Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the c...Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs.展开更多
Preparation of hierarchically porous, heteroatom-rich nanostructured carbons through green and scalable routes plays a key role for practical energy storage applications. In this work, naturally abundant lignocellulos...Preparation of hierarchically porous, heteroatom-rich nanostructured carbons through green and scalable routes plays a key role for practical energy storage applications. In this work, naturally abundant lignocellulosic agricultural waste with high initial oxygen content, hazelnut shells, were hydrothermally carbonized and converted into nanostructured ‘hydrochar’. Environmentally benign ceramic/magnesium oxide(Mg O) templating was used to introduce porosity into the hydrochar. Electrochemical performance of the resulting material(HM700) was investigated in aqueous solutions of 1 M H;SO;, 6 M KOH and1 M Na;SO;, using a three-electrode cell. HM700 achieved a high specific capacitance of 323.2 F/g in 1 M H;SO;(at 1 A/g,-0.3 to 0.9 V vs. Ag/Ag Cl) due to the contributions of oxygen heteroatoms(13.5 wt%)to the total capacitance by pseudo-capacitive effect. Moreover, a maximum energy density of 11.1 Wh/kg and a maximum power density of 3686.2 W/kg were attained for the symmetric supercapacitor employing HM700 as electrode material(1 M Na;SO;, E = 2 V), making the device promising for green supercapacitor applications.展开更多
In this paper, neutronic analysis in a laser fusion inertial confinement fusion fission energy (LIFE) engine fuelled plutonium and minor actinides using a MCNP codes was investigated. LIFE engine fuel zone contained...In this paper, neutronic analysis in a laser fusion inertial confinement fusion fission energy (LIFE) engine fuelled plutonium and minor actinides using a MCNP codes was investigated. LIFE engine fuel zone contained 10 vol% TRISO particles and 90 vol% natural lithium coolant mixture. TRISO fuel compositions have Mod①: reactor grade plutonium (RG-Pu), Mod②: weapon grade plutonium (WG-Pu) and Mod③: minor actinides (MAs). Tritium breeding ratios (TBR) were computed as 1.52, 1.62 and 1.46 for Mod(D, Mod② and Mod③, respectively. The operation period was computed as ~21 years when the reference TBR 〉 1.05 for a self- sustained reactor for all investigated cases. Blanket energy multiplication values (M) were calculated as 4.18, 4.95 and 3.75 for Mod①, Mod② and Mod③, respectively. The bumup (BU) values were obtained as ~1230, ~1550 and ~1060 GWd tM-1, respectively. As a result, the higher BU were provided with using TRISO particles for all cases in LIFE engine.展开更多
To improve the accuracy of indirect tensile strength for a transversely isotropic rock in the Brazilian test, this study considered the three-dimensional (3D) deformation and the nonlinear stress–strain relationship....To improve the accuracy of indirect tensile strength for a transversely isotropic rock in the Brazilian test, this study considered the three-dimensional (3D) deformation and the nonlinear stress–strain relationship. A parametric study of a numerical Brazilian test was performed for a general range of elastic constants, revealing that the 3D modeling evaluated the indirect tensile strength up to 40% higher than the plane stress modeling. For the actual Asan gneiss, the 3D model evaluated the indirect tensile strength up to 10% higher and slightly enhanced the accuracy of deformation estimation compared with the plane stress model. The nonlinearity in stress–strain curve of Asan gneiss under uniaxial compression was then considered, such that the evaluated indirect tensile strength was affected by up to 10% and its anisotropy agreed well with the physical intuition. The estimation of deformation was significantly enhanced. The further validation on the nonlinear model is expected as future research.展开更多
We estimate the parameters of a Cu plasma generated by an X-pinch by comparing experimentally measured x-rays with synthetic data.A filtered absolute extreme ultraviolet diode array is used to measure time-resolved x-...We estimate the parameters of a Cu plasma generated by an X-pinch by comparing experimentally measured x-rays with synthetic data.A filtered absolute extreme ultraviolet diode array is used to measure time-resolved x-ray spectra with a spectral resolution of∼1 keV in the energy range of 1–10 keV.The synthetic spectra of Cu plasmas with different electron temperatures,electron densities,and fast electron fractions are calculated using the FLYCHK code.For quantitative comparison with the measured spectrum,two x-ray power ratios with three different spectral ranges are calculated.We observe three x-ray bursts in X-pinch experiments with two Cu wires conducted on the SNU X-pinch at a current rise rate of∼0.2 kA/ns.Analysis of the spectra reveals that the first burst comprises x-rays emitted by hot spots and electron beams,with characteristics similar to those observed in other X-pinches.The second and third bursts are both generated by longlived electron beams formed after the neck structure has been completely depleted.In the second burst,the formation of the electron beam is accompanied by an increase in the electron density of the background plasma.Therefore,the long-lived electron beams generate the additional strong x-ray bursts while maintaining a plasma channel in the central region of the X-pinch.Moreover,they emit many hard x-rays(HXRs),enabling the SNU X-pinch to be used as an HXR source.This study confirms that the generation of long-lived electron beams is crucial to the dynamics of X-pinches and the generation of strong HXRs.展开更多
Ensemble-based analyses are useful to compare equiprobable scenarios of the reservoir models.However,they require a large suite of reservoir models to cover high uncertainty in heterogeneous and complex reservoir mode...Ensemble-based analyses are useful to compare equiprobable scenarios of the reservoir models.However,they require a large suite of reservoir models to cover high uncertainty in heterogeneous and complex reservoir models.For stable convergence in ensemble Kalman filter(EnKF),increasing ensemble size can be one of the solutions,but it causes high computational cost in large-scale reservoir systems.In this paper,we propose a preprocessing of good initial model selection to reduce the ensemble size,and then,EnKF is utilized to predict production performances stochastically.In the model selection scheme,representative models are chosen by using principal component analysis(PCA)and clustering analysis.The dimension of initial models is reduced using PCA,and the reduced models are grouped by clustering.Then,we choose and simulate representative models from the cluster groups to compare errors of production predictions with historical observation data.One representative model with the minimum error is considered as the best model,and we use the ensemble members near the best model in the cluster plane for applying EnKF.We demonstrate the proposed scheme for two 3D models that EnKF provides reliable assimilation results with much reduced computation time.展开更多
