DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in...DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in the direction of Imaginative Intelligence(II),i.e.,something similar to automatic wordsto-videos generation or intelligent digital movies/theater technology that could be used for conducting new“Artificiofactual Experiments”[2]to replace conventional“Counterfactual Experiments”in scientific research and technical development for both natural and social studies[2]-[6].Now we have OpenAI’s Sora,so soon,but this is not the final,actually far away,and it is just the beginning.展开更多
The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn...The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.展开更多
Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this p...Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated.展开更多
BACKGROUND New markers are needed to improve the effectiveness of serological screening for atrophic gastritis.AIM To develop a cost-effective method for serological screening of atrophic gastritis with a high level o...BACKGROUND New markers are needed to improve the effectiveness of serological screening for atrophic gastritis.AIM To develop a cost-effective method for serological screening of atrophic gastritis with a high level of sensitivity.METHODS Of the 169 patients with atrophic gastritis,selected by the visual endoscopic Kimura-Takemoto method,165 showed histological mucosal atrophy using the updated Kimura-Takemoto method.All 169 patients were examined for postprandial levels of gastrin-17(G17)and pepsinogen-1(PG1)using Gastro-Panel®(Biohit Plc,Helsinki,Finland).RESULTS We used the histological standard of five biopsies of the gastric mucosa,in accordance with the Kimura-Takemoto classification system to assess the sensitivity of G17 in detecting gastric mucosal atrophy.We also compared the morphofunctional relationships between the detected histological degree of gastric mucosal atrophy and the serological levels of G17 and PG1,as the markers of atrophic gastritis.The sensitivity of postprandial G17 was 62.2%for serological levels of G17(range:0-4 pmol/L)and 100%for serological G17(range:0-10 pmol/L)for the detection of monofocal severe atrophic gastritis.No strong correlation was found between the levels of PG1 and degree of histological atrophy determined by the Kimura-Takemoto classification system to identify the severity of mucosal atrophy of the gastric corpus.In the presented clinical case of a 63-year-old man with multifocal atrophic gastritis,there is a pronounced positive long-term dynamics of the serological marker of atrophy-postprandial G17,after five months of rennet replacement therapy.CONCLUSION Serological screening of multifocal atrophic gastritis by assessment of postprandial G17 is a cost-effective method with high sensitivity.Postprandial G17 is an earlier marker of regression of atrophic gastritis than a morphological examination of a gastric biopsy in accordance with the Sydney system.Therefore,postprandial G17 is recommended for dynamic monitoring of atrophic gastritis after treatment.展开更多
This study employs mathematical modeling to analyze the impact of active immigrants on Foot and Mouth Disease (FMD) transmission dynamics. We calculate the reproduction number (R<sub>0</sub>) using the nex...This study employs mathematical modeling to analyze the impact of active immigrants on Foot and Mouth Disease (FMD) transmission dynamics. We calculate the reproduction number (R<sub>0</sub>) using the next-generation matrix approach. Applying the Routh-Hurwitz Criterion, we establish that the Disease-Free Equilibrium (DFE) point achieves local asymptotic stability when R<sub>0</sub> α<sub>1</sub> and α<sub>2</sub>) are closely associated with reduced susceptibility in animal populations, underscoring the link between immigrants and susceptibility. Furthermore, our findings emphasize the interplay of disease introduction with population response and adaptation, particularly involving incoming infectious immigrants. Swift interventions are vital due to the limited potential for disease establishment and rapid susceptibility decline. This study offers crucial insights into the complexities of FMD transmission with active immigrants, informing effective disease management strategies.展开更多
Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study ...Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.展开更多
We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the correspon...We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable.展开更多
Several mathematical models have been developed to investigate the dynamics of tuberculosis(TB)and hepatitis B virus(HBV).Numerous current models for TB,HBV,and their co-dynamics fall short in capturing the important ...Several mathematical models have been developed to investigate the dynamics of tuberculosis(TB)and hepatitis B virus(HBV).Numerous current models for TB,HBV,and their co-dynamics fall short in capturing the important and practical aspect of unpredictability.It is crucial to take into account a stochastic co-infection HBV–TB epidemic model since different random elements have a substantial impact on the overall dynamics of these diseases.We provide a novel stochastic co-model for TB and HBV in this study,and we establish criteria on the uniqueness and existence of a nonnegative global solution.We also looked at the persistence of the infections as long its dynamics are governable by the proposed model.To verify the theoretical conclusions,numerical simulations are presented keeping in view the associated analytical results.The infections are found to finally die out and go extinct with certainty when L´evy intensities surpass the specified thresholds and the related stochastic thresholds fall below unity.The findings also demonstrate the impact of noise on the decline in the co-circulation of HBV and TB in a given population.Our results provide insights into effective intervention strategies,ultimately aiming to improve the management and control of TB and HBV co-infections.展开更多
