引量:1
8
作者 Naiyu Wang Wenti Yang +4 位作者 Xiaodong Wang Longfei Wu Zhitao Guan Xiaojiang Du Mohsen Guizani 《Digital Communications and Networks》 SCIE CSCD 2024年第1期126-134,共9页
The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have be... The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have been raised over the security and privacy of the tons of traffic and vehicle data.In this regard,Federated Learning(FL)with privacy protection features is considered a highly promising solution.However,in the FL process,the server side may take advantage of its dominant role in model aggregation to steal sensitive information of users,while the client side may also upload malicious data to compromise the training of the global model.Most existing privacy-preserving FL schemes in IoV fail to deal with threats from both of these two sides at the same time.In this paper,we propose a Blockchain based Privacy-preserving Federated Learning scheme named BPFL,which uses blockchain as the underlying distributed framework of FL.We improve the Multi-Krum technology and combine it with the homomorphic encryption to achieve ciphertext-level model aggregation and model filtering,which can enable the verifiability of the local models while achieving privacy-preservation.Additionally,we develop a reputation-based incentive mechanism to encourage users in IoV to actively participate in the federated learning and to practice honesty.The security analysis and performance evaluations are conducted to show that the proposed scheme can meet the security requirements and improve the performance of the FL model. 展开更多
关键词 Federated learning Blockchain Privacy-preservation Homomorphic encryption Internetof vehicles
下载PDF
A comparative study of data-driven battery capacity estimation based on partial charging curves 被引量:1
9
作者 Chuanping Lin Jun Xu +5 位作者 Delong Jiang Jiayang Hou Ying Liang Xianggong Zhang Enhu Li Xuesong Mei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期409-420,I0010,共13页
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar... With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves. 展开更多
关键词 Lithium-ion battery Partial charging curves Capacity estimation DATA-DRIVEN Sampling frequency
下载PDF
Accurate and efficient remaining useful life prediction of batteries enabled by physics-informed machine learning 被引量:1
10
作者 Liang Ma Jinpeng Tian +2 位作者 Tieling Zhang Qinghua Guo Chunsheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期512-521,共10页
The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating condi... The safe and reliable operation of lithium-ion batteries necessitates the accurate prediction of remaining useful life(RUL).However,this task is challenging due to the diverse ageing mechanisms,various operating conditions,and limited measured signals.Although data-driven methods are perceived as a promising solution,they ignore intrinsic battery physics,leading to compromised accuracy,low efficiency,and low interpretability.In response,this study integrates domain knowledge into deep learning to enhance the RUL prediction performance.We demonstrate accurate RUL prediction using only a single charging curve.First,a generalisable physics-based model is developed to extract ageing-correlated parameters that can describe and explain battery degradation from battery charging data.The parameters inform a deep neural network(DNN)to predict RUL with high accuracy and efficiency.The trained model is validated under 3 types of batteries working under 7 conditions,considering fully charged and partially charged cases.Using data from one cycle only,the proposed method achieves a root mean squared error(RMSE)of 11.42 cycles and a mean absolute relative error(MARE)of 3.19%on average,which are over45%and 44%lower compared to the two state-of-the-art data-driven methods,respectively.Besides its accuracy,the proposed method also outperforms existing methods in terms of efficiency,input burden,and robustness.The inherent relationship between the model parameters and the battery degradation mechanism is further revealed,substantiating the intrinsic superiority of the proposed method. 展开更多
关键词 Lithium-ion batteries Remaining useful life Physics-informed machine learning
下载PDF
Dissipation and amplification management in an electrical model of microtubules: Hybrid behavior network
11
作者 Sedric Ndoungalah Guy Roger Deffo +1 位作者 Arnaud Djine Serge Bruno Yamgoue 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期392-400,共9页