In this study,the effects of changing first wall materials and their thicknesses on a reactor were investigated to determine the displacement per atom(DPA)and gas production(helium and hydrogen)in the first wall,as we...In this study,the effects of changing first wall materials and their thicknesses on a reactor were investigated to determine the displacement per atom(DPA)and gas production(helium and hydrogen)in the first wall,as well as the tritium breeding ratio(TBR)in the coolant and tritium breeding zones.Therefore,the modeling of the magnetic fusion reactor was determined based on the blanket parameters of the International Thermonuclear Experimental Reactor(ITER).Stainless steel(SS 316 LNIG),Oxide Dispersion Strengthened Steel alloy(PM2000 ODS),and China low-activation martensitic steel(CLAM)were used as the first wall(FW)materials.Fluoride family molten salt materials(FLiBe,FLiNaBe,FLiPb)and lithium oxide(LiO_(2))were considered the coolant and tritium production material in the blanket,respectively.Neutron transport calculations were performed using the wellknown 3D code MCNP5 using the continuous-energy Monte Carlo method.The built-in continuous energy nuclear and atomic data libraries along with the Evaluated Nuclear Data file(ENDF)system(ENDF/B-V and ENDF/B-VI)were used.Additionally,the activity cross-section data library CLAW-IV was used to evaluate both the DPA values and gas production of the first wall(FW)materials.An interface computer program written in the FORTRAN 90 language to evaluate the MCNP5 outputs was developed for the fusion reactor blanket.The results indicated that the best TBR value was obtained for the use of the FLiPb coolant,whereas depending on the thickness,the first wall replacement period in terms of radiation damage to all materials was between 6 and 11 years.展开更多
In the production of AlCuFe alloy for a special application,the growth rate was changed and the results were evaluated.Changes in the eutectic spacing(microstructure)of a material due to the growth rate are known to a...In the production of AlCuFe alloy for a special application,the growth rate was changed and the results were evaluated.Changes in the eutectic spacing(microstructure)of a material due to the growth rate are known to affect its mechanical,electrical and thermal properties.To evaluate its microstructure,the eutectic composition of Al−32.5wt.%Cu−0.5wt.%Fe was prepared and directional solidification experiments were conducted using a Bridgman-type furnace at a constant temperature gradient(G=8.50 K/mm)and five growth rates(V=8.25,16.60,41.65,90.05,164.80μm/s).The effect of the growth rate on the eutectic spacing was then determined,and the resulting microhardness and ultimate tensile strength were obtained based on the change in the microstructure by regression analysis and Hall−Petch correlations.Despite the fact that the growth rate increased by approximately twenty times,the eutectic spacing decreased by a factor of approximately 5,and these changes in the growth rate and microstructure caused the mechanical properties to change by a factor of approximately 1.5.展开更多
Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgra...Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgrade the thermal performance of heat exchangers.In this numerical study,a finned shell and tube heat exchanger has been designed and different volume concentrations of nanofluid were tested to determine the effect of utilizing nanofluid on heat transfer.Fe_(2)O_(3)/water nanofluids with volume concentration of 1%,1.5% and 2% were utilized as heat transfer fluid in the heat exchanger and the obtained results were compared with pure water.ANSYS Fluent software as a CFD method was employed in order to simulate the mentioned problem.Numerical simulation results indicated the successful utilization of nanofluid in the heat exchanger.Also,increasing the ratio of Fe_(2)O_(3) nanoparticles caused more increment in thermal energy without important pressure drop.Moreover,it was revealed that the highest heat transfer rate enhancement of 19.1% can be obtained by using nanofluid Fe_(2)O_(3)/water with volume fraction of 2%.展开更多
The development of lead-free solders has emerged as one of the key issues in the electronics packaging industries.Bi-Sn-Ag eutectic alloy has been considered as one of the lead-free solder materials that can replace t...The development of lead-free solders has emerged as one of the key issues in the electronics packaging industries.Bi-Sn-Ag eutectic alloy has been considered as one of the lead-free solder materials that can replace the toxic Pb-Sn eutectic solder without increasing soldering temperature.We investigated the effects of temperature gradient and growth rate on the mechanical,electrical and thermal properties of the BiSn-Ag ternary eutectic alloy.Bi-47 wt%Sn-0.68 wt%Ag alloy was directionally solidified upward with different temperature gradients(G=2.33-5.66 K/mm) at a constant growth rate(V=13.25 μm/s) and with different growth rates(V=6.55-132.83 μm/s) at a constant temperature gradient(G=2.33 K/mm) in the growth apparatus.The microstructures(λ),microhardness(HV),tensile stress(σ),electrical resistivity(ρ),and thermal properties(△H,Cp,Tm) were measured on directionally solidified samples.The dependency of the λ,HV,σ,and ρ on G and V was investigated.According to the experimental results,X values decrease with increasing G and V,but HV,λ,and ρ values increase with increasing G and V.Variations of electrical resistivity(ρ) for cast samples with the temperature in the range of 300-400 K were also measured by using a standard dc four-point probe technique.The enthalpy of fusion(△H) and specific heat(Cp) for the same alloy was also determined by means of differential scanning calorimeter(DSC) from heating trace during the transformation from eutectic liquid to eutectic solid.展开更多
In this study,the combined effects of geometrical distribution and geomechanical deformation of fracture networks on fluid flow through fractured geological media are investigated numerically.We consider a finite-size...In this study,the combined effects of geometrical distribution and geomechanical deformation of fracture networks on fluid flow through fractured geological media are investigated numerically.We consider a finite-sized model domain in which the geometry of fracture systems follows a power-law length scaling.The geomechanical response of the fractured rock is simulated using a hybrid finitediscrete element model,which can capture the deformation of intact rocks,the interaction of matrix blocks,the displacement of discrete fractures and the propagation of new cracks.Under far-field stress loading,the locally variable stress distribution in the fractured rock leads to a stress-dependent variable aperture field controlled by compression-induced closure and shear-induced dilatancy of rough fractures.The equivalent permeability of the deformed fractured rock is calculated by solving for the fracture-matrix flow considering the cubic relationship between fracture aperture and flow rate at each local fracture segment.We report