The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity,isentropic lines,and temperature contours within a thermal energy storage dev...The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity,isentropic lines,and temperature contours within a thermal energy storage device filled with magnetic nanoencapsulated phase change materials(NEPCMs).The versatile finite element method(FEM)is implemented to numerically solve the governing equations.The effects of various parameters,including the viscosity parameter,ranging from 1 to 3,the thermal conductivity parameter,ranging from 1 to 3,the Rayleigh parameter,ranging from 102 to 3×10^(2),the radiation number,ranging from 0.1 to 0.5,the fusion temperature,ranging from 1.0 to 1.2,the volume fraction of NEPCMs,ranging from 2%to 6%,the Stefan number,ranging from 1 to 5,the magnetic number,ranging from 0.1 to 0.5,and the irreversibility parameter,ranging from 0.1 to 0.5,are examined in detail on the temperature contours,isentropic lines,heat capacity ratio,and velocity fields.Furthermore,the heat transfer rates at both the cold and hot walls are analyzed,and the findings are presented graphically.The results indicate that the time taken by the NEPCMs to transition from solid to liquid is prolonged inside the chamber region as the fusion temperatureθf increases.Additionally,the contours of the heat capacity ratio Cr decrease with the increase in the Stefan number Ste.展开更多
In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existe...In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.展开更多
We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis main...We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.展开更多
This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin andmagnetic field.The temperature is constant on the Y-shaped fin,insulating the topwall while th...This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin andmagnetic field.The temperature is constant on the Y-shaped fin,insulating the topwall while the remaining walls remain cold.All walls are subject to impermeability and non-slip conditions.The mathematical modeling of the problem is demonstrated by the continuity,momentum,and energy equations incorporating the inclined magnetic field.For elucidating the flow characteristics Finite ElementMethod(FEM)is implemented using stable FE pair.A hybrid fine mesh is used for discretizing the domain.Velocity and thermal plots concerning parameters are drawn.In addition,a detailed discussion regarding generation energy by monitoring changes in magnetic,viscous,total,and thermal irreversibility is provided.In addition,line graphs are created for the u and v components of the velocity profile to predict the flow behavior.Current simulations assume the dimensionless representative of magnetic field Hartmann number Ha between 0 and 100 and a magnetic field inclination between 0 and 90 degrees.A constant 4% volume proportion of nanoparticles is employed throughout all scenarios.展开更多
The viscous fluid flow and heat transfer over a stretching(shrinking)and porous sheets of nonuniform thickness are investigated in this paper.The modeled problem is presented by utilizing the stretching(shrinking)and ...The viscous fluid flow and heat transfer over a stretching(shrinking)and porous sheets of nonuniform thickness are investigated in this paper.The modeled problem is presented by utilizing the stretching(shrinking)and porous velocities and variable thickness of the sheet and they are combined in a relation.Consequently,the new problem reproduces the different available forms of flow motion and heat transfer maintained over a stretching(shrinking)and porous sheet of variable thickness in one go.As a result,the governing equations are embedded in several parameters which can be transformed into classical cases of stretched(shrunk)flows over porous sheets.A set of general,unusual and new variables is formed to simplify the governing partial differential equations and boundary conditions.The final equations are compared with the classical models to get the validity of the current simulations and they are exactly matched with each other for different choices of parameters of the current problem when their values are properly adjusted and manipulated.Moreover,we have recovered the classical results for special and appropriate values of the parameters(δ_(1),δ_(2),δ_(3),c,and B).The individual and combined effects of all inputs from the boundary are seen on flow and heat transfer properties with the help of a numerical method and the results are compared with classical solutions in special cases.It is noteworthy that the problem describes and enhances the behavior of all field quantities in view of the governing parameters.Numerical result shows that the dual solutions can be found for different possible values of the shrinking parameter.A stability analysis is accomplished and apprehended in order to establish a criterion for the determinations of linearly stable and physically compatible solutions.The significant features and diversity of the modeled equations are scrutinized by recovering the previous problems of fluid flow and heat transfer from a uniformly heated sheet of variable(uniform)thickness with variable(uniform)stretching/shrinking and injection/suction velocities.展开更多
