Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collec...Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collected with wireless sensors to monitor and evaluate water quality under different hydrological and hydraulic conditions.The statistical and Pearson correlation analysis on historical water samples determines that alkalinity,chloride,hardness,conductivity,and pH are highly correlated,and they decrease with increasing flow rate due to dilution.The flow rate has positive correlations with Escherichia coli,total suspended solids,and turbidity,which demonstrates that runoff is one of the causes of the elevated bacteria and sediment loadings in the river.The correlation between E.coli and turbidity indicates that turbidity greater than 45 nephelometric turbidity units in the Neches River can serve as a proxy for E.coli to indicate the bacterial outbreak.A series of statistical tools and an innovative two-layer data smoothing filter are developed to detect outliers,fill missing values,and filter spikes of the sensor measurements.The correlation analysis on the sensor data illustrates that the elevated sediment/bacteria/algae in the river is either caused by the first flush rain and heavy rain events in December to March or practices of land use and land cover.Therefore,utilizing sensor measurements along with rainfall and discharge data is recommended to monitor and evaluate water quality,then in turn to provide early alerts on water resources management decisions.展开更多
Recently,tissue engineering (TE)is one of the fast growing research fields due the accessibility of extra-molecular matrix (ECM)at cellular and molecular level with valuable potential prospective of hydrogels.The enha...Recently,tissue engineering (TE)is one of the fast growing research fields due the accessibility of extra-molecular matrix (ECM)at cellular and molecular level with valuable potential prospective of hydrogels.The enhancement in the production of hydrogel-based cellular scaffolds with the structural composition of ECM has been accelerated with involvement of rapid prototyping techniques.Basically,the recreation of ECM has been derived from naturally existed or synthetic hydrogelbased polymers.The rapid utilization of hydrogels in TE puts forward the scope of bioprinfing for the fabrication of the functional biological tissues,cartilage,skin and artificial organs.The main focus of the researchers is on biofabrication of the biomaterials with maintaining the biocompatibility,biodegradability and increasing growth efficiency.In this review, biological development in the structure and cross-linking connections of natural or synthetic hydrogels are discussed.The methods and design criteria that influence the chemical and mechanical properties and interaction of seeding cells before and after the implantations are also demonstrated.The methodology of bioprinting techniques along with recent development has also been reviewed.In the end,some capabilities and shortcomings are pointed out for further development of hydrogels-based scaffolds and selection of bioprinting technology depending on their application.展开更多
Six kinds of micro bridge-beam specimens with different sizes are fabricated using photolithography technology for bending test. Beam specimens with trapezoidal section could be representatives of those with rectangle...Six kinds of micro bridge-beam specimens with different sizes are fabricated using photolithography technology for bending test. Beam specimens with trapezoidal section could be representatives of those with rectangle and square section, which are usually applied in MEMS. Nano indentation method used in bending test can be applied to both elastic and plastic materials. Also, some mechanical properties parameters such as the modulus of elasticity, hardness and the bending strength are obtained. The average modulus of elasticity of SCS is 170.295 0±2.485 0 GPa, showing no size effects, but the bending strength ranges from 3.24 GPa to 10.15 GPa, displaying strong size effects, and the average hardness is 9.496 7±1.753 3 GPa,in which no obvious size effects are observed.展开更多
Through research on the application of hydroviscous speed-adjusting clutch in belt conveyor, this paper concluded that hydroviscous speed-adjusting clutch has many advantages such as controllable start and stop, overl...Through research on the application of hydroviscous speed-adjusting clutch in belt conveyor, this paper concluded that hydroviscous speed-adjusting clutch has many advantages such as controllable start and stop, overload protection and multi-motor power equilibrium. But its theory when used in large power fan and pump could not meet the needs of belt conveyor soft-start operation. Focusing on the theo- retical analysis of the lubrication oil flow needed by the transmission procedure to form the oil-film. Put forward concrete calculation methods of lubrication flow and how to de- cide number of oil-films used in belt conveyor.展开更多
Vaporization behavior (1163-1463 K) of lead in the slag system of FeO-CaO-SiO2-Al2O3 with CaC% was examined. A thermodynamic estimation with the principle of Gibbs free energy minimization showed that the major vapo...Vaporization behavior (1163-1463 K) of lead in the slag system of FeO-CaO-SiO2-Al2O3 with CaC% was examined. A thermodynamic estimation with the principle of Gibbs free energy minimization showed that the major vapor species from the sample of the FeO-CaO-SiO2-Al2O3 system+PbO+CaCl2 were metallic Pb, PbCl, PbCl2, and FeCl2, at the experimental temperature range. The experimental results show that the mole ratio of vaporized Cl in lead chlorides to vaporized Pb, simply expressed as Cl/Pb decreases with increasing temperature. The larger Cl/Pb means a larger ratio of gaseous PbCl2, since metallic Pb and PbCl vapors are formed in a similar reduction atmosphere. The evaporation is initially rapid and becomes steady after holding for 10 min. Gaseous PbCl2 is mainly formed during the heating period, and at the holding stage, it reacts with FeO to produce gaseous FeCl2 With regard to slag composition, FeO content and basicity significantly affect the evaporation of lead. High FeO content and high basicity promotes the formation of metallic Pb and PbCI, whereas, it prohibits PbCl2 evaporation.展开更多
Treating weld toes properly can improve the fatigue performance. Ultrasonic impact treatment (UIT) is a more effective and convenient method to enhance the fatigue strength of welded joints and suchlike structures. ...Treating weld toes properly can improve the fatigue performance. Ultrasonic impact treatment (UIT) is a more effective and convenient method to enhance the fatigue strength of welded joints and suchlike structures. Fatigue tests were conducted on the specimens made of X65 pipeline steel. The test specimens were investigated on the fatigue strength and the fatigue life at the same stress range level by comparing the ones peened by UIT with the others without the treatment: the fatigue strength of the specimens as UIT, 90% of the fatigue strength of the base mental, is increased by 38% compared with that of as welded only; the fatigue life of the ones as UIT is prolonged by 11 multiples of the ones as welded only.展开更多
基金supported by Center for Resiliency(CfR)at Lamar University(Grant No.22PSSO1).
