In the present work,a compressible and lubricating space-holder material commonly known as "acrawax" was used to process Cu foams with various pore sizes and various porosities.The foams were processed witho...In the present work,a compressible and lubricating space-holder material commonly known as "acrawax" was used to process Cu foams with various pore sizes and various porosities.The foams were processed without using binders to avoid contamination of their metal matrices.The lubricant space-holder material was found to facilitate more uniform flow and distribution of metal powder around the surface of the space holder.In addition,the use of acrawax as a space-holder material yielded considerably dense cell walls,which are an essential prerequisite for better material properties.The foams processed with a smaller-sized space holder were found to exhibit better electrical and mechanical properties than those processed with a coarser-sized space holder.The isotropic pore shape,uniform pore distribution throughout the metal matrix,and uniform cell wall thickness were found to enhance the properties pertaining to fine-pore foam samples.The processed foams exhibit properties similar to those of the foams processed through the lost-carbonate sintering process.展开更多
In this paper polyester fabrics were pretreated with alkaline solution to improve the ability for the fabric surface to bond with polypyrrole(PPy)coating layer.In situ chemical oxidative polymerization of pyrrole mono...In this paper polyester fabrics were pretreated with alkaline solution to improve the ability for the fabric surface to bond with polypyrrole(PPy)coating layer.In situ chemical oxidative polymerization of pyrrole monomer was performed on alkali treated polyester fabrics.Then the fabrics were characterized by FTIR and XRD analysis.The tensile properties of the yarns in both warp and weft directions were measured after alkali treatment and PPy coating processes.The abrasion resistance test was performed on PPy coated fabrics with and without alkali treatment.The surface electrical resistivity of PPy coated fabrics were searched.The electromagnetic shielding effectiveness(EMSE)properties of fabrics in terms of reflection,absorption and transmission behaviors were also investigated.A significant EMSE value increase(about 27%)was obtained with alkali treatment.展开更多
This experiment is generally based on the three types of engineering stripe fabrics named single jersey, full feeder lycra single jersey, and single lacoste fabric. In Bangladesh, conventional practices of engineering...This experiment is generally based on the three types of engineering stripe fabrics named single jersey, full feeder lycra single jersey, and single lacoste fabric. In Bangladesh, conventional practices of engineering stripe fabric hardly seen. As the textile engineer, we focused to identify the basic difference between these fabrics. We kept the repeat length constant for all three fabrics. In these circumstances, how stitch length, yarn count, gsm, fabric dia, machine settings, machine maintenance, machine rpm varies into those three mentioned fabrics. It is the main motto of these experiments to make them more favourable into the trendy fashion world.展开更多
In this current work,aluminum alloy grade 2024 is adopted as a plate material that is used in the rolling process with three different parameters including thickness reduction,forming temperature,and density of lubric...In this current work,aluminum alloy grade 2024 is adopted as a plate material that is used in the rolling process with three different parameters including thickness reduction,forming temperature,and density of lubrication type.The experimental procedure of the rolling process is performed using the design of the experiment based on the Taguchi technique(L27),then surface roughness,surface hardness,and surface residual stresses are measured.The results showed that the lubrication density has a significant impact on the surface roughness which depends on the lubrication properties(mineral oil type,natural fat,and kinematic viscosity)while surface hardness and surface residual stresses were strongly affected by thickness reduction.On the other side,the augment in forming temperature can decrease the quality of the final surface finish and the surface hardness but reduce the induced residual stresses.The best surface finish is obtained based on the optimum condition of the rolling factors are(R%_(3),T_(1),andρ_(3))while the optimum condition of rolling parameters that generate higher hardness and compressive residual stresses are(R%_(3)T_(1)ρ_(1)).展开更多
Through morphology observation on silicon particles of Al-Si-Cu-Mg cast alloy, it is found that during solution treatment the evolution of eutectic silicon morphology and their effect on mechanical properties can be c...Through morphology observation on silicon particles of Al-Si-Cu-Mg cast alloy, it is found that during solution treatment the evolution of eutectic silicon morphology and their effect on mechanical properties can be classified into three stages. In the initial stage, necking, stubbing and fragmentation of silicon particles result in the improvement of plasticity of alloy. In the intermediate stage, the mechanical properties of 354 alloy attain peak values due to spheroidization of silicon particles. In the final stage, the drop of hardness and strength is related to the deterioration of silicon morphology. The facets and lap occur in silicon particles and the coarsening process of silicon follows LSW model. During aging, the clusters of excess silicon can work as barriers for dislocation movement and thus enhance the strength of alloy. On the other hand, excess Si affects the process of aging precipitation and leads to a fine and highly dense distribution of GP zones, finally effectively strengthens the alloy.展开更多