that the geometrical connectivity of fracture networks plays a critical role in the hydromechanical processes in fractured rocks.A well-connected fracture system under a high stress ratio condition exhibits intense frictional sliding and large fracture dilation/opening,leading to greater rock mass permeability.However,a disconnected fracture network accommodates much less fracture shearing and opening,and has much lower bulk permeability.We further propose an analytical solution for the relationship between the equivalent permeability of fractured rocks and the connectivity metric(i.e.percolation parameter)of fracture networks,which yields an excellent match to the numerical results.We infer that fluid flow through a well-connected system is governed by traversing channels(forming an“in parallel”architecture)and thus equivalent permeability is sensitive to stress loading(due to stress-dependent fracture permeability),whilst fluid flow through a disconnected system is more ruled by matrix(linking isolated clusters“in series”)and has much less stress dependency.展开更多
The ultrasonic contact impedance technique and ultrasonic wave velocities have been widely used for non-destructive hardness measurement.Ultrasonic wave velocity shift provides through the thickness average hardness, ...The ultrasonic contact impedance technique and ultrasonic wave velocities have been widely used for non-destructive hardness measurement.Ultrasonic wave velocity shift provides through the thickness average hardness, however, the correlations are performed according to surface hardness. In order to accept this technique as a particular non-destructive method for determination of hardness, it is necessary to test it with industrial applications. A widely used joining(welding) technique is selected for this purpose. Samples of carbon steels with three different carbon contents, but similar composition, are annealed in order to obtain the softened samples with different hardness values. Rockwell B scale hardness of heat treated samples, which are assumed to be isotropic, are determined and correlated with ultrasonic wave velocity shifts. Effect of welding process on hardness is investigated using ultrasonic wave velocity shifts, and the results are verified with destructive hardness measurements.展开更多
It is very important to determine the daily horizontal global,diffuse and beam irradiations correctly in planning energy systems,in cost analysis,in the atmosphere,and in the productivity evaluations.Besides,the knowl...It is very important to determine the daily horizontal global,diffuse and beam irradiations correctly in planning energy systems,in cost analysis,in the atmosphere,and in the productivity evaluations.Besides,the knowledge of accurate solar irradiation is the most important component of the essential climate variables according to the Global Climate Observing System(GCOS)in August 2010.It is known that the changes of these irradiation parameters directly affect our atmosphere and cloud formation processes.Turkey is one of the countries,which has high solar energy potential by reason of its climatic and regional factors.Especially,Konya and Karaman regions(in Central Anatolia Region)are seen as the most efficient area in where the solar energy systems will be processed.Because of this reason that region has been designated as an Energy Specialized Industrial Zone(ESIZ)in Turkey.Solar energy inputs must carefully be determined in this region where the systems will be installed with respect to the climate and energy efficiency.In this work aims to understand the components of daily solar irradiation on a horizontal surface in selected region are analyzed by using the HELIOSAT method by setting satellite images.Results have been determined by comparing with ground measured data and method were analyzed by using statistical errors.According to the seven-year data,the accuracy of the daily global and diffuse solar irradiations estimation was found acceptable levels.Nevertheless,the estimated results reveal that this method can easily be adapted to any point in the world resembles with the Central Anatolia Region climate type.Especially,the obtained results are significant for the simulation studies such as solar PV power plants performance,payback time,and cost of energy analysis.Also,these results can be used to increase the performance of the solar energy system and to determine long-term a road map for climate change studies.展开更多
Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that...Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that utilizes dynamic data for rejecting an unsuitable training image(TI) among a set of TI candidates and for synthesizing history-matched pseudo-soft data. The proposed method is applied to two cases of channelized reservoirs, which have uncertainty in channel geometry such as direction, amplitude, and width. Distance-based clustering is applied to the initial models in total to select the qualified models efficiently. The mean of the qualified models is employed as a history-matched facies probability map in the next iteration of static models. Also, the most plausible TI is determined among TI candidates by rejecting other TIs during the iteration. The posterior models of the proposed method outperform updated models of ensemble Kalman filter(EnKF) and ensemble smoother(ES) because they describe the true facies connectivity with bimodal distribution and predict oil and water production with a reasonable range of uncertainty. In terms of simulation time, it requires 30 times of forward simulation in history matching, while the EnKF and ES need 9000 times and 200 times, respectively.展开更多
In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study des...In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study describes an experimental method in order to investigate the effects of some significant parameters on heat pump performance.In this regard,a laboratory heat pump setup has been utilized to operate in different working conditions for achieving an appropriate estimation to find out effects of mentioned parameters such as refrigerant type and charge amount,compressor oil viscosity,compressor cooling fan,secondary fluids temperature and flow rate.Different refrigerants have been selected and used as circulating fluid in the installed heat pump.Although this work has been devoted to a detailed attempt to recognize the effects of various parameters on the coefficient of performance(COP) value,an appropriate method has been carried out to survey the obtained results by using economic analysis.It was revealed that one of the main parameters is refrigerant charge amount which has a notable effect on COP.The temperature of the heat source was also tested and the performance of the system increased by more than 11% by employing mentioned modifications and various operating conditions.In addition,by selecting a low viscosity compressor oil,the system performance increased by 18%.This improvement is more than 6% for the case that cooling fan is installed to cool the compressor element.展开更多