The control of dissipation and amplification of solitary waves in an electrical model of a microtubule is demonstrated.This model consists of a shunt nonlinear resistance–capacitance(J(V)–C(V)) circuit and a series ... The control of dissipation and amplification of solitary waves in an electrical model of a microtubule is demonstrated.This model consists of a shunt nonlinear resistance–capacitance(J(V)–C(V)) circuit and a series resistance–inductance(R–L) circuit. Through linear dispersion analysis, two features of the network are found, that is, low bandpass and bandpass filter characteristics. The effects of the conductance’s parameter λ on the linear dispersion curve are also analyzed. It appears that an increase of λ induces a decrease(an increase) of the width of the bandpass filter for positive(negative) values of λ. By applying the reductive perturbation method, we derive the equation governing the dynamics of the modulated waves in the system. This equation is the well-known nonlinear Schr?dinger equation extended by a linear term proportional to a hybrid parameter σ, i.e., a dissipation or amplification coefficient. Based on this parameter, we successfully demonstrate the hybrid behavior(dissipation and amplification) of the system. The exact and approximate solitary wave solutions of the obtained equation are derived, and the effects of the coefficient σ on the characteristic parameters of these waves are investigated. Using the analytical solutions found, we show numerically that the waves that are propagated throughout the system can be dissipated, amplified, or remain stable depending on the network parameters. These results are not only in agreement with the analytical predictions, but also with the existing experimental results in the literature. 展开更多
关键词 MICROTUBULE dissipation and amplification hybrid behavior solitary wave solutions
下载PDF
Towards the performance limit of catenary meta-optics via field-driven optimization 被引量:1
12
作者 Siran Chen Yingli Ha +8 位作者 Fei Zhang Mingbo Pu Hanlin Bao Mingfeng Xu Yinghui Guo Yue Shen Xiaoliang Ma Xiong Li Xiangang Luo 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第5期33-42,共10页
Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approx... Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approximation without considering aperiodic electromagnetic crosstalk poses challenges for catenary optical devices to reach their performance limits.Here,perfect control of both local geometric and propagation phases is realized through field-driven optimization,in which the field distribution is calculated under real boundary conditions.Different from other optimization methods requiring a mass of iterations,the proposed design method requires less than ten iterations to get the efficiency close to the optimal value.Based on the library of shape-optimized catenary structures,centimeter-scale devices can be designed in ten seconds,with the performance improved by ~15%.Furthermore,this method has the ability to extend catenary-like continuous structures to arbitrary polarization,including both linear and elliptical polarizations,which is difficult to achieve with traditional design methods.It provides a way for the development of catenary optics and serves as a potent tool for constructing high-performance optical devices. 展开更多
关键词 catenary optics catenary structures field-driven optimization
下载PDF
A Review of the Application of Artificial Intelligence in Orthopedic Diseases
13
作者 Xinlong Diao Xiao Wang +3 位作者 Junkang Qin Qinmu Wu Zhiqin He Xinghong Fan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2617-2665,共49页
In recent years,Artificial Intelligence(AI)has revolutionized people’s lives.AI has long made breakthrough progress in the field of surgery.However,the research on the application of AI in orthopedics is still in the... In recent years,Artificial Intelligence(AI)has revolutionized people’s lives.AI has long made breakthrough progress in the field of surgery.However,the research on the application of AI in orthopedics is still in the exploratory stage.The paper first introduces the background of AI and orthopedic diseases,addresses the shortcomings of traditional methods in the detection of fractures and orthopedic diseases,draws out the advantages of deep learning and machine learning in image detection,and reviews the latest results of deep learning and machine learning applied to orthopedic image detection in recent years,describing the contributions,strengths and weaknesses,and the direction of the future improvements that can be made in each study.Next,the paper also introduces the difficulties of traditional orthopedic surgery and the roles played by AI in preoperative,intraoperative,and postoperative orthopedic surgery,scientifically discussing the advantages and prospects of AI in orthopedic surgery.Finally,the article discusses the limitations of current research and technology in clinical applications,proposes solutions to the problems,and summarizes and outlines possible future research directions.The main objective of this review is to inform future research and development of AI in orthopedics. 展开更多
关键词 Artificial intelligence ORTHOPEDICS image detection deep learning machine learning diagnostic disease ROBOTICS
下载PDF
Virtual Power Plants for Grid Resilience: A Concise Overview of Research and Applications
14
作者 Yijing Xie Yichen Zhang +2 位作者 Wei-Jen Lee Zongli Lin Yacov A.Shamash 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期329-343,共15页
The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challeng... The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience. 展开更多