In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this co...In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this composite were investigated using optical and scanning microscopy and hardness and tensile testing. The results show that by increasing the applied strain, the Al/Ni/Cu multilayer composite converted from layer features to near a particle-strengthening characteristic. After the fifth ARB cycle, a composite with a uniform distribution of reinforcements(Cu, Ni, and SiC) was fabricated. The tensile strength of the composite increased from the initial sandwich structure to the first ARB cycle and then decreased from the first to the third ARB cycle. Upon reaching five ARB cycles, the tensile strength of the composite increased again. The variation in the elongation of the composite exhibited a tendency similar to that of its tensile strength. It is observed that with increasing strain, the microhardness values of the Al, Cu, and Ni layers increased, and that the dominant fracture mechanisms of Al and Cu were dimple formation and ductile fracture. In contrast, brittle fracture in specific plains was the main characteristic of Ni fractures.展开更多
Al 7075 and Mg AZ31 alloys were joined by diffusion bonding method. Joining process was performed in pressure range of 10-35 MPa at temperatures of 430-450 ℃ for 60 min under a vacuum of 13.3 MPa. The microstructure ...Al 7075 and Mg AZ31 alloys were joined by diffusion bonding method. Joining process was performed in pressure range of 10-35 MPa at temperatures of 430-450 ℃ for 60 min under a vacuum of 13.3 MPa. The microstructure evaluation, phase analysis and distribution of elements at the interface were done using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The pressure of 25 MPa was determined as the optimum pressure in which the minimum amount of plastic deformation takes place at the joint. Different reaction layers containing intermetallic compounds, such as Al12Mg17, Al3Mg2 andα(Al) solid solution, were observed, in interfacial transition zone (ITZ). Thickness of layers was increased with increasing the operating temperature. According to the results, diffusion of aluminum atoms into magnesium alloy was more and the interface movement towards the Al alloy was observed. The maximum bond strength of 38 MPa was achieved at the temperature of 440 ℃ and pressure of 25 MPa. Fractography studies indicated that the brittle fracture originated from Al3Mg2 phase.展开更多
On the basis of analyzing coal gangue's chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR, NMR, and the mechanical strength of the c...On the basis of analyzing coal gangue's chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR, NMR, and the mechanical strength of the cement doped coal gangue with various specific surface area was tested. The experimental results indicate that, the lattice structure of metakaolin in coal gangue samples calcined at 700 ℃ disorganizes gradually and becomes disordered, and the lattice structure of α-quartz is distorted slightly. The pozzolanic activity of the coal gangue increases obviously with its structural disorganization.展开更多
Composite cement samples were prepared by mixing clinker, gypsum with burnt coal gangues which was calcined at various temperatures. The mechanical strength and Ca(OH)2 content in the cement paste were tested, and t...Composite cement samples were prepared by mixing clinker, gypsum with burnt coal gangues which was calcined at various temperatures. The mechanical strength and Ca(OH)2 content in the cement paste were tested, and the paste composition and microstructure were analyzed by thermogravimetry-differential thermal analysis (TG-DSC), X-ray diffraction(XRD), scanning electronic microscopy (SEM) and pore structure analysis. Results demonstrate that the thermal activated coal gangue could accelerate the early hydration of cement clinker obviously, which promotes the gangue hydration itself. The early hydrated products of the cement are C-S-H gel, Ca(OH)2 and AFt. The cement with 30% (in mass) the gangue exhibits higher mechanical strength, and among all the cement samples the one with the gangue burnt at 700 ℃ displays the highest hydration rate, mechanical strength, the most gel pores and the lowest total porosity.展开更多