Synthetic dyes are very important for textile dyeing,paper printing,color photography and petroleum products.Traditional methods of dye removal include biodegradation,precipitation,adsorption,chemical degradation,phot...Synthetic dyes are very important for textile dyeing,paper printing,color photography and petroleum products.Traditional methods of dye removal include biodegradation,precipitation,adsorption,chemical degradation,photo degradation,and chemical coagulation.Dye decolorization with enzymatic reaction is an important issue for several research field(chemistry,environment)In this study,minimum decolorization time of Remazol Brilliant Blue R dye with Horseradish peroxidase enzyme was calculated using with mathematical equation depending on experimental data.Dye decolorization was determined by monitoring the absorbance decrease at the specific maximum wavelength for dye.All experiments were carried out with different initial dye concentrations of Remazol Brilliant Blue R at 25 ℃ constant temperature for 30 minutes.The development of the least squares estimators for a nonlinear model brings about complications not encountered in the case of the linear model.Decolorization times for completely removal of dye were calculated according to equation.It was shown that mathematical equation was conformed exponential curve for dye degradation.展开更多
Wireless sensor networks(WSNs)are characterized by their ability to monitor physical or chemical phenomena in a static or dynamic location by collecting data,and transmit it in a collaborative manner to one or more pr...Wireless sensor networks(WSNs)are characterized by their ability to monitor physical or chemical phenomena in a static or dynamic location by collecting data,and transmit it in a collaborative manner to one or more processing centers wirelessly using a routing protocol.Energy dissipation is one of the most challenging issues due to the limited power supply at the sensor node.All routing protocols are large consumers of energy,as they represent the main source of energy cost through data exchange operation.Clusterbased hierarchical routing algorithms are known for their good performance in energy conservation during active data exchange in WSNs.The most common of this type of protocol is the Low-Energy Adaptive Clustering Hierarchy(LEACH),which suffers from the problem of the pseudo-random selection of cluster head resulting in large power dissipation.This critical issue can be addressed by using an optimization algorithm to improve the LEACH cluster heads selection process,thus increasing the network lifespan.This paper proposes the LEACH-CHIO,a centralized cluster-based energyaware protocol based on the Coronavirus Herd Immunity Optimizer(CHIO)algorithm.CHIO is a newly emerging human-based optimization algorithm that is expected to achieve significant improvement in the LEACH cluster heads selection process.LEACH-CHIO is implemented and its performance is verified by simulating different wireless sensor network scenarios,which consist of a variable number of nodes ranging from 20 to 100.To evaluate the algorithm performances,three evaluation indicators have been examined,namely,power consumption,number of live nodes,and number of incoming packets.The simulation results demonstrated the superiority of the proposed protocol over basic LEACH protocol for the three indicators.展开更多
Development of electrodes with high electrocatalytic activity and stability is essential for solving problems that still restrict the extensive application of vanadium redox flow batteries(VRFBs).Here,we designed a no...Development of electrodes with high electrocatalytic activity and stability is essential for solving problems that still restrict the extensive application of vanadium redox flow batteries(VRFBs).Here,we designed a novel negative electrode with superior electrocatalytic activity by tailoring nitrogen functional groups,such as newly formed nitro and pyridinic-N transformed to pyridonic-N,from the prenitrogen-doped electrode.It was experimentally confirmed that an electrode with pyridonic-N and nitro fuctional groups(tailored nitrogen-doped graphite felt,TNGF) has superior electrocatalytic acivity with enhanced electron and mass transfer.Density functional theory calulations demonstrated the pyridonic-N and nitro functional groups promoted the adsorption,charge transfer,and bond formation with the vanadium species,which is consistent with expermental results.In addition,the V2+/V3+redox reaction mechanism on pyridonic-N and nitro functional groups was estabilised based on density functional theory(DFT) results.When TNGF was applied to a VRFB,it enabled enhanced-electrolyte utilization and energy efficiencies(EE) of 57.9% and 64.6%,respectively,at a current density of 250 mA cm^(-2).These results are 18.6% and 8.9% higher than those of VRFB with electrode containing graphitic-N and pyridinicN groups.Interestingly,TNGF-based VRFB still operated with an EE of 59% at a high current density of300 mA cm^(-2).The TNGF-based VRFB exhibited stable cycling performance without noticeable decay of EE over 450 charge-discharge cycles at a current density of 250 mA cm^(-2).The results of this study suggest that introducing pyridonic-N and nitro groups on the electrode is effective for improving the electrochemical performance of VRFBs.展开更多
This study delves into the combustion behavior of various lignite types within a circulating fluidized bed boiler(CFBB),with a primary focus on the impact of different bed material sphericity ratios(0.5,0.7,and 0.9).U...This study delves into the combustion behavior of various lignite types within a circulating fluidized bed boiler(CFBB),with a primary focus on the impact of different bed material sphericity ratios(0.5,0.7,and 0.9).Utilizing bed material with a sphericity ratio of 0.9 sourced from theÇan power plant and verified through experimentation,the research reveals several key findings.Notably,furnace temperatures tended to rise with higher sphericity ratios,albeit with variations between lignite types,particularly highlighting the complexity of this relationship in the case of GLI-Tunçbilek lignite.Pressure levels in the combustion chamber remained consistent across different sphericity ratios,indicating minimal influence on pressure dynamics.Improved combustion efficiency,especially at the bottom of the boiler,was observed at lower sphericity levels(0.5 and 0.7)forÇan lignite,as reflected in CO_(2) mole fractions.While NO_(x) emissions generally decreased with lower sphericity,the sensitivity to sphericity varied by lignite type,with Ilgın lignite showcasing low NO_(x) but high SO_(2) emissions,underscoring the intricate interplay between lignite properties,sphericity,and emissions.Overall,this study advances our understanding of CFBB combustion dynamics,offering insights valuable for optimizing performance and emissions control,particularly in lignite-based power.展开更多
基金Ministry of Trade,Industry and Energy,Grant/Award Number:20010095Korea Evaluation Institute of Industrial Technology,Grant/Award Number:20012341。
文摘Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs.
