Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which sa...Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which satisfy the stiffimss and rotational speed required to the spindle. A general full factorial design method was used to verify some factors that affect the natural frequency of a spindle. It is verified that the shorter shaft length and bearing span length represent the higher natural frequency, and there are some effects according to the change in the levels of factors. The detailed spindle dimension is determined by applying an EVD method, which can define the optimal bearing position through considering the limiting condition. Based on the estimated regression model, the optimal spindle size and bearing distance that can improve the primary natural frequency are obtained, and the influence of design factors on the natural frequency is also analyzed.展开更多
Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medica...Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medical applications was successfully fabricated in the porosity range of 40%-50% (volume fraction) by controlling the SLS parameters and sintering behaviour. The porosity of the sintered compacts was investigated as a function of the SLS parameters and the furnace cycle. Compressive stress and elastic modulus of the 316L stainless steel material were determined. The compressive strength was found to be ranging from 21 to 32 MPa and corresponding elastic modulus ranging from 26 to 43 GPa. The present parts are promising for biomedical applications since the optimal porosity of implant materials for ingrowths of new-bone tissues is in the range of 20%-59% (volume fraction) and mechanical properties are matching with human bone.展开更多
The effect of iron addition on the microstructure, mechanical and magnetic properties of Al-matrix composite was studied. Mechanical mixing was used for the preparation of 0, 5%, 10% and 15% Fe-Al composites(mass fra...The effect of iron addition on the microstructure, mechanical and magnetic properties of Al-matrix composite was studied. Mechanical mixing was used for the preparation of 0, 5%, 10% and 15% Fe-Al composites(mass fraction). Mixtures of Al-Fe were compacted and sintered in a vacuum furnace at 600 °C for 1 h. X-ray diffraction(XRD) of the samples containing 5% and 10% Fe indicates the presence of Al and Fe peaks, while sample containing 15% Fe reveals Al and Al13Fe4 peaks. The results show that both densification and thermal conductivity of the composites decrease by increasing the iron content. The presence of iron in the composite improves the compressive strength and the hardness. The strengthening mechanism is associated with the grain refinement of the matrix and uniform distribution of the Fe particles, as well as the formation of Al13Fe4 intermetallic. The measured magnetization values are equal to 0.3816×10-3 A·m2/g for 5% Fe sample and increases up to 0.6597×10-3 A·m2/g for 10% Fe sample, then decreases to 0.0702×10-3 A·m2/g for 15% Fe sample. This can be explained by the formation of the diamagnetic Al13Fe4 intermetallic compound in the higher Fe content sample detected by XRD analysis.展开更多
The design solutions for breadth cam mechanism was presented. The main topics of the shape design for breadth cam was to calculate the coordinate at each contact point to determine the cam profile. The proposed method...The design solutions for breadth cam mechanism was presented. The main topics of the shape design for breadth cam was to calculate the coordinate at each contact point to determine the cam profile. The proposed method according to velocity and geometric relationships of instant velocity centers can easily determine each contact point at any instant moment. The cam profile was defined by contouring of the contact points. And also a program was developed by using Microsoft Visual C++ program,which can quickly and easily draw a 2D cam profile through the displacement diagram. Finally,the program was used to confirm the accuracy on the breadth cam profile design by computer animation graphically.展开更多
An integrated optimization design was described using multilevel decomposition technique on the base of the parametric distribution and independent axiom at the stages of lower level. Based on Pareto optimum solution,...An integrated optimization design was described using multilevel decomposition technique on the base of the parametric distribution and independent axiom at the stages of lower level. Based on Pareto optimum solution, the detailed parameters at lower level can be defined into the independent axiom. The suspension design was used as the simulation example. In an axiomatic design for the optimization design, the uncoupled and decoupled designs between functional requirements and design parameters are generally needed. But using the design sensitivity(or screening) of design parameters, the approximate uncoupled design is developed on behalf of the decoupled and coupled designs. Successive design parameters were applied to the suspension of torsion beam axle. The structural performance increases by 18%. The kinematic and compliance performance increases by 6% within the feasible ranges.展开更多
In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec han...In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec hanical system design and analysis process. This system is based on an emerg ing web-based Content Management System (CMS) called eXtended Object Oriented P ortal System (XOOPS). Due to the Open Source Status of the XOOPS CMS, programs d eveloped with this framework can be further customized to satisfy the demands of the user. To introduce the use of this framework, this paper exams three differ ent types of mechanical design and analysis problems. First, a repetitive design consideration and calculation process is transferred into WMADF programs to gai n efficiency for wired collaborative team. Second, the considered product solid model is created directly through the use of XOOPS program and Microsoft Compone nt Object Model (COM) instances. To the end of the paper, an example linked with ANSYS is used to indicate the possible application of this framework.展开更多
