The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum ...The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum generation potential and formulate effective exploration strategies.In this study,a comprehensive geochemical analysis was carried out on ten Paleocene rock cuttings extracted from TP-1,a discovery well within the Tano Basin.Various analytical techniques,including total organic carbon(TOC)analysis,Rock–Eval pyrolysis,gas chromatography-mass spectrometry,and isotope ratio-mass spectrometry,were employed to elucidate their hydrocar-bon potential and organic facies.Thefindings in this study were subsequently compared to existing geochemical data on Paleocene source rocks in the South Atlantic marginal basins.The results indicated that the Paleocene samples have TOC content ranging from 0.68 to 2.93 wt%.The prevalent kerogen types identified in these samples were Type Ⅱ and Type Ⅲ.Molecular and isotope data suggest that the organic matter found in the Paleocene mudrocks can be traced back to land plants and lower aquatic organisms.These mudrocks were deposited in a transi-tional environment withfluctuating water salinity,charac-terized by sub-oxic redox conditions.Maturity indices,both bulk and molecular,indicated a spectrum of maturity levels within the Paleocene mudrocks,spanning from immature to marginally mature,with increasing maturity observed with greater depth.In comparison,the organic composition and depositional environments of Paleocene source rocks in the Tano Basin closely resemble those found in the Niger Delta Basin,Douala,and Kribi-Campo Basins,the Kwanza Formation in Angola,and certain Brazilian marginal basins.However,it is worth noting that Paleocene source rocks in some of the basins,such as the Niger Delta and Brazilian marginal basins,exhibit rela-tively higher thermal maturity levels compared to those observed in the current Paleocene samples from the Tano Basin.In conclusion,the comprehensive geochemical analysis of Paleocene mudrocks within Ghana’s Tano Basin has unveiled their marginal hydrocarbon generation potential.The shared geochemical characteristics between the Paleocene mudrocks in the Tano Basin and those in the nearby South Atlantic marginal basins offer valuable insights into source rock quality,which is crucial for shaping future strategies in petroleum exploration in this region.展开更多
This article presents a research study of complex limestone karst engineering-geological conditions in the municipality Valaskanear Banska Bystrica in Slovakia.The aim of the study is to demonstrate the impossibility ...This article presents a research study of complex limestone karst engineering-geological conditions in the municipality Valaskanear Banska Bystrica in Slovakia.The aim of the study is to demonstrate the impossibility of spatial identification of cave spaces using surface geophysical methods due to the specific engineering-geological conditions of a thick surface layer of anthropogenic fill containing highly heterogeneous anthropogenic material.Its maximum thickness is 3 m.Another specificific condition of the study area is its location in the built-up area,due to which the applicability of geophysical methods was limited.The article contains methodological recommendations to be used in analogous geological conditions with karst structures topped with anthropogenic fill,which complicates the identification of cave spaces.The recommended solution herein is the identification of the cave system using underground mapping of the karst and its projection onto the surface for which surface geophysical methods have been combined.展开更多
The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of su...The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.展开更多
Understanding the topography in active tectonic areas and assessing the rates and models of active deformation in the upper crust are primary objectives in tectonic geomorphology studies. The drainage pattern of river...Understanding the topography in active tectonic areas and assessing the rates and models of active deformation in the upper crust are primary objectives in tectonic geomorphology studies. The drainage pattern of river systems is highly sensitive to tectonically induced changes, and it often preserves the records of the formation and progression of most tectono-geomorphic processes within its boundaries. Therefore, the evolution of landforms is a consequence of the evolution of individual drainage basins in which they are formed. Assessing the rates of tectonic deformation using geomorphic data is a traditionally adopted method to characterize the nature of active faults. Globally, the Digital Elevation Model(DEM) is widely used as a crucial tool to analyze the morphotectonic features of drainage basins. In this study, some geomorphic indices were applied to investigate the impact of tectonism on landscape along the Karahay?t Fault and its associated drainage areas. These geomorphic indices are mountain front sinuosity(Smf values between 1.17-1.52), valley floor width-to-height ratio(Vf values between 0.25-1.46), basin asymmetry factor(AF values between 15-72), drainage basin shape(Bs values between 3.18-6.01), hypsometric integral and curve(HI values between 0.32-047), channel sinuosity(S values between 1-1.6), normalized steepness index(Ksn values between 1-390) and Chi integral(χ values between 200-4400). The development of drainage areas on the hanging wall and footwall block of the Karahayit Fault differs depending on the uplift. The drainage areas developed on the hanging wall present different patterns depending on the regional uplift caused by the fault. This reveals that the fault contributed significantly to the development of drainage areas and regional uplift in the region. In addition, the maximum earthquake magnitude that may occur in the future on the Karahayit Fault, whose activity is supported by geomorphic indices, is calculated as 6.23. Since an earthquake of this magnitude may cause loss of life and property in the region, precautions should be taken.展开更多
Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha...Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.展开更多
The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-un...The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-unique critical state of soils,because the distance between the compression line and critical state line charged by strain-rate effect is basically neglected.To fill this gap,a generalized spacing ratio of soils is defined in the elasto-viscoplastic framework,and a bounding surface visco-plasticity model is formulated and verified,which can consider the generalized spacing ratio.Specifically,the generalized spacing ratio of soils reflects the distance between the compression line and the critical state line of soils with time-dependent behaviors.Then,the generalized spacing ratio is introduced into an improved anisotropic bounding surface.A new expression of the visco-plastic multiplier is derived by solving the consistency equation of an anisotropic bounding surface.In the expression,a strain rate index is proposed to account for the strain-rate effect on visco-plastic strain increment,and a visco-plastic hardening modulus is derived to predict the visco-plastic response of soils in overconsolidation conditions.The model is then verified through constant strain rate tests and creep tests.Notably,it can capture the non-unique critical states of soils with time-dependent behaviors due to the generalized spacing ratio and the creep rupture of soils due to the visco-plastic multiplier that considers the stress ratio and visco-plastic strain rate.展开更多
Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel...Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel insights into physical criteria for delineating surface fault-rupture hazard zones(SRHZs)along ruptured strike-slip faults.To achieve this objective,three trench studies across the surface rupture were conducted on the Pazarcık segment of the EAFZ to collect field data,and earthquake recurrence intervals were interpreted using Bayesian statistics from previously conducted paleoseismological trenchings.The results of the proposed model indicate that the Pazarcık segment produced five significant surface-rupturing earthquakes in the last∼11 kyr:E1:11.13±1.74 kyr,E2:7.62±1.20 kyr,E3:5.34±1.05 kyr,E4:1.82±0.93 kyr,and E5:0.35±0.11 kyr.In addition,the recurrence intervals of destructive earthquakes on the subject in question range from 0.6 kyr to 4.8 kyr.Considering that the last significant earthquake occurred in 1513,the longest time since the most recent surface fault rupturing earthquake on this particular segment was 511 years.These results indicate that,in terms of the theoretical recurrence interval of earthquakes that can create surface ruptures on the Pazarcık segment,the period in which the February 6,2023,earthquake occurred was within the end of the expected return period.As a result,the potential for a devastating earthquake in the near future is not foreseen on the same fault.Finally,the SRHZ proposed for the Pazarcık section of Gölbaşıvillage was calculated as a 61-meter-wide offset on the fault lineament to reduce the negativities that may occur in the ruptured area in the future.It is recommended to take into account this width in the settlement of this area and nearby areas.展开更多
The Editor in Chief has retracted this article.After publication,concerns were raised over potentially inconsistent data-for example,the author mentioned residual soil with silt fraction,but Fig.5 shows even the small...The Editor in Chief has retracted this article.After publication,concerns were raised over potentially inconsistent data-for example,the author mentioned residual soil with silt fraction,but Fig.5 shows even the smallest grains are beyond silt grains.Further analysis showed that Fig.6 and Fig.9 show both loose and dense soils exhibiting very similar dilatance behaviour,which is not typical.The author shared raw data,but it was incomplete and could not be verified.The Editor in Chief,therefore,has lost confidence in the findings of this article.The author does not agree to this retraction.展开更多
Volcanic arcs such as the Barisan Mountains have been identified as attractive areas for the utilization of geothermal energy,as exemplified by Ulubelu in Lampung and Sarulla in North Sumatra.However,environmental fac...Volcanic arcs such as the Barisan Mountains have been identified as attractive areas for the utilization of geothermal energy,as exemplified by Ulubelu in Lampung and Sarulla in North Sumatra.However,environmental factors in the Barisan Mountains remain a primary obstacle to the exploration and exploitation of geothermal energy.The back-arc basins of Sumatra exhibit the highest heat flow worldwide;however,the heat source in this area remains a controversial issue.This study aims to investigate the origin of the high heat flow in the back-arc basins of Sumatra(North,Central,and South Sumatra basins)based on geothermal data from 384 oil wells and the current literature for geological evaluation.The findings of this study indicate that the back-arc basins of Sumatra experienced severe extensional deformation during the Tertiary Period through a large pull-apart and slab rollback mechanism.This deformation resulted in the thinning of the continental crust in this region(27-32 km)and the formation of multiple normal faults.Consequently,the presence of magma resulting from mantle upwelling implies a high heat flow in the back-arc basins of Sumatra.This condition ranks the back-arc basins of Sumatra among the highest heat flow regions of the world,with heat flows>100 mW/m^(2).These findings indicate that the back-arc basins of Sumatra have significant opportunities to exploit their geothermal energy potential.This study provides novel insights into the potential of geothermal energy,particularly in the back-arc basins of Sumatra.展开更多
The presence of geothermal manifestation in Bangka Island(Southeast Sumatra,Indonesia)with the absence of Quaternary volcanic activity and also relatively low seismicity events has raised intriguing questions on the c...The presence of geothermal manifestation in Bangka Island(Southeast Sumatra,Indonesia)with the absence of Quaternary volcanic activity and also relatively low seismicity events has raised intriguing questions on the control of the geothermal system in this area.As the regional tectonic setting of Indonesia volcanic geothermal systems has been known,that of non-volcanic geothermal systems such as radiogenic system become an issue to be investigated.This study reports the geochemistry and petrography analysis of Triassic granite related to radiogenic production at the vicinity of hot springs in Bangka Island.Surface temperatures of the Bangka hot springs range from 37 to 70.7 and pH values vary between 5.6 and 7.5.These hot springs are discharging either in close to massive granite bodies or occur in between two major NE-SW striking faults zones,i.e.,Pemali fault and Payung fault.Our results indicate the average radiogenic heat production of Late Triassic Klabat granite in the northern area ranges from 28.5 to 38.34μWm^(-3)and the southern area ranges from 28.3 to 49.5μWm^(-3).In comparison to similar granite belt located in Malaysia,heat production of granitoid in Bangka hot springs is four times higher,possibly due to their different granite origins.展开更多
The objective of this paper is to demonstrate necessity to inform relevant parties about engineering-geological conditions for various practical purposes, especially including appropriate land-use planning. However, t...The objective of this paper is to demonstrate necessity to inform relevant parties about engineering-geological conditions for various practical purposes, especially including appropriate land-use planning. However, the relationship between relevant geological information and the geological environment is vital for foundation engineering purposes, especially where demanding structures are involved. This information is most conveniently structured when accumulated information concerning engineering-geological zones is utilized. This necessarily includes knowledge of rock workability and also of the pre-Quaternary bedrock, and these characteristics were then related to the current built-up area and future development according to the land-use plans in a case study are from the Petrvald Region (Czech Republic). The geological environment of area has been severely influenced by anthropogenic effects of deep black coal mining. Results of this research showed that future development should be founded on spoil banks, dumps, and settling basins. According to the land-use plan, this zone occupies 44.9% of the area of interest, and its materials predominantly emanate from mining in the Ostrava-Karvina Coal District. For future foundation structures planned there, it is imperative to consult detailed engineering-geological study. However, attention to and reliance on this necessity is not reflected in the existing land-use plan.展开更多