The TiB2 dispersion-reinforced copper-matrix composite used as electrode material in resistance spot welding of zinc coated steels was studied. The service life of the composite electrode reaches (7700) welds, whi...The TiB2 dispersion-reinforced copper-matrix composite used as electrode material in resistance spot welding of zinc coated steels was studied. The service life of the composite electrode reaches (7700) welds, which is 4 times that of the conventional Cu-Cr-Zr electrode. Little gross deformation is observed on the composite (electrodes) because of the higher thermal strength; therefore, it is believed that wear is the only mechanism for the composite (electrode) deterioration. However, both wear and plastic deformation are responsible for the large increase in the tip diameter of the Cu-Cr-Zr electrodes. Moreover, the large deformation of the Cu-Cr-Zr electrodes may contribute to the increased wear rate of the tips.展开更多
The austempering after hot roiling in hot roiled Si-Mn TRIP (transformation-induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanic...The austempering after hot roiling in hot roiled Si-Mn TRIP (transformation-induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanical properties of this kind of steel. The results showed that the strain induced transformation to martensite of retained austenite occurs in hot rolled Si-Mn TRIP steels. The sample exhibited a good combination of ultimate tensile strength and total elongation when it was held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase in isothermal holding time, and a further increase in the hold- ing duration resulted in the decrease of stability. The mechanical properties were optimal when holding for 25 min, and tensile strength and total elongation reached the maximum values (774 MPa and 33 ;, respectively).展开更多
The mold-filling ability of alloy mclt in squceze casting process was evaluated by means of the maximum length of Archimedes spiral line. A theoretical evaluating model to predict the maximum filling length was built ...The mold-filling ability of alloy mclt in squceze casting process was evaluated by means of the maximum length of Archimedes spiral line. A theoretical evaluating model to predict the maximum filling length was built based on the flowing theory of the incompressible viscous fluid. It was proved by experiments and calculations that the mold-tilling pressure and velocity are prominent influencing factors on the mold-filling ability of alloy melt. The mold-filling ability increases with the increase of the mold-filling pressure and the decrease of the proper mold-filling velocity. Moreover, the pouring temperature relatively has less effect on the mold-filling ability under the experimental conditions. The maximum deviation of theoretical calculating values with experimental results is less than 15%. The model can quantitatively estimate the effect of every factor on the mold-filling ability.展开更多
Thermomechanical treatments were carried out to improve the properties of AZ31B joints prepared by gas tungsten arc welding. The microstructures of the joints were studied by optical microscopy and scanning electron m...Thermomechanical treatments were carried out to improve the properties of AZ31B joints prepared by gas tungsten arc welding. The microstructures of the joints were studied by optical microscopy and scanning electron microscopy with energy-dispersive spectrometry. Tensile tests and hardness tests were performed to investigate the effects of thermomechanical treatments on the mechanical properties of the joints. It is found that the thermomechanical-treated joints show superior mechanical properties against the as-welded joints, and their ultimate tensile strength can reach more than 92% of the base material. This mainly attributes to the formation of fine equiaxed grains in the fusion zone. ARer thermomechanical treatments the dendrites are transformed to fine spherical grains, and the dendritic segregation can be effectively eliminated.展开更多
A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using...A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using this model to accurately estimate the natural frequency of these slender structures, as a function of the interaction of the foundations with the subsoil. After a brief introduction to the wind power energy as a reliable alternative in comparison to fossil fuel, the paper focuses on concept of natural frequency as a primary indicator in designing the foundations of OWTs. Then the range of natural frequencies is provided for a safe design purpose. Next, an analytical expression of an OWT natural frequency is presented as a function of soil-monopile interaction through monopile head springs characterized by lateral stiffness KL, rotational stiffness KRand cross-coupling stiffness KLRof which the differences are discussed. The nonlinear pseudo three-dimensional finite element vertical slices model has been used to analyze the lateral behaviors of monopiles supporting the OWTs of different wind farm sites considered. Through the monopiles head movements(displacements and rotations), the values of KL, KRand KLRwere obtained and substituted in the analytical expression of natural frequency for comparison. The comparison results between computed and measured natural frequencies showed an excellent agreement for most cases. This confirms the convenience of the finite element model used for the accurate estimation of the monopile head stiffness.展开更多