文摘Increasing bacteria levels in the Lower Neches River caused by Hurricane Harvey has been of a serious concern.This study is to analyze the historical water sampling measurements and real-time water quality data collected with wireless sensors to monitor and evaluate water quality under different hydrological and hydraulic conditions.The statistical and Pearson correlation analysis on historical water samples determines that alkalinity,chloride,hardness,conductivity,and pH are highly correlated,and they decrease with increasing flow rate due to dilution.The flow rate has positive correlations with Escherichia coli,total suspended solids,and turbidity,which demonstrates that runoff is one of the causes of the elevated bacteria and sediment loadings in the river.The correlation between E.coli and turbidity indicates that turbidity greater than 45 nephelometric turbidity units in the Neches River can serve as a proxy for E.coli to indicate the bacterial outbreak.A series of statistical tools and an innovative two-layer data smoothing filter are developed to detect outliers,fill missing values,and filter spikes of the sensor measurements.The correlation analysis on the sensor data illustrates that the elevated sediment/bacteria/algae in the river is either caused by the first flush rain and heavy rain events in December to March or practices of land use and land cover.Therefore,utilizing sensor measurements along with rainfall and discharge data is recommended to monitor and evaluate water quality,then in turn to provide early alerts on water resources management decisions.
文摘Recently,tissue engineering (TE)is one of the fast growing research fields due the accessibility of extra-molecular matrix (ECM)at cellular and molecular level with valuable potential prospective of hydrogels.The enhancement in the production of hydrogel-based cellular scaffolds with the structural composition of ECM has been accelerated with involvement of rapid prototyping techniques.Basically,the recreation of ECM has been derived from naturally existed or synthetic hydrogelbased polymers.The rapid utilization of hydrogels in TE puts forward the scope of bioprinfing for the fabrication of the functional biological tissues,cartilage,skin and artificial organs.The main focus of the researchers is on biofabrication of the biomaterials with maintaining the biocompatibility,biodegradability and increasing growth efficiency.In this review, biological development in the structure and cross-linking connections of natural or synthetic hydrogels are discussed.The methods and design criteria that influence the chemical and mechanical properties and interaction of seeding cells before and after the implantations are also demonstrated.The methodology of bioprinting techniques along with recent development has also been reviewed.In the end,some capabilities and shortcomings are pointed out for further development of hydrogels-based scaffolds and selection of bioprinting technology depending on their application.
文摘Six kinds of micro bridge-beam specimens with different sizes are fabricated using photolithography technology for bending test. Beam specimens with trapezoidal section could be representatives of those with rectangle and square section, which are usually applied in MEMS. Nano indentation method used in bending test can be applied to both elastic and plastic materials. Also, some mechanical properties parameters such as the modulus of elasticity, hardness and the bending strength are obtained. The average modulus of elasticity of SCS is 170.295 0±2.485 0 GPa, showing no size effects, but the bending strength ranges from 3.24 GPa to 10.15 GPa, displaying strong size effects, and the average hardness is 9.496 7±1.753 3 GPa,in which no obvious size effects are observed.
文摘Through research on the application of hydroviscous speed-adjusting clutch in belt conveyor, this paper concluded that hydroviscous speed-adjusting clutch has many advantages such as controllable start and stop, overload protection and multi-motor power equilibrium. But its theory when used in large power fan and pump could not meet the needs of belt conveyor soft-start operation. Focusing on the theo- retical analysis of the lubrication oil flow needed by the transmission procedure to form the oil-film. Put forward concrete calculation methods of lubrication flow and how to de- cide number of oil-films used in belt conveyor.
基金supported by the National Natural Science Foundation of China (No.50704004)
文摘Vaporization behavior (1163-1463 K) of lead in the slag system of FeO-CaO-SiO2-Al2O3 with CaC% was examined. A thermodynamic estimation with the principle of Gibbs free energy minimization showed that the major vapor species from the sample of the FeO-CaO-SiO2-Al2O3 system+PbO+CaCl2 were metallic Pb, PbCl, PbCl2, and FeCl2, at the experimental temperature range. The experimental results show that the mole ratio of vaporized Cl in lead chlorides to vaporized Pb, simply expressed as Cl/Pb decreases with increasing temperature. The larger Cl/Pb means a larger ratio of gaseous PbCl2, since metallic Pb and PbCl vapors are formed in a similar reduction atmosphere. The evaporation is initially rapid and becomes steady after holding for 10 min. Gaseous PbCl2 is mainly formed during the heating period, and at the holding stage, it reacts with FeO to produce gaseous FeCl2 With regard to slag composition, FeO content and basicity significantly affect the evaporation of lead. High FeO content and high basicity promotes the formation of metallic Pb and PbCI, whereas, it prohibits PbCl2 evaporation.
文摘Treating weld toes properly can improve the fatigue performance. Ultrasonic impact treatment (UIT) is a more effective and convenient method to enhance the fatigue strength of welded joints and suchlike structures. Fatigue tests were conducted on the specimens made of X65 pipeline steel. The test specimens were investigated on the fatigue strength and the fatigue life at the same stress range level by comparing the ones peened by UIT with the others without the treatment: the fatigue strength of the specimens as UIT, 90% of the fatigue strength of the base mental, is increased by 38% compared with that of as welded only; the fatigue life of the ones as UIT is prolonged by 11 multiples of the ones as welded only.