Granitoids at Butre area, south-western part of the Birimian of Ghana are gabbro to granodiorite which intruded comagmatic basalt and andesite of volcanic island arc setting. Differentiation was from probably mantle f...Granitoids at Butre area, south-western part of the Birimian of Ghana are gabbro to granodiorite which intruded comagmatic basalt and andesite of volcanic island arc setting. Differentiation was from probably mantle fractionates on tholeiitic basalt trend through gabbro-diorite and granodiorite. Yet, the diorite intruded into the volcanic rocks prior to plate collision. Plagioclase feldspars of labradorite to andesine compositions (An<sub>52</sub> - An<sub>48</sub>), amphibole and pyroxene are in association with accessory tourmaline, actinolite, apatite and garnet. Relict amphibolite facies metamorphism is preserved in xenoliths in gabbro to diorite which show greenschist facies. Generally, plagioclase is partially altered to fine quartz, sericite and carbonates whereas chlorite and epidote are of amphibole alteration. These alterations are typical of carbonatisation but diorite shows partial carbonate-sericite alteration. Alterations followed granodiorite emplacement. Arsenopyrite and pyrite accompanied emplacement of diorite and granodiorite respectively while amphibolite facies metamorphism introduced magnetite;haematite and pyrrhotite accompanied greenschist facies metamorphism. Earlier opaque minerals possibly were consumed to form later minerals. All the rocks are LREE depleted (La/Sm chondrite normalised ratios of basalt = 0.8 to 2.5;andesite = 2.03;diorite = 1.95 to 3.1;gabbro-diorite = 0.9 to 2.05;granodiorite = 1.66);diorite, basalt and andesite are fairly enriched in HREE. Enrichment of FeO<sub>T</sub>, MgO, SiO<sub>2</sub>, CaO and depletion of TiO<sub>2</sub>, K<sub>2</sub>O and Zr might be linked with carbonitisation, sericitisation, chloritisation, silicification and sulphidation linked to gold mineralisations in the Birimian of Ghana.展开更多
In this study, the geological, petrographical properties of rhyolitic tuffs exposed around ?an-Etili in the Biga Peninsula (NW Turkey) which are pyroclastic products of Late Oligocene-Early Miocene aged ?an Volcanism ...In this study, the geological, petrographical properties of rhyolitic tuffs exposed around ?an-Etili in the Biga Peninsula (NW Turkey) which are pyroclastic products of Late Oligocene-Early Miocene aged ?an Volcanism were investigated, also physical and mechanical characteristics of tuffs introduced and tried to determine the impact on engineering properties of petrographical features. In the region, rhyolitic tuffs called locally “?an stone” have been used as covering and building stones for many years. These tuffs generally have light yellowish, beige, brown colored and different patterns with light yellowish, cream, reddish and brown colors caused by iron oxidation of hydrothermal alteration. They are preferred as coatings and decorative stone with these patterns. ?an stone which consisted of rhyolitic composition, lithic and locally crystalline tuffs has compact structure. The mineral assemblage of tuffs is mainly composed of quartz, plagioclase, rarely biotite, amphibole (hornblende) phenocrystals and opaque mineral with particles of volcanic glass and lithic fragments. Not only petrographical and geochemical analyses were carried out but also standard rock mechanic tests (unit weight, specific gravity, porosity, water absorption and uniaxial compressive strength) on rhyolitic tuffs samples collected from four different quarries (Hoppa Hill, Halilaga, Uzunalan, Dereoba). Simple regression analysis of test results obtained from four different regions and correlations were found good correlation between engineering proper- ties and the petrographical and chemical properties of rhyolitic tuffs.展开更多
Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rock...Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas.展开更多
The Goshgarchay Cu-Au deposit is located in the central part of the northwest flank of the Murovdagh region in the Lesser Caucasus.The Goshgarchay Cu-Au deposit is associated with Middle Jurassic volcanic and Late Jur...The Goshgarchay Cu-Au deposit is located in the central part of the northwest flank of the Murovdagh region in the Lesser Caucasus.The Goshgarchay Cu-Au deposit is associated with Middle Jurassic volcanic and Late Jurassic-Early Cretaceous high-K calc-alkaline intrusive rocks.The Cu-Au mineralization is commonly related to quartz-sericite-chlorite alteration dominantly composed of chalcopyrite,gold,sphalerite,pyrite,bornite,hematite,covellite,chalcocite,malachite,and azurite.The Goshgarchay copper-gold deposit,which is 600 m wide and approximately 1.2 km long,is seen as a faultcontrolled and vein-,stockwork-and disseminated type deposit.The Goshgarchay Cu-Au deposit predominantly comprises Cu(max.64500 ppm)and Au(max.11.3 ppm),while it comprises relatively less amounts Zn(max.437 ppm),Mo(max.47.5 ppm),Pb(max.134 ppm),and Ag(max.21 ppm).The homogenization temperatures and salinities of fluid inclusions in quartz for stage Ⅰ range from 380℃ to 327℃,and 6.9 wt% to 2.6 wt% NaCl eq.,respectively.Thand salinities in quartz for stage Ⅱ range from 304℃ to 253℃,and 7.6 wt% to 3.2 wt% NaCl eq.,respectively.The calculated δ^(34)S_(h2s)values(-1.5‰ to 5.5‰)of sulfides and especially the narrow range of δ^(34)S_(h2s) values of chalcopyrite and bornite(between -0.07‰ and +0.7‰)indicate that the source of the Goshgarchay Cu-Au mineralization is magmatic.Based on the mineralogical,geochemical,fluid inclusion,and sulfur isotopic data,the Goshgarchay Cu-Au deposit represents a late stage peripheral magmatic-hydrothermal mineralization probably underlain by a concealed porphyry deposit.展开更多
In the past two decades,because of the significant increase in the availability of differential interferometry from synthetic aperture radar and GPS data,spaceborne geodesy has been widely employed to determine the co...In the past two decades,because of the significant increase in the availability of differential interferometry from synthetic aperture radar and GPS data,spaceborne geodesy has been widely employed to determine the co-seismic displacement field of earthquakes.On April 18,2021,a moderate earthquake(Mw 5.8)occurred east of Bandar Ganaveh,southern Iran,followed by intensive seismic activity and aftershocks of various magnitudes.We use two-pass D-InSAR and Small Baseline Inversion techniques via the LiCSBAS suite to study the coseismic displacement and monitor the four-month post-seismic deformation of the Bandar Ganaveh earthquake,as well as constrain the fault geometry of the co-seismic faulting mechanism during the seismic sequence.Analyses show that the co-and postseismic deformation are distributed in relatively shallow depths along with an NW-SE striking and NE dipping complex reverse/thrust fault branches of the Zagros Mountain Front Fault,complying with the main trend of the Zagros structures.The average cumulative displacements were obtained from-137.5 to+113.3 mm/yr in the SW and NE blocks of the Mountain Front Fault,respectively.The received maximum uplift amount is approximately consistent with the overall orogen-normal shortening component of the Arabian-Eurasian convergence in the Zagros region.No surface ruptures were associated with the seismic source;therefore,we propose a shallow blind thrust/reverse fault(depth~10 km)connected to the deeper basal decollement fault within a complex tectonic zone,emphasizing the thin-skinned tectonics.展开更多
Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration t...Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration tests on compacted loess with two initial dry densities for different applied vertical stresses were developed using vertical stresscontrollable one-dimensional soil columns.The timehistory curves of vertical deformation,wetting front depth,cumulative infiltration depth,volumetric water content(VWC)and suction were measured,and the soil-water characteristic curves(SWCCs)were determined.The results showed that:(1)the infiltration ability of the soil column weakens with increasing applied vertical stress and initial dry density;(2)vertical deformation increases rapidly at first and then tends to be stable slowly at the consolidation and wetting-induced deformation stage,and is positively correlated with applied vertical stress and is negatively correlated with initial dry density.The stability time of wetting-induced deformation and the corresponding wetting front depth increase with the increase of applied vertical stress,while they decrease obviously when initial dry density increases;(3)the influence of applied vertical stress on soilwater characteristics in soil columns with various initial dry densities is related to the deformation depth of soil column.The VG(Van Genuchten)model is suitable for fitting the SWCCs at different monitoring positions.A normalized SWCC model introducing the applied vertical stress was proposed for each initial dry density using the mathematical relationship between the fitting parameters and the applied vertical stress.展开更多
The basis of accurate mineral resource estimates is to have a geological model which replicates the nature and style of the orebody. Key inputs into the generation of a good geological model are the sample data and ma...The basis of accurate mineral resource estimates is to have a geological model which replicates the nature and style of the orebody. Key inputs into the generation of a good geological model are the sample data and mapping information. The Obuasi Mine sample data with a lot of legacy issues were subjected to a robust validation process and integrated with mapping information to generate an accurate geological orebody model for mineral resource estimation in Block 8 Lower. Validation of the sample data focused on replacing missing collar coordinates, missing assays, and correcting magnetic declination that was used to convert the downhole surveys from true to magnetic, fix missing lithology and finally assign confidence numbers to all the sample data. The missing coordinates which were replaced ensured that the sample data plotted at their correct location in space as intended from the planning stage. Magnetic declination data, which was maintained constant throughout all the years even though it changes every year, was also corrected in the validation project. The corrected magnetic declination ensured that the drillholes were plotted on their accurate trajectory as per the planned azimuth and also reflected the true position of the intercepted mineralized fissure(s) which was previously not the case and marked a major blot in the modelling of the Obuasi orebody. The incorporation of mapped data with the validated sample data in the wireframes resulted in a better interpretation of the orebody. The updated mineral resource generated by domaining quartz from the sulphides and compared with the old resource showed that the sulphide tonnes in the old resource estimates were overestimated by 1% and the grade overestimated by 8.5%.展开更多
The purpose of this study is to determine the distribution and geochemical features of uranium mineralization in the Ragillar region in the Manisa-Koprübasi in western Turkey. Sixteen whole rock samples were coll...The purpose of this study is to determine the distribution and geochemical features of uranium mineralization in the Ragillar region in the Manisa-Koprübasi in western Turkey. Sixteen whole rock samples were collected from sites showing the highest levels of radioactivity (7600 cps) as measured by a gamma spectrometer in the dolomitic limestones. SEM-EDS (Scanning Electron Microscopy-Energy Dispersive Spectrometry), XRF (X-Ray Fluorescence), an ICP-OES (Inductively Coupled Plasma Optic Emission Spectrometer), and a Leco carbon-sulfur analyzer were used to determine the mineralogical and chemical characteristics of the whole rock samples. The mineralogical features showed that uranium mineralization is associated with fluorapatite-rich rocks formed within calcite matrix fractures;cracks systems;and limestone, claystone, marl and silicified breccia zones in the lacustrine sediments that are observed around the Kale crest dolomitic limestones in the Demirci basin. The geochemical data for these samples show a strong positive correlation between uranium and P<sub>2</sub>O<sub>5</sub> concentrations. The geochemical data also indicate that uranium is deposited in the oxidation zone by dissolving the primary minerals (banded gneisses from the Menderes Massif, and dacitic and andesitic tuff) and moving the metal-rich hydrothermal fluids as phosphorus compounds, before passing through fractures, cracks, and permeable sandstone units, or along carbonate and clay layers.展开更多
As significant evidence of permafrost degradation,thermokarst lakes play an important role in the permafrost regions by regulating hydrology,ecology,and biogeochemistry.In the Sources Area of the Yellow River(SAYR),pe...As significant evidence of permafrost degradation,thermokarst lakes play an important role in the permafrost regions by regulating hydrology,ecology,and biogeochemistry.In the Sources Area of the Yellow River(SAYR),permafrost degradation has accelerated since the 1980s,and numerous thermokarst lakes have been discovered.In this paper,we use Sentinel-2 images to extract thermokarst lake boundaries and perform a regional-scale study on their geometry across the permafrost region in the SAYR.We also explored the spatiotemporal variations and potential drivers from the perspectives of the permafrost,climate,terrain and vegetation conditions.The results showed that there were 47,518 thermokarst lakes in 2021 with a total area of 190.22×106 m^(2),with an average size of 4,003.3 m^(2).The 44,928 ponds(≤10,000 m^(2))predominated the whole lake number(94.1%)but contributed to a small portion of the total lake area(28.8%).With 2,590 features(5.9%),small-sized(10,000 to 100,000 m^(2))and large-sized lakes(>100,000 m^(2))constituted up to 71.2%of the total lake area.Thermokarst lakes developed more significantly in warm permafrost regions than in cold permafrost areas;74.1%of lakes with a total area of 119.6×106 m^(2)(62.9%),were distributed in warm permafrost regions.Most thermokarst lakes were likely to develop within the elevation range of 4,500~4,800 m,on flat terrain(slope<10°),on SE and S aspects and in alpine meadow areas.The thermokarst lakes in the study region experienced significant shrinkage between 1990 and 2021,characterized by obvious lake drainage;the lake numbers decreased by 5418(56.1%),with a decreasing area of 58.63×106 m^(2)(49.0%).This shrinkage of the thermokarst lake area was attributable mainly to the intensified degradation of rich-ice permafrost thawing arising from continued climate warming,despite the wetting climatic trend.展开更多
基金funded by the State Key Petroleum Lab of Petroleum Resources and Prospecting at China University of Petroleum (Beijing)