基金supported by the Scientific and Technological Research Council of Turkey(TüBTAK)under Grant 112T570
文摘Preparation of hierarchically porous, heteroatom-rich nanostructured carbons through green and scalable routes plays a key role for practical energy storage applications. In this work, naturally abundant lignocellulosic agricultural waste with high initial oxygen content, hazelnut shells, were hydrothermally carbonized and converted into nanostructured ‘hydrochar’. Environmentally benign ceramic/magnesium oxide(Mg O) templating was used to introduce porosity into the hydrochar. Electrochemical performance of the resulting material(HM700) was investigated in aqueous solutions of 1 M H;SO;, 6 M KOH and1 M Na;SO;, using a three-electrode cell. HM700 achieved a high specific capacitance of 323.2 F/g in 1 M H;SO;(at 1 A/g,-0.3 to 0.9 V vs. Ag/Ag Cl) due to the contributions of oxygen heteroatoms(13.5 wt%)to the total capacitance by pseudo-capacitive effect. Moreover, a maximum energy density of 11.1 Wh/kg and a maximum power density of 3686.2 W/kg were attained for the symmetric supercapacitor employing HM700 as electrode material(1 M Na;SO;, E = 2 V), making the device promising for green supercapacitor applications.
文摘In this paper, neutronic analysis in a laser fusion inertial confinement fusion fission energy (LIFE) engine fuelled plutonium and minor actinides using a MCNP codes was investigated. LIFE engine fuel zone contained 10 vol% TRISO particles and 90 vol% natural lithium coolant mixture. TRISO fuel compositions have Mod①: reactor grade plutonium (RG-Pu), Mod②: weapon grade plutonium (WG-Pu) and Mod③: minor actinides (MAs). Tritium breeding ratios (TBR) were computed as 1.52, 1.62 and 1.46 for Mod(D, Mod② and Mod③, respectively. The operation period was computed as ~21 years when the reference TBR 〉 1.05 for a self- sustained reactor for all investigated cases. Blanket energy multiplication values (M) were calculated as 4.18, 4.95 and 3.75 for Mod①, Mod② and Mod③, respectively. The bumup (BU) values were obtained as ~1230, ~1550 and ~1060 GWd tM-1, respectively. As a result, the higher BU were provided with using TRISO particles for all cases in LIFE engine.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(Grant No.2023R1 A2C1004298)a grant from the Human Resources Development program(Grant No.20204010600250)of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),funded by the Ministry of Trade,Industry,and Energy of the Korean Government.
文摘To improve the accuracy of indirect tensile strength for a transversely isotropic rock in the Brazilian test, this study considered the three-dimensional (3D) deformation and the nonlinear stress–strain relationship. A parametric study of a numerical Brazilian test was performed for a general range of elastic constants, revealing that the 3D modeling evaluated the indirect tensile strength up to 40% higher than the plane stress modeling. For the actual Asan gneiss, the 3D model evaluated the indirect tensile strength up to 10% higher and slightly enhanced the accuracy of deformation estimation compared with the plane stress model. The nonlinearity in stress–strain curve of Asan gneiss under uniaxial compression was then considered, such that the evaluated indirect tensile strength was affected by up to 10% and its anisotropy agreed well with the physical intuition. The estimation of deformation was significantly enhanced. The further validation on the nonlinear model is expected as future research.
基金This research was supported by the Defense Research Laboratory Program of the Defense Acquisition Program Administration and Agency for Defense Development of the Republic of Korea.
文摘We estimate the parameters of a Cu plasma generated by an X-pinch by comparing experimentally measured x-rays with synthetic data.A filtered absolute extreme ultraviolet diode array is used to measure time-resolved x-ray spectra with a spectral resolution of∼1 keV in the energy range of 1–10 keV.The synthetic spectra of Cu plasmas with different electron temperatures,electron densities,and fast electron fractions are calculated using the FLYCHK code.For quantitative comparison with the measured spectrum,two x-ray power ratios with three different spectral ranges are calculated.We observe three x-ray bursts in X-pinch experiments with two Cu wires conducted on the SNU X-pinch at a current rise rate of∼0.2 kA/ns.Analysis of the spectra reveals that the first burst comprises x-rays emitted by hot spots and electron beams,with characteristics similar to those observed in other X-pinches.The second and third bursts are both generated by longlived electron beams formed after the neck structure has been completely depleted.In the second burst,the formation of the electron beam is accompanied by an increase in the electron density of the background plasma.Therefore,the long-lived electron beams generate the additional strong x-ray bursts while maintaining a plasma channel in the central region of the X-pinch.Moreover,they emit many hard x-rays(HXRs),enabling the SNU X-pinch to be used as an HXR source.This study confirms that the generation of long-lived electron beams is crucial to the dynamics of X-pinches and the generation of strong HXRs.
基金supported by The Ministry of Trade,Industry,and Energy(20172510102090,20142520100440,20162010201980)Global PhD Fellowship Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2015H1A2A1030756)supported by the National Research Foundation of Korea(NRF)Grant(No.2018R1C1B5045260).