In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit...In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit ball of X.We next give a sharp result on the first order Fréchet derivative for bounded holomorphic mappings F(X)=F(0+)∞∑s=KD^(s)f(0)(x^(8)/s!):B_(X)→B_(Y),where B_(X)is the unit ball of X.The results that we derive include some results in several complex variables,and extend the classical result in one complex variable to several complex variables.展开更多
For any s∈(0,1),let the nonlocal Sobolev space X^(s)(R^(N))be the linear space of Lebesgue measure functions from R^(N) to R such that any function u in X^(s)(R^(N))belongs to L2(R^(N))and the function(x,y)→(u(x)-u...For any s∈(0,1),let the nonlocal Sobolev space X^(s)(R^(N))be the linear space of Lebesgue measure functions from R^(N) to R such that any function u in X^(s)(R^(N))belongs to L2(R^(N))and the function(x,y)→(u(x)-u(y)√K(x-y)is in L^(2)(R^(N),R^(N)).First,we show,for a coercive function V(x),the subspace E:={u∈X^s(R^N):f_(R)^N}V(x)u^(2)dx<+∞}of X^(s)(R^(N))is embedded compactly into L^(p)(R^(N))for p\in[2,2_(s)^(*)),where 2_(s)^(*)is the fractional Sobolev critical exponent.In terms of applications,the existence of a least energy sign-changing solution and infinitely many sign-changing solutions of the nonlocal Schrödinger equation-L_(k)u+V(x)u=f(x,u),x∈R^N are obtained,where-L_(K)is an integro-differential operator and V is coercive at infinity.展开更多
The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal m...The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal mechanism of magnetized flow.The convective boundary assumptions are directed in order to examine the heat and mass transportation of nanofluid.The thermal concept of thermophoresis and Brownian movements has been re-called with the help of Buongiorno model.The problem formulated in dimensionless form is solved by NDSolve MATHEMATICA.The graphical analysis for parameters governed by the problem is performed with physical applications.The affiliation of entropy generation and Bejan number for different parameters is inspected in detail.The numerical data for illustrating skin friction,heat and mass transfer rate is also reported.The motion of the fluid is highest for the viscosity ratio parameter.The temperature of the fluid rises via thermal Biot number.Entropy generation rises for greater Brinkman number and diffusion parameter.展开更多
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p...In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.展开更多
A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epi...A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19.The model is fitted to real COVID-19 data from Pakistan.The proposed model incorporates logistic growth and saturated incidence functions.Rigorous analyses using the tools of stochastic calculus,are performed to study appropriate conditions for the existence of unique global solutions,stationary distribution in the sense of ergodicity and disease extinction.The stochastic threshold estimated from the data fitting is given by:R_(0)^(S)=3.0651.Numerical assessments are implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics of both diseases.The effects of stochastic white noise intensities are also highlighted.展开更多
We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on L...We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on Lax pair obtained by us,we derive the infinitely-many conservation laws.We give the bright one-,two-,and N-soliton solutions,and the first-,second-,and Nth-order breather solutions based on the N-fold DT.We conclude that the velocities of the bright solitons are influenced by the distributed gain function,g(z),and variable coefficients in equation,h1(z),p1(z),r1(z),and s1(z)via the asymptotic analysis,where z represents the propagation variable or spatial coordinate.We also graphically observe that:the velocities of the first-and second-order breathers will be affected by h1(z),p1(z),r1(z),and s1(z),and the background wave depends on g(z).展开更多
基金the National Natural Science Foundation of China(62271485,61903363,U1811463,62103411,62203250)the Science and Technology Development Fund of Macao SAR(0093/2023/RIA2,0050/2020/A1)。
文摘DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in the direction of Imaginative Intelligence(II),i.e.,something similar to automatic wordsto-videos generation or intelligent digital movies/theater technology that could be used for conducting new“Artificiofactual Experiments”[2]to replace conventional“Counterfactual Experiments”in scientific research and technical development for both natural and social studies[2]-[6].Now we have OpenAI’s Sora,so soon,but this is not the final,actually far away,and it is just the beginning.