Diffusion controlled phase transformations and tribological properties and hardness of Al 65 Cu 20 Cr 15 quasicrystal particles(QC p)/Al matrix composites have been studied. The mixtures of the quasicrystal particles ...Diffusion controlled phase transformations and tribological properties and hardness of Al 65 Cu 20 Cr 15 quasicrystal particles(QC p)/Al matrix composites have been studied. The mixtures of the quasicrystal particles with volume fractions of 15%, 20%, 25% , 30% and pure Al powder were hot pressed at 600, 650, 700 ℃. During the diffusion controlled phase transformation induced by hot pressing, a simple cubic icosahedric quasicrystal (SIQC) phase transforms into stable Θ phase with the microstructure of monoclinic of Al 13 Cr 2 through a transitional faced cubic icosahedric quasicrystal (FIQC), a decagonal quasicrystal (DQC) and an approximant of decagonal quasicrystal (DA) phases. And G. P. zones and Al Cu precipitates, θ′ Al 2Cu and θ Al 2Cu, are separated out from the Al matrix respectively after hot pressing. The QC p/Al composites have double strengthening effect after hot pressing. One is the strengthening of the particles that reinforce the matrix Al; the other is the dispersion strengthening of the precipitates in the Al matrix. The hardness of the composites increases with increasing volume fraction of quasicrystal particles. The maximum hardness reaches 1 200 MPa, being 4 times that of Al. The frictional coefficient and the wear rate of the QC p/Al are lower than those of Al. In comparison with SiC p/Al matrix composites, QC p/Al composites have higher hardness and lower frictional coefficient.展开更多
Friction stir welding (FSW) is applied extensively in industry for joining of nonferrous metals especially aluminum. A three-dimensional model based on finite element analysis was used to study the thermal character...Friction stir welding (FSW) is applied extensively in industry for joining of nonferrous metals especially aluminum. A three-dimensional model based on finite element analysis was used to study the thermal characteristic of copper C I 1000 during the FSW process. The model incorporates the mechanical reaction of the tool and thermo-mechanieal characteristics of the weld material, while the friction between the material and the probe and the shoulder serves as the heat source. It was observed that the predicted results about the temperature were in good compatibility with the experimental results. Additionally, it was concluded that the numerical method can be simply applied to measuring the temperature of workpiece just beneath the tool. The effects of preheating temperature and pin angle on temperature distribution were also studied numerically. The increase of pin angle enhances the temperature around the weld line, but preheating does not affect temperature distribution along the weld line considerably.展开更多
The effect of SiO2 doping on the sintering behavior, microstructure, and dielectric properties of BaTiO3-based ceramics has been investigated. Silica was added to the BaTiO3-based powder prepared by the solid state me...The effect of SiO2 doping on the sintering behavior, microstructure, and dielectric properties of BaTiO3-based ceramics has been investigated. Silica was added to the BaTiO3-based powder prepared by the solid state method with 0.075mol%, 0.15mol%, and 0.3mol%, respectively. The SiO2-doped BaTiO3-based ceramic with high density and uniform grain size were obtained, which were sintered in reducing atmosphere. A scanning electron microscope, X-ray diffraction, and LCR meter were used to determine the microstructure as well as the dielectric properties. SiO2 can form a liquid phase belonging to the ternary system of BaO-TiO2-SiO2, leading to the formation of BaTiO3 ceramics with high density at a lower sintering temperature. The SiO2-doped BaTiO3-based ceramics can be sintered to a theoretical density higher than 95% at 1220℃ with a soaking time of 2 h. The dielectric constants of the sample with 0.15mol% SiO2 addition sintered at 1220℃ is about 9000. Doping with a small amount of silica can improve the sintering and dielectric properties of BaTiO3-based ceramics.展开更多
A hybrid joint with a satisfactory mixture of pure magnesium and polypropylene(PP)was achieved via friction stir joining(FSW)in a lap-joint configuration.The tool rotational and travel speeds used in this work were 50...A hybrid joint with a satisfactory mixture of pure magnesium and polypropylene(PP)was achieved via friction stir joining(FSW)in a lap-joint configuration.The tool rotational and travel speeds used in this work were 500–700 r/min and 50–100 mm/min,respectively.The mechanical properties and microstructural analysis of the resultant hybrid Mg/PP joint were examined.The results show that the maximum tensile shear strength(22.5 MPa)of the joint was attained at 700 r/min and 75 mm/min due to the optimum percentage fraction of mechanical interlocking(48%)and the presence of magnesium oxide.The interfacial joint center exhibits the maximum microhardness values because of the presence of refined and intertwined Mg fragments and density dislocations in the matrix of the PP.The joint failed via two different modes:interfacial line and weld zone fractures,respectively.展开更多