Cylindrical Cam Mechanism which is one of the best eq uipments to accomplish an accurate motion transmission is widely used in the fie lds of industries, such as machine tool exchangers, textile machinery and automa t...Cylindrical Cam Mechanism which is one of the best eq uipments to accomplish an accurate motion transmission is widely used in the fie lds of industries, such as machine tool exchangers, textile machinery and automa tic transfer equipments. This paper proposes a new approach for the shape design and manufacturing of the cylindrical cam. The design approach uses the relative velocity concept and the manufacturing approach uses the inverse kinematics concept. For the shape desig n, the contact points between the cam and the follower roller are calculated bas ed on relative velocity of which the direction is on the common tangential line, and then the whole shape of cam is determined from transformation of the coordi nate system. For the manufacturing procedures, the location and the orientation of cutter path can be allocated corresponding to the designed shape data. The in tegral NC code for multi-axis CNC machining center is created using the inverse kinematics concept from the data of the location and the orientation of cutter path. As the advantages of the proposed approach, the machine tool is designed t o having an alternative size in fabricating the general cam, while the tool must be fitted to diameter size of the follower in the conventional approach. Finally, CAD/CAM program, "Cylindrical DAM", is developed on C++ lan guage. This program can perform shape design, manufacturing and kinematics simul ation, which can make integral NC code for multi-axis CNC machining center. The proposed method can be applied easily on fields of industries.展开更多
In order to improve the wear resistance of Ti-6Al-4V, different amounts of Si3N4 powder were added into the alloy powder and sintered at 1250℃. Porous titanium alloy with higher wear resistance was successfully fabri...In order to improve the wear resistance of Ti-6Al-4V, different amounts of Si3N4 powder were added into the alloy powder and sintered at 1250℃. Porous titanium alloy with higher wear resistance was successfully fabricated. At sintering temperature, reaction took place and a new hard phase of Ti5Si3 formed. The mechanical properties of the fabricated alloys with different amounts of Si3N4 addition were investigated. The hardness of Ti-6Al-4V, which is the index of wear resistance, was increased by the addition of Si3N4. Amounts of Si3N4 addition have very significant influences on hardness and compressive strength. In present study,titanium alloy with 5 wt pct Si3N4 addition has 62% microhardness and 45% overall bulk hardness increase,respectively. In contrast, it has a 16.4% strength reduction. Wear resistance was evaluated by the weight loss during wear test. A new phase of Ti5Si3 was detected by electron probe microanalyzer (EPMA) and X-ray diffraction (XRD) method. The original Si3N4 decomposed during sintering and transformed into titanium silicide. Porous structure was achieved due to the sintering reaction.展开更多
A stress analysis of the Sarafix external fixator design was performed using finite element analysis (FEA) and experimental tensometric measurements. The study was conducted at one of the Sarafix fixator configurati...A stress analysis of the Sarafix external fixator design was performed using finite element analysis (FEA) and experimental tensometric measurements. The study was conducted at one of the Sarafix fixator configurations that have a clinical application in the treatment of tibia fractures. The intensity of principal and yon Mises stresses generated at two measuring points (MP) on the fixator connecting rod were monitored and analyzed during the testing on axial compression on the fixator design and its finite element model (FEM). The 3D geometrical and FEM model of the fixator was formed using the computer aided design/computer aided engineering (CAD/CAE) software system CATIA. Verification of the results for the dominant principal stresses obtained from FEA was carried out through tensometric measurements. The measuring chain consisted of strain gauges connected into two Wheatstone half-bridges, digital measuring amplifier system and a computer with software for acquisition and monitoring of measurement results. A quite good agreement was observed between the results obtained on the basis of FEA and results of experimental tensometric analysis,展开更多
Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase of accidents caused by earthquake. Severe earthquake can bring serious problems in...Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase of accidents caused by earthquake. Severe earthquake can bring serious problems in the wind turbines and eventually lead to an interruption to their electric power supply. To overcome and prevent these undesirable problems, structural design optimization of a small vertical axis wind turbine has performed, in this study, for seismic qualification and lightweight by using a Genetic Algorithm (GA) subject to some design constraints such as the maximum stress limit, maximum deformation limit, and seismic acceleration gain limit. Also, the structural design optimizations were conducted for the four different initial design variable sets to confirm robustness of the optimization algorithm used. As a result, all the optimization results for the 4 different initial designs showed good agreement with each other properly. Thus the structural design optimization of a small vertical-axis wind turbine could be successfully accomplished.展开更多
Small-scaled wind turbine is converted to mechanical power of windmill to electric power by generator. However almost all studies seems to have overlooked converting relation of mechanical & electric power. It the...Small-scaled wind turbine is converted to mechanical power of windmill to electric power by generator. However almost all studies seems to have overlooked converting relation of mechanical & electric power. It the reason for was very difficult establishing wind turbine system. In this paper, it is define equation of converting relation of mechanical & electric power. And it is verified by experimental methods. Defined equation will be used in developing electric devices such as inverter and controller in wind turbines. In addition this method can be used in the fields that utilize the rotational power into electrical power through generator.展开更多