文摘The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.
文摘Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated.
文摘BACKGROUND New markers are needed to improve the effectiveness of serological screening for atrophic gastritis.AIM To develop a cost-effective method for serological screening of atrophic gastritis with a high level of sensitivity.METHODS Of the 169 patients with atrophic gastritis,selected by the visual endoscopic Kimura-Takemoto method,165 showed histological mucosal atrophy using the updated Kimura-Takemoto method.All 169 patients were examined for postprandial levels of gastrin-17(G17)and pepsinogen-1(PG1)using Gastro-Panel®(Biohit Plc,Helsinki,Finland).RESULTS We used the histological standard of five biopsies of the gastric mucosa,in accordance with the Kimura-Takemoto classification system to assess the sensitivity of G17 in detecting gastric mucosal atrophy.We also compared the morphofunctional relationships between the detected histological degree of gastric mucosal atrophy and the serological levels of G17 and PG1,as the markers of atrophic gastritis.The sensitivity of postprandial G17 was 62.2%for serological levels of G17(range:0-4 pmol/L)and 100%for serological G17(range:0-10 pmol/L)for the detection of monofocal severe atrophic gastritis.No strong correlation was found between the levels of PG1 and degree of histological atrophy determined by the Kimura-Takemoto classification system to identify the severity of mucosal atrophy of the gastric corpus.In the presented clinical case of a 63-year-old man with multifocal atrophic gastritis,there is a pronounced positive long-term dynamics of the serological marker of atrophy-postprandial G17,after five months of rennet replacement therapy.CONCLUSION Serological screening of multifocal atrophic gastritis by assessment of postprandial G17 is a cost-effective method with high sensitivity.Postprandial G17 is an earlier marker of regression of atrophic gastritis than a morphological examination of a gastric biopsy in accordance with the Sydney system.Therefore,postprandial G17 is recommended for dynamic monitoring of atrophic gastritis after treatment.
文摘This study employs mathematical modeling to analyze the impact of active immigrants on Foot and Mouth Disease (FMD) transmission dynamics. We calculate the reproduction number (R<sub>0</sub>) using the next-generation matrix approach. Applying the Routh-Hurwitz Criterion, we establish that the Disease-Free Equilibrium (DFE) point achieves local asymptotic stability when R<sub>0</sub> α<sub>1</sub> and α<sub>2</sub>) are closely associated with reduced susceptibility in animal populations, underscoring the link between immigrants and susceptibility. Furthermore, our findings emphasize the interplay of disease introduction with population response and adaptation, particularly involving incoming infectious immigrants. Swift interventions are vital due to the limited potential for disease establishment and rapid susceptibility decline. This study offers crucial insights into the complexities of FMD transmission with active immigrants, informing effective disease management strategies.
基金funded by King Mongkut’s University of Technology North Bangkok with Contract no.KMUTNB-Post-65-07。
文摘Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.
基金LMP acknowledges financial support from ANID through Convocatoria Nacional Subvención a Instalación en la Academia Convocatoria Año 2021,Grant SA77210040。
文摘We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable.