文摘Ensemble-based analyses are useful to compare equiprobable scenarios of the reservoir models.However,they require a large suite of reservoir models to cover high uncertainty in heterogeneous and complex reservoir models.For stable convergence in ensemble Kalman filter(EnKF),increasing ensemble size can be one of the solutions,but it causes high computational cost in large-scale reservoir systems.In this paper,we propose a preprocessing of good initial model selection to reduce the ensemble size,and then,EnKF is utilized to predict production performances stochastically.In the model selection scheme,representative models are chosen by using principal component analysis(PCA)and clustering analysis.The dimension of initial models is reduced using PCA,and the reduced models are grouped by clustering.Then,we choose and simulate representative models from the cluster groups to compare errors of production predictions with historical observation data.One representative model with the minimum error is considered as the best model,and we use the ensemble members near the best model in the cluster plane for applying EnKF.We demonstrate the proposed scheme for two 3D models that EnKF provides reliable assimilation results with much reduced computation time.
文摘In this study,the effects of changing first wall materials and their thicknesses on a reactor were investigated to determine the displacement per atom(DPA)and gas production(helium and hydrogen)in the first wall,as well as the tritium breeding ratio(TBR)in the coolant and tritium breeding zones.Therefore,the modeling of the magnetic fusion reactor was determined based on the blanket parameters of the International Thermonuclear Experimental Reactor(ITER).Stainless steel(SS 316 LNIG),Oxide Dispersion Strengthened Steel alloy(PM2000 ODS),and China low-activation martensitic steel(CLAM)were used as the first wall(FW)materials.Fluoride family molten salt materials(FLiBe,FLiNaBe,FLiPb)and lithium oxide(LiO_(2))were considered the coolant and tritium production material in the blanket,respectively.Neutron transport calculations were performed using the wellknown 3D code MCNP5 using the continuous-energy Monte Carlo method.The built-in continuous energy nuclear and atomic data libraries along with the Evaluated Nuclear Data file(ENDF)system(ENDF/B-V and ENDF/B-VI)were used.Additionally,the activity cross-section data library CLAW-IV was used to evaluate both the DPA values and gas production of the first wall(FW)materials.An interface computer program written in the FORTRAN 90 language to evaluate the MCNP5 outputs was developed for the fusion reactor blanket.The results indicated that the best TBR value was obtained for the use of the FLiPb coolant,whereas depending on the thickness,the first wall replacement period in terms of radiation damage to all materials was between 6 and 11 years.
基金This research was supported financially by the Scientific and Technical Research Council of Turkey(TUBİTAK)under Contract No.112T588The author is grateful to the Scientific and Technical Research Council of Turkey(TUBİTAK)for its financial support。
文摘In the production of AlCuFe alloy for a special application,the growth rate was changed and the results were evaluated.Changes in the eutectic spacing(microstructure)of a material due to the growth rate are known to affect its mechanical,electrical and thermal properties.To evaluate its microstructure,the eutectic composition of Al−32.5wt.%Cu−0.5wt.%Fe was prepared and directional solidification experiments were conducted using a Bridgman-type furnace at a constant temperature gradient(G=8.50 K/mm)and five growth rates(V=8.25,16.60,41.65,90.05,164.80μm/s).The effect of the growth rate on the eutectic spacing was then determined,and the resulting microhardness and ultimate tensile strength were obtained based on the change in the microstructure by regression analysis and Hall−Petch correlations.Despite the fact that the growth rate increased by approximately twenty times,the eutectic spacing decreased by a factor of approximately 5,and these changes in the growth rate and microstructure caused the mechanical properties to change by a factor of approximately 1.5.
文摘Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgrade the thermal performance of heat exchangers.In this numerical study,a finned shell and tube heat exchanger has been designed and different volume concentrations of nanofluid were tested to determine the effect of utilizing nanofluid on heat transfer.Fe_(2)O_(3)/water nanofluids with volume concentration of 1%,1.5% and 2% were utilized as heat transfer fluid in the heat exchanger and the obtained results were compared with pure water.ANSYS Fluent software as a CFD method was employed in order to simulate the mentioned problem.Numerical simulation results indicated the successful utilization of nanofluid in the heat exchanger.Also,increasing the ratio of Fe_(2)O_(3) nanoparticles caused more increment in thermal energy without important pressure drop.Moreover,it was revealed that the highest heat transfer rate enhancement of 19.1% can be obtained by using nanofluid Fe_(2)O_(3)/water with volume fraction of 2%.
基金Supported by the Erciyes University Scientific Research Project Unit(No.FBA-10-3376)
文摘The development of lead-free solders has emerged as one of the key issues in the electronics packaging industries.Bi-Sn-Ag eutectic alloy has been considered as one of the lead-free solder materials that can replace the toxic Pb-Sn eutectic solder without increasing soldering temperature.We investigated the effects of temperature gradient and growth rate on the mechanical,electrical and thermal properties of the BiSn-Ag ternary eutectic alloy.Bi-47 wt%Sn-0.68 wt%Ag alloy was directionally solidified upward with different temperature gradients(G=2.33-5.66 K/mm) at a constant growth rate(V=13.25 μm/s) and with different growth rates(V=6.55-132.83 μm/s) at a constant temperature gradient(G=2.33 K/mm) in the growth apparatus.The microstructures(λ),microhardness(HV),tensile stress(σ),electrical resistivity(ρ),and thermal properties(△H,Cp,Tm) were measured on directionally solidified samples.The dependency of the λ,HV,σ,and ρ on G and V was investigated.According to the experimental results,X values decrease with increasing G and V,but HV,λ,and ρ values increase with increasing G and V.Variations of electrical resistivity(ρ) for cast samples with the temperature in the range of 300-400 K were also measured by using a standard dc four-point probe technique.The enthalpy of fusion(△H) and specific heat(Cp) for the same alloy was also determined by means of differential scanning calorimeter(DSC) from heating trace during the transformation from eutectic liquid to eutectic solid.
