Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simpli...Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system.展开更多
Microstructure and mechanical performances of the coarse grain heat-affected-zone (CGHAZ) for oil tank steel with different Ti content were investigated through Gleeble-3500, scanning electron microscopy, transmissi...Microstructure and mechanical performances of the coarse grain heat-affected-zone (CGHAZ) for oil tank steel with different Ti content were investigated through Gleeble-3500, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectrometer. The results show that the strength and low- temperature toughness of base material are significantly improved for the high titanium content steel, but the impact toughness of CGHAZ is seriously deteriorated after the high heat input welding and declined sharply with the heat input increasing, while the effects of heat input on impact toughness are very weak for the low titanium content steel, impact toughness of which is gradually larger than that of high titanium content steel with the welding heat input increasing because of the granular bainite increasing, TiN particle coarsening, and (Ti, Nb) N composition evolution during the high input welding for high titanium content steel.展开更多
Uniaxial tensile testing at strain rates ranging from 10-3 to 10-1 s-1 was carried out to study the rate-dependent me-chanical behavior for poly(ethylene terephthalate) (PET) used in the packaging industry. The experi...Uniaxial tensile testing at strain rates ranging from 10-3 to 10-1 s-1 was carried out to study the rate-dependent me-chanical behavior for poly(ethylene terephthalate) (PET) used in the packaging industry. The experimental results show that a rate-dependent plastic behavior exists for PET material. The value of the yield strength was found to increase with the increasing strain rate. A new constitutive model based on the improved Cowper-Symonds rate-dependent constitutive model is proposed to describe the mechanical behavior of PET material in the strain rate ranging from 10-3 to 10-1 s-1, providing more accurate material data for the subsequent simulation analysis of drop test and dynamic buckling. The predictions obtained using the proposed model are compared with experimental results of the improved Cowper-Symonds model. The simulating results of the proposed model agree well with the experimental data. For a low strain rate, the predictions of this model are more precise than those obtained using the improved Cowper-Symonds model. This confirms that the new constitutive model is suitable for describing the me-chanical behavior of PET material at a low strain rate and modeling impact problem.展开更多
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2009AA04Z413)Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1110109)
文摘Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system.
基金supported by the Fundamental Research Funds for the National Science and Technology Support Program(No.2011BAE25B01)
文摘Microstructure and mechanical performances of the coarse grain heat-affected-zone (CGHAZ) for oil tank steel with different Ti content were investigated through Gleeble-3500, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectrometer. The results show that the strength and low- temperature toughness of base material are significantly improved for the high titanium content steel, but the impact toughness of CGHAZ is seriously deteriorated after the high heat input welding and declined sharply with the heat input increasing, while the effects of heat input on impact toughness are very weak for the low titanium content steel, impact toughness of which is gradually larger than that of high titanium content steel with the welding heat input increasing because of the granular bainite increasing, TiN particle coarsening, and (Ti, Nb) N composition evolution during the high input welding for high titanium content steel.
基金Project (No 2008C11005) supported by the Key Science and Technology Program of Zhejiang Province, China
文摘Uniaxial tensile testing at strain rates ranging from 10-3 to 10-1 s-1 was carried out to study the rate-dependent me-chanical behavior for poly(ethylene terephthalate) (PET) used in the packaging industry. The experimental results show that a rate-dependent plastic behavior exists for PET material. The value of the yield strength was found to increase with the increasing strain rate. A new constitutive model based on the improved Cowper-Symonds rate-dependent constitutive model is proposed to describe the mechanical behavior of PET material in the strain rate ranging from 10-3 to 10-1 s-1, providing more accurate material data for the subsequent simulation analysis of drop test and dynamic buckling. The predictions obtained using the proposed model are compared with experimental results of the improved Cowper-Symonds model. The simulating results of the proposed model agree well with the experimental data. For a low strain rate, the predictions of this model are more precise than those obtained using the improved Cowper-Symonds model. This confirms that the new constitutive model is suitable for describing the me-chanical behavior of PET material at a low strain rate and modeling impact problem.