文摘Several mathematical models have been developed to investigate the dynamics of tuberculosis(TB)and hepatitis B virus(HBV).Numerous current models for TB,HBV,and their co-dynamics fall short in capturing the important and practical aspect of unpredictability.It is crucial to take into account a stochastic co-infection HBV–TB epidemic model since different random elements have a substantial impact on the overall dynamics of these diseases.We provide a novel stochastic co-model for TB and HBV in this study,and we establish criteria on the uniqueness and existence of a nonnegative global solution.We also looked at the persistence of the infections as long its dynamics are governable by the proposed model.To verify the theoretical conclusions,numerical simulations are presented keeping in view the associated analytical results.The infections are found to finally die out and go extinct with certainty when L´evy intensities surpass the specified thresholds and the related stochastic thresholds fall below unity.The findings also demonstrate the impact of noise on the decline in the co-circulation of HBV and TB in a given population.Our results provide insights into effective intervention strategies,ultimately aiming to improve the management and control of TB and HBV co-infections.
文摘The objective of the current study is to investigate the importance of entropy generation and thermal radiation on the patterns of velocity,isentropic lines,and temperature contours within a thermal energy storage device filled with magnetic nanoencapsulated phase change materials(NEPCMs).The versatile finite element method(FEM)is implemented to numerically solve the governing equations.The effects of various parameters,including the viscosity parameter,ranging from 1 to 3,the thermal conductivity parameter,ranging from 1 to 3,the Rayleigh parameter,ranging from 102 to 3×10^(2),the radiation number,ranging from 0.1 to 0.5,the fusion temperature,ranging from 1.0 to 1.2,the volume fraction of NEPCMs,ranging from 2%to 6%,the Stefan number,ranging from 1 to 5,the magnetic number,ranging from 0.1 to 0.5,and the irreversibility parameter,ranging from 0.1 to 0.5,are examined in detail on the temperature contours,isentropic lines,heat capacity ratio,and velocity fields.Furthermore,the heat transfer rates at both the cold and hot walls are analyzed,and the findings are presented graphically.The results indicate that the time taken by the NEPCMs to transition from solid to liquid is prolonged inside the chamber region as the fusion temperatureθf increases.Additionally,the contours of the heat capacity ratio Cr decrease with the increase in the Stefan number Ste.
基金supported by the National Natural Science Foundation of China(12071491,12001113)。
文摘In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.
基金the Fundamental Research Funds for the Central Universities(Grant No.2024MS126).
文摘We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.
文摘This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin andmagnetic field.The temperature is constant on the Y-shaped fin,insulating the topwall while the remaining walls remain cold.All walls are subject to impermeability and non-slip conditions.The mathematical modeling of the problem is demonstrated by the continuity,momentum,and energy equations incorporating the inclined magnetic field.For elucidating the flow characteristics Finite ElementMethod(FEM)is implemented using stable FE pair.A hybrid fine mesh is used for discretizing the domain.Velocity and thermal plots concerning parameters are drawn.In addition,a detailed discussion regarding generation energy by monitoring changes in magnetic,viscous,total,and thermal irreversibility is provided.In addition,line graphs are created for the u and v components of the velocity profile to predict the flow behavior.Current simulations assume the dimensionless representative of magnetic field Hartmann number Ha between 0 and 100 and a magnetic field inclination between 0 and 90 degrees.A constant 4% volume proportion of nanoparticles is employed throughout all scenarios.
文摘The viscous fluid flow and heat transfer over a stretching(shrinking)and porous sheets of nonuniform thickness are investigated in this paper.The modeled problem is presented by utilizing the stretching(shrinking)and porous velocities and variable thickness of the sheet and they are combined in a relation.Consequently,the new problem reproduces the different available forms of flow motion and heat transfer maintained over a stretching(shrinking)and porous sheet of variable thickness in one go.As a result,the governing equations are embedded in several parameters which can be transformed into classical cases of stretched(shrunk)flows over porous sheets.A set of general,unusual and new variables is formed to simplify the governing partial differential equations and boundary conditions.The final equations are compared with the classical models to get the validity of the current simulations and they are exactly matched with each other for different choices of parameters of the current problem when their values are properly adjusted and manipulated.Moreover,we have recovered the classical results for special and appropriate values of the parameters(δ_(1),δ_(2),δ_(3),c,and B).The individual and combined effects of all inputs from the boundary are seen on flow and heat transfer properties with the help of a numerical method and the results are compared with classical solutions in special cases.It is noteworthy that the problem describes and enhances the behavior of all field quantities in view of the governing parameters.Numerical result shows that the dual solutions can be found for different possible values of the shrinking parameter.A stability analysis is accomplished and apprehended in order to establish a criterion for the determinations of linearly stable and physically compatible solutions.The significant features and diversity of the modeled equations are scrutinized by recovering the previous problems of fluid flow and heat transfer from a uniformly heated sheet of variable(uniform)thickness with variable(uniform)stretching/shrinking and injection/suction velocities.