文摘The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum generation potential and formulate effective exploration strategies.In this study,a comprehensive geochemical analysis was carried out on ten Paleocene rock cuttings extracted from TP-1,a discovery well within the Tano Basin.Various analytical techniques,including total organic carbon(TOC)analysis,Rock–Eval pyrolysis,gas chromatography-mass spectrometry,and isotope ratio-mass spectrometry,were employed to elucidate their hydrocar-bon potential and organic facies.Thefindings in this study were subsequently compared to existing geochemical data on Paleocene source rocks in the South Atlantic marginal basins.The results indicated that the Paleocene samples have TOC content ranging from 0.68 to 2.93 wt%.The prevalent kerogen types identified in these samples were Type Ⅱ and Type Ⅲ.Molecular and isotope data suggest that the organic matter found in the Paleocene mudrocks can be traced back to land plants and lower aquatic organisms.These mudrocks were deposited in a transi-tional environment withfluctuating water salinity,charac-terized by sub-oxic redox conditions.Maturity indices,both bulk and molecular,indicated a spectrum of maturity levels within the Paleocene mudrocks,spanning from immature to marginally mature,with increasing maturity observed with greater depth.In comparison,the organic composition and depositional environments of Paleocene source rocks in the Tano Basin closely resemble those found in the Niger Delta Basin,Douala,and Kribi-Campo Basins,the Kwanza Formation in Angola,and certain Brazilian marginal basins.However,it is worth noting that Paleocene source rocks in some of the basins,such as the Niger Delta and Brazilian marginal basins,exhibit rela-tively higher thermal maturity levels compared to those observed in the current Paleocene samples from the Tano Basin.In conclusion,the comprehensive geochemical analysis of Paleocene mudrocks within Ghana’s Tano Basin has unveiled their marginal hydrocarbon generation potential.The shared geochemical characteristics between the Paleocene mudrocks in the Tano Basin and those in the nearby South Atlantic marginal basins offer valuable insights into source rock quality,which is crucial for shaping future strategies in petroleum exploration in this region.
基金the support of the project(SP2017/22)which is the base of this articlepartially supported by the Slovak Research and Development Agency under contract No.APVV-0129-12the Scientific Grant Agency of the Ministry of Education,Science,Research and Sport of the Slovak Republic and the Slovak Academy of Sciences(VEGA)within the project No.1/0559/17 and APVV 1/0462/16。
文摘This article presents a research study of complex limestone karst engineering-geological conditions in the municipality Valaskanear Banska Bystrica in Slovakia.The aim of the study is to demonstrate the impossibility of spatial identification of cave spaces using surface geophysical methods due to the specific engineering-geological conditions of a thick surface layer of anthropogenic fill containing highly heterogeneous anthropogenic material.Its maximum thickness is 3 m.Another specificific condition of the study area is its location in the built-up area,due to which the applicability of geophysical methods was limited.The article contains methodological recommendations to be used in analogous geological conditions with karst structures topped with anthropogenic fill,which complicates the identification of cave spaces.The recommended solution herein is the identification of the cave system using underground mapping of the karst and its projection onto the surface for which surface geophysical methods have been combined.
文摘The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.
文摘Understanding the topography in active tectonic areas and assessing the rates and models of active deformation in the upper crust are primary objectives in tectonic geomorphology studies. The drainage pattern of river systems is highly sensitive to tectonically induced changes, and it often preserves the records of the formation and progression of most tectono-geomorphic processes within its boundaries. Therefore, the evolution of landforms is a consequence of the evolution of individual drainage basins in which they are formed. Assessing the rates of tectonic deformation using geomorphic data is a traditionally adopted method to characterize the nature of active faults. Globally, the Digital Elevation Model(DEM) is widely used as a crucial tool to analyze the morphotectonic features of drainage basins. In this study, some geomorphic indices were applied to investigate the impact of tectonism on landscape along the Karahay?t Fault and its associated drainage areas. These geomorphic indices are mountain front sinuosity(Smf values between 1.17-1.52), valley floor width-to-height ratio(Vf values between 0.25-1.46), basin asymmetry factor(AF values between 15-72), drainage basin shape(Bs values between 3.18-6.01), hypsometric integral and curve(HI values between 0.32-047), channel sinuosity(S values between 1-1.6), normalized steepness index(Ksn values between 1-390) and Chi integral(χ values between 200-4400). The development of drainage areas on the hanging wall and footwall block of the Karahayit Fault differs depending on the uplift. The drainage areas developed on the hanging wall present different patterns depending on the regional uplift caused by the fault. This reveals that the fault contributed significantly to the development of drainage areas and regional uplift in the region. In addition, the maximum earthquake magnitude that may occur in the future on the Karahayit Fault, whose activity is supported by geomorphic indices, is calculated as 6.23. Since an earthquake of this magnitude may cause loss of life and property in the region, precautions should be taken.
基金supported by the Project of Qinghai Science&Technology Department(Grant No.2021-ZJ-956Q).
文摘Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.
基金the financial support provided by the National Key R&D Program of China(Grant No.2023YFC3008400)National Natural Science Foundation of China(Grant No.42102317)Qin Chuangyuan“Scientist+Engineer”Team Construction Project of Shaanxi Province in China(Grant No.2023KXJ-178).
文摘The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-unique critical state of soils,because the distance between the compression line and critical state line charged by strain-rate effect is basically neglected.To fill this gap,a generalized spacing ratio of soils is defined in the elasto-viscoplastic framework,and a bounding surface visco-plasticity model is formulated and verified,which can consider the generalized spacing ratio.Specifically,the generalized spacing ratio of soils reflects the distance between the compression line and the critical state line of soils with time-dependent behaviors.Then,the generalized spacing ratio is introduced into an improved anisotropic bounding surface.A new expression of the visco-plastic multiplier is derived by solving the consistency equation of an anisotropic bounding surface.In the expression,a strain rate index is proposed to account for the strain-rate effect on visco-plastic strain increment,and a visco-plastic hardening modulus is derived to predict the visco-plastic response of soils in overconsolidation conditions.The model is then verified through constant strain rate tests and creep tests.Notably,it can capture the non-unique critical states of soils with time-dependent behaviors due to the generalized spacing ratio and the creep rupture of soils due to the visco-plastic multiplier that considers the stress ratio and visco-plastic strain rate.