A new material is prepared by impregnating the expanded graphite(EG) into ethanol solutions of metal acetate and then drying and reducing it in H2.It contains the EG and the nanoparticles of the magnetic Ni–Fe alloy ...A new material is prepared by impregnating the expanded graphite(EG) into ethanol solutions of metal acetate and then drying and reducing it in H2.It contains the EG and the nanoparticles of the magnetic Ni–Fe alloy for the electromagnetic shielding.Its morphology,phase structure,magnetic properties,and electromagnetic shielding effectiveness(SE) are investigated in our experiment.It shows that the morphology,the phase structure,and the magnetic property of the composite can be modified by altering the Ni content in the alloy nanoparticles.Interestingly,the SE can be enhanced to 54–70 d B at low frequencies(300 kHz–10 MHz) by dispersing the magnetic nanoparticles onto EG.展开更多
A new catalyst system was used in the synthesis of polyethylene terephthalate(PET) and its copolymers, which involved a Ln 3+ containing compound. The catalytic effects were studied, and it was found that the dir...A new catalyst system was used in the synthesis of polyethylene terephthalate(PET) and its copolymers, which involved a Ln 3+ containing compound. The catalytic effects were studied, and it was found that the direct esterification reaction of terephthalate acid(TPA) with ethylene glycol(EG) can be accelerated by the addition of Ln 3+ containing compound, which acts as a promoter of the catalyst Sb 2O 3 in polycondensation of bis hydroxyethyl terephthalate(BHET).展开更多
文摘In the present work,a compressible and lubricating space-holder material commonly known as "acrawax" was used to process Cu foams with various pore sizes and various porosities.The foams were processed without using binders to avoid contamination of their metal matrices.The lubricant space-holder material was found to facilitate more uniform flow and distribution of metal powder around the surface of the space holder.In addition,the use of acrawax as a space-holder material yielded considerably dense cell walls,which are an essential prerequisite for better material properties.The foams processed with a smaller-sized space holder were found to exhibit better electrical and mechanical properties than those processed with a coarser-sized space holder.The isotropic pore shape,uniform pore distribution throughout the metal matrix,and uniform cell wall thickness were found to enhance the properties pertaining to fine-pore foam samples.The processed foams exhibit properties similar to those of the foams processed through the lost-carbonate sintering process.
基金This research received no specific grant from any funding agency in the public,commercial,or not-for-profit sectors.
文摘In this paper polyester fabrics were pretreated with alkaline solution to improve the ability for the fabric surface to bond with polypyrrole(PPy)coating layer.In situ chemical oxidative polymerization of pyrrole monomer was performed on alkali treated polyester fabrics.Then the fabrics were characterized by FTIR and XRD analysis.The tensile properties of the yarns in both warp and weft directions were measured after alkali treatment and PPy coating processes.The abrasion resistance test was performed on PPy coated fabrics with and without alkali treatment.The surface electrical resistivity of PPy coated fabrics were searched.The electromagnetic shielding effectiveness(EMSE)properties of fabrics in terms of reflection,absorption and transmission behaviors were also investigated.A significant EMSE value increase(about 27%)was obtained with alkali treatment.
文摘This experiment is generally based on the three types of engineering stripe fabrics named single jersey, full feeder lycra single jersey, and single lacoste fabric. In Bangladesh, conventional practices of engineering stripe fabric hardly seen. As the textile engineer, we focused to identify the basic difference between these fabrics. We kept the repeat length constant for all three fabrics. In these circumstances, how stitch length, yarn count, gsm, fabric dia, machine settings, machine maintenance, machine rpm varies into those three mentioned fabrics. It is the main motto of these experiments to make them more favourable into the trendy fashion world.
文摘In this current work,aluminum alloy grade 2024 is adopted as a plate material that is used in the rolling process with three different parameters including thickness reduction,forming temperature,and density of lubrication type.The experimental procedure of the rolling process is performed using the design of the experiment based on the Taguchi technique(L27),then surface roughness,surface hardness,and surface residual stresses are measured.The results showed that the lubrication density has a significant impact on the surface roughness which depends on the lubrication properties(mineral oil type,natural fat,and kinematic viscosity)while surface hardness and surface residual stresses were strongly affected by thickness reduction.On the other side,the augment in forming temperature can decrease the quality of the final surface finish and the surface hardness but reduce the induced residual stresses.The best surface finish is obtained based on the optimum condition of the rolling factors are(R%_(3),T_(1),andρ_(3))while the optimum condition of rolling parameters that generate higher hardness and compressive residual stresses are(R%_(3)T_(1)ρ_(1)).