基金supported by the NSFC(11871257,12071130)supported by the NSFC(11971165)。
文摘In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit ball of X.We next give a sharp result on the first order Fréchet derivative for bounded holomorphic mappings F(X)=F(0+)∞∑s=KD^(s)f(0)(x^(8)/s!):B_(X)→B_(Y),where B_(X)is the unit ball of X.The results that we derive include some results in several complex variables,and extend the classical result in one complex variable to several complex variables.
基金supported by the NSFC(12261107)Yunnan Key Laboratory of Modern Analytical Mathematics and Applications(202302AN360007).
文摘For any s∈(0,1),let the nonlocal Sobolev space X^(s)(R^(N))be the linear space of Lebesgue measure functions from R^(N) to R such that any function u in X^(s)(R^(N))belongs to L2(R^(N))and the function(x,y)→(u(x)-u(y)√K(x-y)is in L^(2)(R^(N),R^(N)).First,we show,for a coercive function V(x),the subspace E:={u∈X^s(R^N):f_(R)^N}V(x)u^(2)dx<+∞}of X^(s)(R^(N))is embedded compactly into L^(p)(R^(N))for p\in[2,2_(s)^(*)),where 2_(s)^(*)is the fractional Sobolev critical exponent.In terms of applications,the existence of a least energy sign-changing solution and infinitely many sign-changing solutions of the nonlocal Schrödinger equation-L_(k)u+V(x)u=f(x,u),x∈R^N are obtained,where-L_(K)is an integro-differential operator and V is coercive at infinity.
文摘The investigation endorsed the convective flow of Carreau nanofluid over a stretched surface in presence of entropy generation optimization.The novel dynamic of viscous dissipation is utilized to analyze the thermal mechanism of magnetized flow.The convective boundary assumptions are directed in order to examine the heat and mass transportation of nanofluid.The thermal concept of thermophoresis and Brownian movements has been re-called with the help of Buongiorno model.The problem formulated in dimensionless form is solved by NDSolve MATHEMATICA.The graphical analysis for parameters governed by the problem is performed with physical applications.The affiliation of entropy generation and Bejan number for different parameters is inspected in detail.The numerical data for illustrating skin friction,heat and mass transfer rate is also reported.The motion of the fluid is highest for the viscosity ratio parameter.The temperature of the fluid rises via thermal Biot number.Entropy generation rises for greater Brinkman number and diffusion parameter.
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
文摘In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.
文摘A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19.The model is fitted to real COVID-19 data from Pakistan.The proposed model incorporates logistic growth and saturated incidence functions.Rigorous analyses using the tools of stochastic calculus,are performed to study appropriate conditions for the existence of unique global solutions,stationary distribution in the sense of ergodicity and disease extinction.The stochastic threshold estimated from the data fitting is given by:R_(0)^(S)=3.0651.Numerical assessments are implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics of both diseases.The effects of stochastic white noise intensities are also highlighted.
基金Project supported by the the Fundamental Research Funds for the Central Universities(Grant No.2023MS163).
文摘We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on Lax pair obtained by us,we derive the infinitely-many conservation laws.We give the bright one-,two-,and N-soliton solutions,and the first-,second-,and Nth-order breather solutions based on the N-fold DT.We conclude that the velocities of the bright solitons are influenced by the distributed gain function,g(z),and variable coefficients in equation,h1(z),p1(z),r1(z),and s1(z)via the asymptotic analysis,where z represents the propagation variable or spatial coordinate.We also graphically observe that:the velocities of the first-and second-order breathers will be affected by h1(z),p1(z),r1(z),and s1(z),and the background wave depends on g(z).