基金support from Swiss National Science Foundation(Grant No.IZLCZ0_189882)funded by PRC-CNRS Joint Research Project(Grant No.5181101856)supported by the Korea-EU Joint Research Support Program of the National Research Foundation of Korea through a grant funded by the Korean Government’s Ministry of Science,ICT and Future Planning(Grant No.NRF-2015K1A3A7A03074226)。
文摘In this study,the combined effects of geometrical distribution and geomechanical deformation of fracture networks on fluid flow through fractured geological media are investigated numerically.We consider a finite-sized model domain in which the geometry of fracture systems follows a power-law length scaling.The geomechanical response of the fractured rock is simulated using a hybrid finitediscrete element model,which can capture the deformation of intact rocks,the interaction of matrix blocks,the displacement of discrete fractures and the propagation of new cracks.Under far-field stress loading,the locally variable stress distribution in the fractured rock leads to a stress-dependent variable aperture field controlled by compression-induced closure and shear-induced dilatancy of rough fractures.The equivalent permeability of the deformed fractured rock is calculated by solving for the fracture-matrix flow considering the cubic relationship between fracture aperture and flow rate at each local fracture segment.We report that the geometrical connectivity of fracture networks plays a critical role in the hydromechanical processes in fractured rocks.A well-connected fracture system under a high stress ratio condition exhibits intense frictional sliding and large fracture dilation/opening,leading to greater rock mass permeability.However,a disconnected fracture network accommodates much less fracture shearing and opening,and has much lower bulk permeability.We further propose an analytical solution for the relationship between the equivalent permeability of fractured rocks and the connectivity metric(i.e.percolation parameter)of fracture networks,which yields an excellent match to the numerical results.We infer that fluid flow through a well-connected system is governed by traversing channels(forming an“in parallel”architecture)and thus equivalent permeability is sensitive to stress loading(due to stress-dependent fracture permeability),whilst fluid flow through a disconnected system is more ruled by matrix(linking isolated clusters“in series”)and has much less stress dependency.
文摘The ultrasonic contact impedance technique and ultrasonic wave velocities have been widely used for non-destructive hardness measurement.Ultrasonic wave velocity shift provides through the thickness average hardness, however, the correlations are performed according to surface hardness. In order to accept this technique as a particular non-destructive method for determination of hardness, it is necessary to test it with industrial applications. A widely used joining(welding) technique is selected for this purpose. Samples of carbon steels with three different carbon contents, but similar composition, are annealed in order to obtain the softened samples with different hardness values. Rockwell B scale hardness of heat treated samples, which are assumed to be isotropic, are determined and correlated with ultrasonic wave velocity shifts. Effect of welding process on hardness is investigated using ultrasonic wave velocity shifts, and the results are verified with destructive hardness measurements.
文摘It is very important to determine the daily horizontal global,diffuse and beam irradiations correctly in planning energy systems,in cost analysis,in the atmosphere,and in the productivity evaluations.Besides,the knowledge of accurate solar irradiation is the most important component of the essential climate variables according to the Global Climate Observing System(GCOS)in August 2010.It is known that the changes of these irradiation parameters directly affect our atmosphere and cloud formation processes.Turkey is one of the countries,which has high solar energy potential by reason of its climatic and regional factors.Especially,Konya and Karaman regions(in Central Anatolia Region)are seen as the most efficient area in where the solar energy systems will be processed.Because of this reason that region has been designated as an Energy Specialized Industrial Zone(ESIZ)in Turkey.Solar energy inputs must carefully be determined in this region where the systems will be installed with respect to the climate and energy efficiency.In this work aims to understand the components of daily solar irradiation on a horizontal surface in selected region are analyzed by using the HELIOSAT method by setting satellite images.Results have been determined by comparing with ground measured data and method were analyzed by using statistical errors.According to the seven-year data,the accuracy of the daily global and diffuse solar irradiations estimation was found acceptable levels.Nevertheless,the estimated results reveal that this method can easily be adapted to any point in the world resembles with the Central Anatolia Region climate type.Especially,the obtained results are significant for the simulation studies such as solar PV power plants performance,payback time,and cost of energy analysis.Also,these results can be used to increase the performance of the solar energy system and to determine long-term a road map for climate change studies.
基金supported by Korea Institute of Geoscience and Mineral Resources(Project No.GP2017-024)Ministry of Trade and Industry [Project No.NP2017-021(20172510102090)]funded by National Research Foundation of Korea(NRF)Grants(Nos.NRF-2017R1C1B5017767,NRF-2017K2A9A1A01092734)
文摘Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that utilizes dynamic data for rejecting an unsuitable training image(TI) among a set of TI candidates and for synthesizing history-matched pseudo-soft data. The proposed method is applied to two cases of channelized reservoirs, which have uncertainty in channel geometry such as direction, amplitude, and width. Distance-based clustering is applied to the initial models in total to select the qualified models efficiently. The mean of the qualified models is employed as a history-matched facies probability map in the next iteration of static models. Also, the most plausible TI is determined among TI candidates by rejecting other TIs during the iteration. The posterior models of the proposed method outperform updated models of ensemble Kalman filter(EnKF) and ensemble smoother(ES) because they describe the true facies connectivity with bimodal distribution and predict oil and water production with a reasonable range of uncertainty. In terms of simulation time, it requires 30 times of forward simulation in history matching, while the EnKF and ES need 9000 times and 200 times, respectively.
文摘In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study describes an experimental method in order to investigate the effects of some significant parameters on heat pump performance.In this regard,a laboratory heat pump setup has been utilized to operate in different working conditions for achieving an appropriate estimation to find out effects of mentioned parameters such as refrigerant type and charge amount,compressor oil viscosity,compressor cooling fan,secondary fluids temperature and flow rate.Different refrigerants have been selected and used as circulating fluid in the installed heat pump.Although this work has been devoted to a detailed attempt to recognize the effects of various parameters on the coefficient of performance(COP) value,an appropriate method has been carried out to survey the obtained results by using economic analysis.It was revealed that one of the main parameters is refrigerant charge amount which has a notable effect on COP.The temperature of the heat source was also tested and the performance of the system increased by more than 11% by employing mentioned modifications and various operating conditions.In addition,by selecting a low viscosity compressor oil,the system performance increased by 18%.This improvement is more than 6% for the case that cooling fan is installed to cool the compressor element.