文摘Through morphology observation on silicon particles of Al-Si-Cu-Mg cast alloy, it is found that during solution treatment the evolution of eutectic silicon morphology and their effect on mechanical properties can be classified into three stages. In the initial stage, necking, stubbing and fragmentation of silicon particles result in the improvement of plasticity of alloy. In the intermediate stage, the mechanical properties of 354 alloy attain peak values due to spheroidization of silicon particles. In the final stage, the drop of hardness and strength is related to the deterioration of silicon morphology. The facets and lap occur in silicon particles and the coarsening process of silicon follows LSW model. During aging, the clusters of excess silicon can work as barriers for dislocation movement and thus enhance the strength of alloy. On the other hand, excess Si affects the process of aging precipitation and leads to a fine and highly dense distribution of GP zones, finally effectively strengthens the alloy.
文摘In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this composite were investigated using optical and scanning microscopy and hardness and tensile testing. The results show that by increasing the applied strain, the Al/Ni/Cu multilayer composite converted from layer features to near a particle-strengthening characteristic. After the fifth ARB cycle, a composite with a uniform distribution of reinforcements(Cu, Ni, and SiC) was fabricated. The tensile strength of the composite increased from the initial sandwich structure to the first ARB cycle and then decreased from the first to the third ARB cycle. Upon reaching five ARB cycles, the tensile strength of the composite increased again. The variation in the elongation of the composite exhibited a tendency similar to that of its tensile strength. It is observed that with increasing strain, the microhardness values of the Al, Cu, and Ni layers increased, and that the dominant fracture mechanisms of Al and Cu were dimple formation and ductile fracture. In contrast, brittle fracture in specific plains was the main characteristic of Ni fractures.
文摘Al 7075 and Mg AZ31 alloys were joined by diffusion bonding method. Joining process was performed in pressure range of 10-35 MPa at temperatures of 430-450 ℃ for 60 min under a vacuum of 13.3 MPa. The microstructure evaluation, phase analysis and distribution of elements at the interface were done using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The pressure of 25 MPa was determined as the optimum pressure in which the minimum amount of plastic deformation takes place at the joint. Different reaction layers containing intermetallic compounds, such as Al12Mg17, Al3Mg2 andα(Al) solid solution, were observed, in interfacial transition zone (ITZ). Thickness of layers was increased with increasing the operating temperature. According to the results, diffusion of aluminum atoms into magnesium alloy was more and the interface movement towards the Al alloy was observed. The maximum bond strength of 38 MPa was achieved at the temperature of 440 ℃ and pressure of 25 MPa. Fractography studies indicated that the brittle fracture originated from Al3Mg2 phase.
基金Funded by the Key Laboratory Foundation of Ecological-Environment Materials (Yancheng Institute of Technology) of Jiangsu Province (XKY2006020)the Natural Science Foundation of Jiangsu Provincial Education Depart-ment(07KJB430123)
文摘On the basis of analyzing coal gangue's chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR, NMR, and the mechanical strength of the cement doped coal gangue with various specific surface area was tested. The experimental results indicate that, the lattice structure of metakaolin in coal gangue samples calcined at 700 ℃ disorganizes gradually and becomes disordered, and the lattice structure of α-quartz is distorted slightly. The pozzolanic activity of the coal gangue increases obviously with its structural disorganization.
基金Funded by the Key Laboratory Foundation of Ecological-Environment Materials (Yancheng Institute of Technology) of Jiangsu Province (No.XKY2009033)the Natural Science Foundation of Jiangsu Provincial Edu-cation Department (No. 07KJB430123)
文摘Composite cement samples were prepared by mixing clinker, gypsum with burnt coal gangues which was calcined at various temperatures. The mechanical strength and Ca(OH)2 content in the cement paste were tested, and the paste composition and microstructure were analyzed by thermogravimetry-differential thermal analysis (TG-DSC), X-ray diffraction(XRD), scanning electronic microscopy (SEM) and pore structure analysis. Results demonstrate that the thermal activated coal gangue could accelerate the early hydration of cement clinker obviously, which promotes the gangue hydration itself. The early hydrated products of the cement are C-S-H gel, Ca(OH)2 and AFt. The cement with 30% (in mass) the gangue exhibits higher mechanical strength, and among all the cement samples the one with the gangue burnt at 700 ℃ displays the highest hydration rate, mechanical strength, the most gel pores and the lowest total porosity.
文摘The TiB2 dispersion-reinforced copper-matrix composite used as electrode material in resistance spot welding of zinc coated steels was studied. The service life of the composite electrode reaches (7700) welds, which is 4 times that of the conventional Cu-Cr-Zr electrode. Little gross deformation is observed on the composite (electrodes) because of the higher thermal strength; therefore, it is believed that wear is the only mechanism for the composite (electrode) deterioration. However, both wear and plastic deformation are responsible for the large increase in the tip diameter of the Cu-Cr-Zr electrodes. Moreover, the large deformation of the Cu-Cr-Zr electrodes may contribute to the increased wear rate of the tips.