基金This contribution was partially supported by the Turkish government through the 1002-C project in Natural Disasters Focused Fieldwork Emergency Support Program managed by the TUBITAK.I am grateful to F.Koçbulut and S.Koşaroğlu for helping me with the trenching studies.I also gratefully acknowledge H.Sözbilir,M.Nas,and E.Akgün for comments and suggestions.Furthermore,I extend my gratitude to the anonymous referees for their constructive criticisms and insightful feedback during the evaluation phase of this manuscript.
文摘Following surface rupture observations in populated areas affected by the KahramanmaraşEarthquake(Mw 7.7)on February 6th,2023,along the Pazarcık segment of the East Anatolian Fault Zone(EAFZ),this study presents novel insights into physical criteria for delineating surface fault-rupture hazard zones(SRHZs)along ruptured strike-slip faults.To achieve this objective,three trench studies across the surface rupture were conducted on the Pazarcık segment of the EAFZ to collect field data,and earthquake recurrence intervals were interpreted using Bayesian statistics from previously conducted paleoseismological trenchings.The results of the proposed model indicate that the Pazarcık segment produced five significant surface-rupturing earthquakes in the last∼11 kyr:E1:11.13±1.74 kyr,E2:7.62±1.20 kyr,E3:5.34±1.05 kyr,E4:1.82±0.93 kyr,and E5:0.35±0.11 kyr.In addition,the recurrence intervals of destructive earthquakes on the subject in question range from 0.6 kyr to 4.8 kyr.Considering that the last significant earthquake occurred in 1513,the longest time since the most recent surface fault rupturing earthquake on this particular segment was 511 years.These results indicate that,in terms of the theoretical recurrence interval of earthquakes that can create surface ruptures on the Pazarcık segment,the period in which the February 6,2023,earthquake occurred was within the end of the expected return period.As a result,the potential for a devastating earthquake in the near future is not foreseen on the same fault.Finally,the SRHZ proposed for the Pazarcık section of Gölbaşıvillage was calculated as a 61-meter-wide offset on the fault lineament to reduce the negativities that may occur in the ruptured area in the future.It is recommended to take into account this width in the settlement of this area and nearby areas.
文摘The Editor in Chief has retracted this article.After publication,concerns were raised over potentially inconsistent data-for example,the author mentioned residual soil with silt fraction,but Fig.5 shows even the smallest grains are beyond silt grains.Further analysis showed that Fig.6 and Fig.9 show both loose and dense soils exhibiting very similar dilatance behaviour,which is not typical.The author shared raw data,but it was incomplete and could not be verified.The Editor in Chief,therefore,has lost confidence in the findings of this article.The author does not agree to this retraction.
文摘Volcanic arcs such as the Barisan Mountains have been identified as attractive areas for the utilization of geothermal energy,as exemplified by Ulubelu in Lampung and Sarulla in North Sumatra.However,environmental factors in the Barisan Mountains remain a primary obstacle to the exploration and exploitation of geothermal energy.The back-arc basins of Sumatra exhibit the highest heat flow worldwide;however,the heat source in this area remains a controversial issue.This study aims to investigate the origin of the high heat flow in the back-arc basins of Sumatra(North,Central,and South Sumatra basins)based on geothermal data from 384 oil wells and the current literature for geological evaluation.The findings of this study indicate that the back-arc basins of Sumatra experienced severe extensional deformation during the Tertiary Period through a large pull-apart and slab rollback mechanism.This deformation resulted in the thinning of the continental crust in this region(27-32 km)and the formation of multiple normal faults.Consequently,the presence of magma resulting from mantle upwelling implies a high heat flow in the back-arc basins of Sumatra.This condition ranks the back-arc basins of Sumatra among the highest heat flow regions of the world,with heat flows>100 mW/m^(2).These findings indicate that the back-arc basins of Sumatra have significant opportunities to exploit their geothermal energy potential.This study provides novel insights into the potential of geothermal energy,particularly in the back-arc basins of Sumatra.
基金upported by Penelitian Disertasi Doktor grant of Ministry of Education,Culture,Research and Technology of Indonesia(0267/E5/AK.04/2022)scholarship from Institut Teknologi Sumatera.
文摘The presence of geothermal manifestation in Bangka Island(Southeast Sumatra,Indonesia)with the absence of Quaternary volcanic activity and also relatively low seismicity events has raised intriguing questions on the control of the geothermal system in this area.As the regional tectonic setting of Indonesia volcanic geothermal systems has been known,that of non-volcanic geothermal systems such as radiogenic system become an issue to be investigated.This study reports the geochemistry and petrography analysis of Triassic granite related to radiogenic production at the vicinity of hot springs in Bangka Island.Surface temperatures of the Bangka hot springs range from 37 to 70.7 and pH values vary between 5.6 and 7.5.These hot springs are discharging either in close to massive granite bodies or occur in between two major NE-SW striking faults zones,i.e.,Pemali fault and Payung fault.Our results indicate the average radiogenic heat production of Late Triassic Klabat granite in the northern area ranges from 28.5 to 38.34μWm^(-3)and the southern area ranges from 28.3 to 49.5μWm^(-3).In comparison to similar granite belt located in Malaysia,heat production of granitoid in Bangka hot springs is four times higher,possibly due to their different granite origins.
基金Czech Science Foundation for their support of project(GACR-105/09/1631)
文摘The objective of this paper is to demonstrate necessity to inform relevant parties about engineering-geological conditions for various practical purposes, especially including appropriate land-use planning. However, the relationship between relevant geological information and the geological environment is vital for foundation engineering purposes, especially where demanding structures are involved. This information is most conveniently structured when accumulated information concerning engineering-geological zones is utilized. This necessarily includes knowledge of rock workability and also of the pre-Quaternary bedrock, and these characteristics were then related to the current built-up area and future development according to the land-use plans in a case study are from the Petrvald Region (Czech Republic). The geological environment of area has been severely influenced by anthropogenic effects of deep black coal mining. Results of this research showed that future development should be founded on spoil banks, dumps, and settling basins. According to the land-use plan, this zone occupies 44.9% of the area of interest, and its materials predominantly emanate from mining in the Ostrava-Karvina Coal District. For future foundation structures planned there, it is imperative to consult detailed engineering-geological study. However, attention to and reliance on this necessity is not reflected in the existing land-use plan.