关键词 Climate change renewable energy resources RESILIENCE smart grids virtual power plants(VPPs)
下载PDF
Optimizing Average Electric Power During the Charging of Lithium-Ion Batteries Through the Taguchi Method
15
作者 Mohd H.S.Alrashdan 《Transactions of Tianjin University》 EI CAS 2024年第2期152-166,共15页
In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries fa... In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries faces a significant challenge owing to the need to increase average electric power during charging. This challenge results from the direct influence of the power level on the rate of chemical reactions occurring in the battery electrodes. In this study, the Taguchi optimization method was used to enhance the average electric power during the charging process of lithium-ion batteries. The Taguchi technique is a statistical strategy that facilitates the systematic and efficient evaluation of numerous experimental variables. The proposed method involved varying seven input factors, including positive electrode thickness, positive electrode material, positive electrode active material volume fraction, negative electrode active material volume fraction, separator thickness, positive current collector thickness, and negative current collector thickness. Three levels were assigned to each control factor to identify the optimal conditions and maximize the average electric power during charging. Moreover, a variance assessment analysis was conducted to validate the results obtained from the Taguchi analysis. The results revealed that the Taguchi method was an eff ective approach for optimizing the average electric power during the charging of lithium-ion batteries. This indicates that the positive electrode material, followed by the separator thickness and the negative electrode active material volume fraction, was key factors significantly infl uencing the average electric power during the charging of lithium-ion batteries response. The identification of optimal conditions resulted in the improved performance of lithium-ion batteries, extending their potential in various applications. Particularly, lithium-ion batteries with average electric power of 16 W and 17 W during charging were designed and simulated in the range of 0-12000 s using COMSOL Multiphysics software. This study efficiently employs the Taguchi optimization technique to develop lithium-ion batteries capable of storing a predetermined average electric power during the charging phase. Therefore, this method enables the battery to achieve complete charging within a specific timeframe tailored to a specificapplication. The implementation of this method can save costs, time, and materials compared with other alternative methods, such as the trial-and-error approach. 展开更多
关键词 Lithium-ion batteries Average electric power during charging Taguchi method COMSOL Multiphysics software C rate L27 orthogonal array
下载PDF
Performance Analysis of ZF and RZF in Low-Resolution ADC/DAC Massive MIMO Systems
16
作者 Talha Younas Shen Jin +4 位作者 Muluneh Mekonnen Gao Mingliang Saqib Saleem Sohaib Tahir Mahrukh Liaqat 《China Communications》 SCIE CSCD 2024年第8期115-126,共12页
Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver ra... Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low resolution.In this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician fadings.We start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in radar.We also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the system.We emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining algorithm.We also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable rates.We emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO. 展开更多
关键词 low-bit analog-digital converter massive(multiple-input-multiple-output)MIMO minimum mean square error(MMSE) regularized zero forcing zero forcing
下载PDF
Automatic area estimation of algal blooms in water bodies from UAV images using texture analysis
17
作者 Ajmeria Rahul Gundu Lokesh +2 位作者 Siddhartha Goswami R.N.Ponnalagu Radhika Sudha 《Water Science and Engineering》 EI CAS CSCD 2024年第1期62-71,共10页
Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solu... Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring. 展开更多
关键词 Algal bloom Image processing Texture analysis Histogram analysis Unmanned aerial vehicles
下载PDF
Examining the Quality Metrics of a Communication Network with Distributed Software-Defined Networking Architecture
18
作者 Khawaja Tahir Mehmood Shahid Atiq +2 位作者 Intisar Ali Sajjad Muhammad Majid Hussain Malik M.Abdul Basit 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1673-1708,共36页