文摘Synthetic dyes are very important for textile dyeing,paper printing,color photography and petroleum products.Traditional methods of dye removal include biodegradation,precipitation,adsorption,chemical degradation,photo degradation,and chemical coagulation.Dye decolorization with enzymatic reaction is an important issue for several research field(chemistry,environment)In this study,minimum decolorization time of Remazol Brilliant Blue R dye with Horseradish peroxidase enzyme was calculated using with mathematical equation depending on experimental data.Dye decolorization was determined by monitoring the absorbance decrease at the specific maximum wavelength for dye.All experiments were carried out with different initial dye concentrations of Remazol Brilliant Blue R at 25 ℃ constant temperature for 30 minutes.The development of the least squares estimators for a nonlinear model brings about complications not encountered in the case of the linear model.Decolorization times for completely removal of dye were calculated according to equation.It was shown that mathematical equation was conformed exponential curve for dye degradation.
文摘Wireless sensor networks(WSNs)are characterized by their ability to monitor physical or chemical phenomena in a static or dynamic location by collecting data,and transmit it in a collaborative manner to one or more processing centers wirelessly using a routing protocol.Energy dissipation is one of the most challenging issues due to the limited power supply at the sensor node.All routing protocols are large consumers of energy,as they represent the main source of energy cost through data exchange operation.Clusterbased hierarchical routing algorithms are known for their good performance in energy conservation during active data exchange in WSNs.The most common of this type of protocol is the Low-Energy Adaptive Clustering Hierarchy(LEACH),which suffers from the problem of the pseudo-random selection of cluster head resulting in large power dissipation.This critical issue can be addressed by using an optimization algorithm to improve the LEACH cluster heads selection process,thus increasing the network lifespan.This paper proposes the LEACH-CHIO,a centralized cluster-based energyaware protocol based on the Coronavirus Herd Immunity Optimizer(CHIO)algorithm.CHIO is a newly emerging human-based optimization algorithm that is expected to achieve significant improvement in the LEACH cluster heads selection process.LEACH-CHIO is implemented and its performance is verified by simulating different wireless sensor network scenarios,which consist of a variable number of nodes ranging from 20 to 100.To evaluate the algorithm performances,three evaluation indicators have been examined,namely,power consumption,number of live nodes,and number of incoming packets.The simulation results demonstrated the superiority of the proposed protocol over basic LEACH protocol for the three indicators.
基金financially supported by the Research Program from Korea Institute of Industrial Technology(EM220011)the Technology Innovation Program(20020229,Development of technology for manufacturing catalysts and electrode parts by use of low contents precious metals of rare metals) funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)+2 种基金the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(2022R1F1A1072569)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science,ICT & Future Planning(NRF2020R1C1C1010493)“Regional Innovation Strategy(RIS)” through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE)(2021RIS-004)。
文摘Development of electrodes with high electrocatalytic activity and stability is essential for solving problems that still restrict the extensive application of vanadium redox flow batteries(VRFBs).Here,we designed a novel negative electrode with superior electrocatalytic activity by tailoring nitrogen functional groups,such as newly formed nitro and pyridinic-N transformed to pyridonic-N,from the prenitrogen-doped electrode.It was experimentally confirmed that an electrode with pyridonic-N and nitro fuctional groups(tailored nitrogen-doped graphite felt,TNGF) has superior electrocatalytic acivity with enhanced electron and mass transfer.Density functional theory calulations demonstrated the pyridonic-N and nitro functional groups promoted the adsorption,charge transfer,and bond formation with the vanadium species,which is consistent with expermental results.In addition,the V2+/V3+redox reaction mechanism on pyridonic-N and nitro functional groups was estabilised based on density functional theory(DFT) results.When TNGF was applied to a VRFB,it enabled enhanced-electrolyte utilization and energy efficiencies(EE) of 57.9% and 64.6%,respectively,at a current density of 250 mA cm^(-2).These results are 18.6% and 8.9% higher than those of VRFB with electrode containing graphitic-N and pyridinicN groups.Interestingly,TNGF-based VRFB still operated with an EE of 59% at a high current density of300 mA cm^(-2).The TNGF-based VRFB exhibited stable cycling performance without noticeable decay of EE over 450 charge-discharge cycles at a current density of 250 mA cm^(-2).The results of this study suggest that introducing pyridonic-N and nitro groups on the electrode is effective for improving the electrochemical performance of VRFBs.
文摘This study delves into the combustion behavior of various lignite types within a circulating fluidized bed boiler(CFBB),with a primary focus on the impact of different bed material sphericity ratios(0.5,0.7,and 0.9).Utilizing bed material with a sphericity ratio of 0.9 sourced from theÇan power plant and verified through experimentation,the research reveals several key findings.Notably,furnace temperatures tended to rise with higher sphericity ratios,albeit with variations between lignite types,particularly highlighting the complexity of this relationship in the case of GLI-Tunçbilek lignite.Pressure levels in the combustion chamber remained consistent across different sphericity ratios,indicating minimal influence on pressure dynamics.Improved combustion efficiency,especially at the bottom of the boiler,was observed at lower sphericity levels(0.5 and 0.7)forÇan lignite,as reflected in CO_(2) mole fractions.While NO_(x) emissions generally decreased with lower sphericity,the sensitivity to sphericity varied by lignite type,with Ilgın lignite showcasing low NO_(x) but high SO_(2) emissions,underscoring the intricate interplay between lignite properties,sphericity,and emissions.Overall,this study advances our understanding of CFBB combustion dynamics,offering insights valuable for optimizing performance and emissions control,particularly in lignite-based power.