文摘Granitoids at Butre area, south-western part of the Birimian of Ghana are gabbro to granodiorite which intruded comagmatic basalt and andesite of volcanic island arc setting. Differentiation was from probably mantle fractionates on tholeiitic basalt trend through gabbro-diorite and granodiorite. Yet, the diorite intruded into the volcanic rocks prior to plate collision. Plagioclase feldspars of labradorite to andesine compositions (An<sub>52</sub> - An<sub>48</sub>), amphibole and pyroxene are in association with accessory tourmaline, actinolite, apatite and garnet. Relict amphibolite facies metamorphism is preserved in xenoliths in gabbro to diorite which show greenschist facies. Generally, plagioclase is partially altered to fine quartz, sericite and carbonates whereas chlorite and epidote are of amphibole alteration. These alterations are typical of carbonatisation but diorite shows partial carbonate-sericite alteration. Alterations followed granodiorite emplacement. Arsenopyrite and pyrite accompanied emplacement of diorite and granodiorite respectively while amphibolite facies metamorphism introduced magnetite;haematite and pyrrhotite accompanied greenschist facies metamorphism. Earlier opaque minerals possibly were consumed to form later minerals. All the rocks are LREE depleted (La/Sm chondrite normalised ratios of basalt = 0.8 to 2.5;andesite = 2.03;diorite = 1.95 to 3.1;gabbro-diorite = 0.9 to 2.05;granodiorite = 1.66);diorite, basalt and andesite are fairly enriched in HREE. Enrichment of FeO<sub>T</sub>, MgO, SiO<sub>2</sub>, CaO and depletion of TiO<sub>2</sub>, K<sub>2</sub>O and Zr might be linked with carbonitisation, sericitisation, chloritisation, silicification and sulphidation linked to gold mineralisations in the Birimian of Ghana.
基金financially supported by The Scientific and Technological Research Council of Turkey(TUBI-TAK.Project No.105Y114)
文摘In this study, the geological, petrographical properties of rhyolitic tuffs exposed around ?an-Etili in the Biga Peninsula (NW Turkey) which are pyroclastic products of Late Oligocene-Early Miocene aged ?an Volcanism were investigated, also physical and mechanical characteristics of tuffs introduced and tried to determine the impact on engineering properties of petrographical features. In the region, rhyolitic tuffs called locally “?an stone” have been used as covering and building stones for many years. These tuffs generally have light yellowish, beige, brown colored and different patterns with light yellowish, cream, reddish and brown colors caused by iron oxidation of hydrothermal alteration. They are preferred as coatings and decorative stone with these patterns. ?an stone which consisted of rhyolitic composition, lithic and locally crystalline tuffs has compact structure. The mineral assemblage of tuffs is mainly composed of quartz, plagioclase, rarely biotite, amphibole (hornblende) phenocrystals and opaque mineral with particles of volcanic glass and lithic fragments. Not only petrographical and geochemical analyses were carried out but also standard rock mechanic tests (unit weight, specific gravity, porosity, water absorption and uniaxial compressive strength) on rhyolitic tuffs samples collected from four different quarries (Hoppa Hill, Halilaga, Uzunalan, Dereoba). Simple regression analysis of test results obtained from four different regions and correlations were found good correlation between engineering proper- ties and the petrographical and chemical properties of rhyolitic tuffs.
基金This work was financially supported by National Natural Science Foundation of China(Grant Nos.U2244226,U2244227 and 42177172).
文摘Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas.
基金financially supported by the Scientific Research Project Coordination of Konya Technical University(Grant No.211007014)。
文摘The Goshgarchay Cu-Au deposit is located in the central part of the northwest flank of the Murovdagh region in the Lesser Caucasus.The Goshgarchay Cu-Au deposit is associated with Middle Jurassic volcanic and Late Jurassic-Early Cretaceous high-K calc-alkaline intrusive rocks.The Cu-Au mineralization is commonly related to quartz-sericite-chlorite alteration dominantly composed of chalcopyrite,gold,sphalerite,pyrite,bornite,hematite,covellite,chalcocite,malachite,and azurite.The Goshgarchay copper-gold deposit,which is 600 m wide and approximately 1.2 km long,is seen as a faultcontrolled and vein-,stockwork-and disseminated type deposit.The Goshgarchay Cu-Au deposit predominantly comprises Cu(max.64500 ppm)and Au(max.11.3 ppm),while it comprises relatively less amounts Zn(max.437 ppm),Mo(max.47.5 ppm),Pb(max.134 ppm),and Ag(max.21 ppm).The homogenization temperatures and salinities of fluid inclusions in quartz for stage Ⅰ range from 380℃ to 327℃,and 6.9 wt% to 2.6 wt% NaCl eq.,respectively.Thand salinities in quartz for stage Ⅱ range from 304℃ to 253℃,and 7.6 wt% to 3.2 wt% NaCl eq.,respectively.The calculated δ^(34)S_(h2s)values(-1.5‰ to 5.5‰)of sulfides and especially the narrow range of δ^(34)S_(h2s) values of chalcopyrite and bornite(between -0.07‰ and +0.7‰)indicate that the source of the Goshgarchay Cu-Au mineralization is magmatic.Based on the mineralogical,geochemical,fluid inclusion,and sulfur isotopic data,the Goshgarchay Cu-Au deposit represents a late stage peripheral magmatic-hydrothermal mineralization probably underlain by a concealed porphyry deposit.
文摘In the past two decades,because of the significant increase in the availability of differential interferometry from synthetic aperture radar and GPS data,spaceborne geodesy has been widely employed to determine the co-seismic displacement field of earthquakes.On April 18,2021,a moderate earthquake(Mw 5.8)occurred east of Bandar Ganaveh,southern Iran,followed by intensive seismic activity and aftershocks of various magnitudes.We use two-pass D-InSAR and Small Baseline Inversion techniques via the LiCSBAS suite to study the coseismic displacement and monitor the four-month post-seismic deformation of the Bandar Ganaveh earthquake,as well as constrain the fault geometry of the co-seismic faulting mechanism during the seismic sequence.Analyses show that the co-and postseismic deformation are distributed in relatively shallow depths along with an NW-SE striking and NE dipping complex reverse/thrust fault branches of the Zagros Mountain Front Fault,complying with the main trend of the Zagros structures.The average cumulative displacements were obtained from-137.5 to+113.3 mm/yr in the SW and NE blocks of the Mountain Front Fault,respectively.The received maximum uplift amount is approximately consistent with the overall orogen-normal shortening component of the Arabian-Eurasian convergence in the Zagros region.No surface ruptures were associated with the seismic source;therefore,we propose a shallow blind thrust/reverse fault(depth~10 km)connected to the deeper basal decollement fault within a complex tectonic zone,emphasizing the thin-skinned tectonics.