Software-Defined Networking(SDN),with segregated data and control planes,provides faster data routing,stability,and enhanced quality metrics,such as throughput(Th),maximum available bandwidth(Bd(max)),data transfer(DT... Software-Defined Networking(SDN),with segregated data and control planes,provides faster data routing,stability,and enhanced quality metrics,such as throughput(Th),maximum available bandwidth(Bd(max)),data transfer(DTransfer),and reduction in end-to-end delay(D(E-E)).This paper explores the critical work of deploying SDN in large-scale Data Center Networks(DCNs)to enhance its Quality of Service(QoS)parameters,using logically distributed control configurations.There is a noticeable increase in Delay(E-E)when adopting SDN with a unified(single)control structure in big DCNs to handle Hypertext Transfer Protocol(HTTP)requests causing a reduction in network quality parameters(Bd(max),Th,DTransfer,D(E-E),etc.).This article examines the network performance in terms of quality matrices(bandwidth,throughput,data transfer,etc.),by establishing a large-scale SDN-based virtual network in the Mininet environment.The SDN network is simulated in three stages:(1)An SDN network with unitary controller-POX to manage the data traffic flow of the network without the server load management algorithm.(2)An SDN network with only one controller to manage the data traffic flow of the network with a server load management algorithm.(3)Deployment of SDN in proposed control arrangement(logically distributed controlled framework)with multiple controllers managing data traffic flow under the proposed Intelligent Sensing Server Load Management(ISSLM)algorithm.As a result of this approach,the network quality parameters in large-scale networks are enhanced. 展开更多
关键词 Software defined networking quality of service hypertext transfer protocol data transfer rate LATENCY maximum available bandwidth server load management
下载PDF
Comprehensive Survey of the Landscape of Digital Twin Technologies and Their Diverse Applications
19
作者 Haiyu Chen Haijian Shao +2 位作者 Xing Deng Lijuan Wang Xia Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期125-165,共41页
The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 framework.In recent years,the concept of digital siblings has generated considerable academic and practi... The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 framework.In recent years,the concept of digital siblings has generated considerable academic and practical interest.However,academia and industry have used a variety of interpretations,and the scientific literature lacks a unified and consistent definition of this term.The purpose of this study is to systematically examine the definitional landscape of the digital twin concept as outlined in scholarly literature,beginning with its origins in the aerospace domain and extending to its contemporary interpretations in the manufacturing industry.Notably,this investigationwill focus on the research conducted on Industry 4.0 and smartmanufacturing,elucidating the diverse applications of digital twins in fields including aerospace,intelligentmanufacturing,intelligent transportation,and intelligent cities,among others. 展开更多
关键词 Digital twins Industry 4.0 smart manufacturing digital thread modeling simulation
下载PDF
Exploring the Latest Applications of OpenAI and ChatGPT: An In-Depth Survey
20
作者 Hong Zhang Haijian Shao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2061-2102,共42页
OpenAI and ChatGPT, as state-of-the-art languagemodels driven by cutting-edge artificial intelligence technology,have gained widespread adoption across diverse industries. In the realm of computer vision, these models... OpenAI and ChatGPT, as state-of-the-art languagemodels driven by cutting-edge artificial intelligence technology,have gained widespread adoption across diverse industries. In the realm of computer vision, these models havebeen employed for intricate tasks including object recognition, image generation, and image processing, leveragingtheir advanced capabilities to fuel transformative breakthroughs. Within the gaming industry, they have foundutility in crafting virtual characters and generating plots and dialogues, thereby enabling immersive and interactiveplayer experiences. Furthermore, these models have been harnessed in the realm of medical diagnosis, providinginvaluable insights and support to healthcare professionals in the realmof disease detection. The principal objectiveof this paper is to offer a comprehensive overview of OpenAI, OpenAI Gym, ChatGPT, DALL E, stable diffusion,the pre-trained clip model, and other pertinent models in various domains, encompassing CLIP Text-to-Image,education, medical imaging, computer vision, social influence, natural language processing, software development,coding assistance, and Chatbot, among others. Particular emphasis will be placed on comparative analysis andexamination of popular text-to-image and text-to-video models under diverse stimuli, shedding light on thecurrent research landscape, emerging trends, and existing challenges within the domains of OpenAI and ChatGPT.Through a rigorous literature review, this paper aims to deliver a professional and insightful overview of theadvancements, potentials, and limitations of these pioneering language models. 展开更多
关键词 OpenAI ChatGPT DALL E stable diffusion OpenAI Gym text-to-image text-to-video
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部