基金Item Sponsored by National Natural Science Foundation of China (50334010)
文摘The austempering after hot roiling in hot roiled Si-Mn TRIP (transformation-induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanical properties of this kind of steel. The results showed that the strain induced transformation to martensite of retained austenite occurs in hot rolled Si-Mn TRIP steels. The sample exhibited a good combination of ultimate tensile strength and total elongation when it was held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase in isothermal holding time, and a further increase in the hold- ing duration resulted in the decrease of stability. The mechanical properties were optimal when holding for 25 min, and tensile strength and total elongation reached the maximum values (774 MPa and 33 ;, respectively).
文摘The mold-filling ability of alloy mclt in squceze casting process was evaluated by means of the maximum length of Archimedes spiral line. A theoretical evaluating model to predict the maximum filling length was built based on the flowing theory of the incompressible viscous fluid. It was proved by experiments and calculations that the mold-tilling pressure and velocity are prominent influencing factors on the mold-filling ability of alloy melt. The mold-filling ability increases with the increase of the mold-filling pressure and the decrease of the proper mold-filling velocity. Moreover, the pouring temperature relatively has less effect on the mold-filling ability under the experimental conditions. The maximum deviation of theoretical calculating values with experimental results is less than 15%. The model can quantitatively estimate the effect of every factor on the mold-filling ability.
基金financially supported by the Natural Science Foundation of Jiangsu Province(No.BK2009354)
文摘Thermomechanical treatments were carried out to improve the properties of AZ31B joints prepared by gas tungsten arc welding. The microstructures of the joints were studied by optical microscopy and scanning electron microscopy with energy-dispersive spectrometry. Tensile tests and hardness tests were performed to investigate the effects of thermomechanical treatments on the mechanical properties of the joints. It is found that the thermomechanical-treated joints show superior mechanical properties against the as-welded joints, and their ultimate tensile strength can reach more than 92% of the base material. This mainly attributes to the formation of fine equiaxed grains in the fusion zone. ARer thermomechanical treatments the dendrites are transformed to fine spherical grains, and the dendritic segregation can be effectively eliminated.
文摘A nonlinear finite element model is developed to examine the lateral behaviors of monopiles, which support offshore wind turbines(OWTs) chosen from five different offshore wind farms in Europe. The simulation is using this model to accurately estimate the natural frequency of these slender structures, as a function of the interaction of the foundations with the subsoil. After a brief introduction to the wind power energy as a reliable alternative in comparison to fossil fuel, the paper focuses on concept of natural frequency as a primary indicator in designing the foundations of OWTs. Then the range of natural frequencies is provided for a safe design purpose. Next, an analytical expression of an OWT natural frequency is presented as a function of soil-monopile interaction through monopile head springs characterized by lateral stiffness KL, rotational stiffness KRand cross-coupling stiffness KLRof which the differences are discussed. The nonlinear pseudo three-dimensional finite element vertical slices model has been used to analyze the lateral behaviors of monopiles supporting the OWTs of different wind farm sites considered. Through the monopiles head movements(displacements and rotations), the values of KL, KRand KLRwere obtained and substituted in the analytical expression of natural frequency for comparison. The comparison results between computed and measured natural frequencies showed an excellent agreement for most cases. This confirms the convenience of the finite element model used for the accurate estimation of the monopile head stiffness.
文摘Diffusion controlled phase transformations and tribological properties and hardness of Al 65 Cu 20 Cr 15 quasicrystal particles(QC p)/Al matrix composites have been studied. The mixtures of the quasicrystal particles with volume fractions of 15%, 20%, 25% , 30% and pure Al powder were hot pressed at 600, 650, 700 ℃. During the diffusion controlled phase transformation induced by hot pressing, a simple cubic icosahedric quasicrystal (SIQC) phase transforms into stable Θ phase with the microstructure of monoclinic of Al 13 Cr 2 through a transitional faced cubic icosahedric quasicrystal (FIQC), a decagonal quasicrystal (DQC) and an approximant of decagonal quasicrystal (DA) phases. And G. P. zones and Al Cu precipitates, θ′ Al 2Cu and θ Al 2Cu, are separated out from the Al matrix respectively after hot pressing. The QC p/Al composites have double strengthening effect after hot pressing. One is the strengthening of the particles that reinforce the matrix Al; the other is the dispersion strengthening of the precipitates in the Al matrix. The hardness of the composites increases with increasing volume fraction of quasicrystal particles. The maximum hardness reaches 1 200 MPa, being 4 times that of Al. The frictional coefficient and the wear rate of the QC p/Al are lower than those of Al. In comparison with SiC p/Al matrix composites, QC p/Al composites have higher hardness and lower frictional coefficient.