基金funded by the Fundamental Research Funds for the Central UniversitiesCHD(Grant No.300102262503)+2 种基金the Natural Science Basic Research Program of Shaanxi(Grants No.2022JM-167)the National Natural Science Foundation of China(Grant Nos.41790442,41772278,41877242,42072311)the Yan’an Science and Technology Plan Project(Grant No.2022SLSFGG-004)。
文摘Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration tests on compacted loess with two initial dry densities for different applied vertical stresses were developed using vertical stresscontrollable one-dimensional soil columns.The timehistory curves of vertical deformation,wetting front depth,cumulative infiltration depth,volumetric water content(VWC)and suction were measured,and the soil-water characteristic curves(SWCCs)were determined.The results showed that:(1)the infiltration ability of the soil column weakens with increasing applied vertical stress and initial dry density;(2)vertical deformation increases rapidly at first and then tends to be stable slowly at the consolidation and wetting-induced deformation stage,and is positively correlated with applied vertical stress and is negatively correlated with initial dry density.The stability time of wetting-induced deformation and the corresponding wetting front depth increase with the increase of applied vertical stress,while they decrease obviously when initial dry density increases;(3)the influence of applied vertical stress on soilwater characteristics in soil columns with various initial dry densities is related to the deformation depth of soil column.The VG(Van Genuchten)model is suitable for fitting the SWCCs at different monitoring positions.A normalized SWCC model introducing the applied vertical stress was proposed for each initial dry density using the mathematical relationship between the fitting parameters and the applied vertical stress.
文摘The basis of accurate mineral resource estimates is to have a geological model which replicates the nature and style of the orebody. Key inputs into the generation of a good geological model are the sample data and mapping information. The Obuasi Mine sample data with a lot of legacy issues were subjected to a robust validation process and integrated with mapping information to generate an accurate geological orebody model for mineral resource estimation in Block 8 Lower. Validation of the sample data focused on replacing missing collar coordinates, missing assays, and correcting magnetic declination that was used to convert the downhole surveys from true to magnetic, fix missing lithology and finally assign confidence numbers to all the sample data. The missing coordinates which were replaced ensured that the sample data plotted at their correct location in space as intended from the planning stage. Magnetic declination data, which was maintained constant throughout all the years even though it changes every year, was also corrected in the validation project. The corrected magnetic declination ensured that the drillholes were plotted on their accurate trajectory as per the planned azimuth and also reflected the true position of the intercepted mineralized fissure(s) which was previously not the case and marked a major blot in the modelling of the Obuasi orebody. The incorporation of mapped data with the validated sample data in the wireframes resulted in a better interpretation of the orebody. The updated mineral resource generated by domaining quartz from the sulphides and compared with the old resource showed that the sulphide tonnes in the old resource estimates were overestimated by 1% and the grade overestimated by 8.5%.
文摘The purpose of this study is to determine the distribution and geochemical features of uranium mineralization in the Ragillar region in the Manisa-Koprübasi in western Turkey. Sixteen whole rock samples were collected from sites showing the highest levels of radioactivity (7600 cps) as measured by a gamma spectrometer in the dolomitic limestones. SEM-EDS (Scanning Electron Microscopy-Energy Dispersive Spectrometry), XRF (X-Ray Fluorescence), an ICP-OES (Inductively Coupled Plasma Optic Emission Spectrometer), and a Leco carbon-sulfur analyzer were used to determine the mineralogical and chemical characteristics of the whole rock samples. The mineralogical features showed that uranium mineralization is associated with fluorapatite-rich rocks formed within calcite matrix fractures;cracks systems;and limestone, claystone, marl and silicified breccia zones in the lacustrine sediments that are observed around the Kale crest dolomitic limestones in the Demirci basin. The geochemical data for these samples show a strong positive correlation between uranium and P<sub>2</sub>O<sub>5</sub> concentrations. The geochemical data also indicate that uranium is deposited in the oxidation zone by dissolving the primary minerals (banded gneisses from the Menderes Massif, and dacitic and andesitic tuff) and moving the metal-rich hydrothermal fluids as phosphorus compounds, before passing through fractures, cracks, and permeable sandstone units, or along carbonate and clay layers.
基金supported by the Natural Science Foundation of Qinghai Province,China(No.2021-ZJ940Q)the Open Project of State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University(No.2022-ZZ-02)。
文摘As significant evidence of permafrost degradation,thermokarst lakes play an important role in the permafrost regions by regulating hydrology,ecology,and biogeochemistry.In the Sources Area of the Yellow River(SAYR),permafrost degradation has accelerated since the 1980s,and numerous thermokarst lakes have been discovered.In this paper,we use Sentinel-2 images to extract thermokarst lake boundaries and perform a regional-scale study on their geometry across the permafrost region in the SAYR.We also explored the spatiotemporal variations and potential drivers from the perspectives of the permafrost,climate,terrain and vegetation conditions.The results showed that there were 47,518 thermokarst lakes in 2021 with a total area of 190.22×106 m^(2),with an average size of 4,003.3 m^(2).The 44,928 ponds(≤10,000 m^(2))predominated the whole lake number(94.1%)but contributed to a small portion of the total lake area(28.8%).With 2,590 features(5.9%),small-sized(10,000 to 100,000 m^(2))and large-sized lakes(>100,000 m^(2))constituted up to 71.2%of the total lake area.Thermokarst lakes developed more significantly in warm permafrost regions than in cold permafrost areas;74.1%of lakes with a total area of 119.6×106 m^(2)(62.9%),were distributed in warm permafrost regions.Most thermokarst lakes were likely to develop within the elevation range of 4,500~4,800 m,on flat terrain(slope<10°),on SE and S aspects and in alpine meadow areas.The thermokarst lakes in the study region experienced significant shrinkage between 1990 and 2021,characterized by obvious lake drainage;the lake numbers decreased by 5418(56.1%),with a decreasing area of 58.63×106 m^(2)(49.0%).This shrinkage of the thermokarst lake area was attributable mainly to the intensified degradation of rich-ice permafrost thawing arising from continued climate warming,despite the wetting climatic trend.