文摘Friction stir welding (FSW) is applied extensively in industry for joining of nonferrous metals especially aluminum. A three-dimensional model based on finite element analysis was used to study the thermal characteristic of copper C I 1000 during the FSW process. The model incorporates the mechanical reaction of the tool and thermo-mechanieal characteristics of the weld material, while the friction between the material and the probe and the shoulder serves as the heat source. It was observed that the predicted results about the temperature were in good compatibility with the experimental results. Additionally, it was concluded that the numerical method can be simply applied to measuring the temperature of workpiece just beneath the tool. The effects of preheating temperature and pin angle on temperature distribution were also studied numerically. The increase of pin angle enhances the temperature around the weld line, but preheating does not affect temperature distribution along the weld line considerably.
基金supported by the Found No.NSC96-2218-E-020-004-005
文摘The effect of SiO2 doping on the sintering behavior, microstructure, and dielectric properties of BaTiO3-based ceramics has been investigated. Silica was added to the BaTiO3-based powder prepared by the solid state method with 0.075mol%, 0.15mol%, and 0.3mol%, respectively. The SiO2-doped BaTiO3-based ceramic with high density and uniform grain size were obtained, which were sintered in reducing atmosphere. A scanning electron microscope, X-ray diffraction, and LCR meter were used to determine the microstructure as well as the dielectric properties. SiO2 can form a liquid phase belonging to the ternary system of BaO-TiO2-SiO2, leading to the formation of BaTiO3 ceramics with high density at a lower sintering temperature. The SiO2-doped BaTiO3-based ceramics can be sintered to a theoretical density higher than 95% at 1220℃ with a soaking time of 2 h. The dielectric constants of the sample with 0.15mol% SiO2 addition sintered at 1220℃ is about 9000. Doping with a small amount of silica can improve the sintering and dielectric properties of BaTiO3-based ceramics.
文摘A hybrid joint with a satisfactory mixture of pure magnesium and polypropylene(PP)was achieved via friction stir joining(FSW)in a lap-joint configuration.The tool rotational and travel speeds used in this work were 500–700 r/min and 50–100 mm/min,respectively.The mechanical properties and microstructural analysis of the resultant hybrid Mg/PP joint were examined.The results show that the maximum tensile shear strength(22.5 MPa)of the joint was attained at 700 r/min and 75 mm/min due to the optimum percentage fraction of mechanical interlocking(48%)and the presence of magnesium oxide.The interfacial joint center exhibits the maximum microhardness values because of the presence of refined and intertwined Mg fragments and density dislocations in the matrix of the PP.The joint failed via two different modes:interfacial line and weld zone fractures,respectively.
基金supported by the National Natural Science Foundation of China(Nos.50977042 and 10904061)the“863”program of MSTC(No.2006AA03Z458)the research funds for Nanjing Institute of Technology(No.YKJ201002)
文摘A new material is prepared by impregnating the expanded graphite(EG) into ethanol solutions of metal acetate and then drying and reducing it in H2.It contains the EG and the nanoparticles of the magnetic Ni–Fe alloy for the electromagnetic shielding.Its morphology,phase structure,magnetic properties,and electromagnetic shielding effectiveness(SE) are investigated in our experiment.It shows that the morphology,the phase structure,and the magnetic property of the composite can be modified by altering the Ni content in the alloy nanoparticles.Interestingly,the SE can be enhanced to 54–70 d B at low frequencies(300 kHz–10 MHz) by dispersing the magnetic nanoparticles onto EG.
文摘A new catalyst system was used in the synthesis of polyethylene terephthalate(PET) and its copolymers, which involved a Ln 3+ containing compound. The catalytic effects were studied, and it was found that the direct esterification reaction of terephthalate acid(TPA) with ethylene glycol(EG) can be accelerated by the addition of Ln 3+ containing compound, which acts as a promoter of the catalyst Sb 2O 3 in polycondensation of bis hydroxyethyl terephthalate(BHET).