The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehy...The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide.展开更多
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde...The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.展开更多
The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied...The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied in many industries.The flow of a liquid containing air is a representative example of a multiphase flow and exhibits complex flow characteristics.In particular,the greater the gas volume fraction(GVF),the more inhomogeneous the flow becomes.As a result,using a venturi meter to measure the rate of a flow that has a high GVF generates an error.In this study,the cause of the error occurred in measuring the flow rate for the multiphase flow when using the venturi meter for analysis by CFD.To ensure the reliability of this study,the accuracy of the multiphase flow models for numerical analysis was verified through comparison between the calculated results of numerical analysis and the experimental data.As a result,the Grace model,which is a multiphase flow model established by an experiment with water and air,was confirmed to have the highest reliability.Finally,the characteristics of the internal flow Held about the multiphase flow analysis result generated by applying the Grace model were analyzed to find the cause of the uncertainty occurring when measuring the flow rate of the multiphase flow using the venturi meter.A phase separation phenomenon occurred due to a density difference of water and air inside the venturi,and flow inhomogeneity happened according to the flow velocity difference of each phase.It was confirmed that this flow inhomogeneity increased as the GVF increased due to the uncertainty of the flow measurement.展开更多
The wear rate between the rotors of a hypotrochoidal gear pump is characterized.Using the knowledge of shape design on the rotors,the contact stresses without hydrodynamic effect between the rotor teeth were evaluated...The wear rate between the rotors of a hypotrochoidal gear pump is characterized.Using the knowledge of shape design on the rotors,the contact stresses without hydrodynamic effect between the rotor teeth were evaluated through the calculation of the Hertzian contact stress.Based on the above results and the sliding velocity between the rotors,a genetic algorithm (GA) was used as an optimization technique forminimizing the wear rate proportional factor (WRPF).The result shows that the wear rate or the WRPF can be reduced considerably,e.g.approximately 12.8%,throughout the optimization using GA.展开更多
This paper presents the design and prototype of a small quadruped robot whose walking motion is realized by two piezocomposite actuators. In the design, biomimetic ideas are employed to obtain the agility of motions a...This paper presents the design and prototype of a small quadruped robot whose walking motion is realized by two piezocomposite actuators. In the design, biomimetic ideas are employed to obtain the agility of motions and sustainability of a heavy load. The design of the robot legs is inspired by the leg configuration of insects, two joints (hip and knee) of the leg enable two basic motions, lifting and stepping. The robot frame is designed to have a slope relative to the horizontal plane, which makes the robot move forward. In addition, the bounding locomotion of quadruped animals is implemented in the robot. Experiments show that the robot can carry an additional load of about 100 g and run with a fairly high velocity. The quadruped prototype can be an important step towards the goal of building an autonomous mobile robot actuated by piezocomposite actuators.展开更多
Laser assisted machining (LAM) has difficulties in estimating temperature after applying a LAM process due to its very small heat input area, large energy and movement. In particular, in the case of laser assisted t...Laser assisted machining (LAM) has difficulties in estimating temperature after applying a LAM process due to its very small heat input area, large energy and movement. In particular, in the case of laser assisted turning (LAT) process, it is more difficult to estimate the temperature after preheating because it has a shape of ellipse when a laser heat source is rotated. A prediction method and thermal analysis method for heat source shapes were proposed as a square shaped member was preheated. The temperature distribution was calculated according to the rotation of the member. Compared with the results of the former study, the maximum temperature of the calculation results, 1 407.1 ℃, is 8.5 ℃ higher than that of the square member, which is 1 398.6 ℃. In a LAT process for a square member, the maximum temperature is 1 850.8 ℃. It is recognized that a laser power control process is required because square members show a maximum temperature that exceeds a melting temperature at around a vertex of the member according to the rotation.展开更多
Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configurat...Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.展开更多
The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, the energy absorbing members should absorb collision energy sufficiently but for the environmen...The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, the energy absorbing members should absorb collision energy sufficiently but for the environmentally-friendly aspect, the vehicle structure must be light weight in order to improve the fuel efficiency and reduce the tail gas emission. Therefore, the light weight of vehicle must be achieved in a securing safety status of crash. An aluminum or carbon fiber reinforced plastics (CFRP) is representative one of the light-weight materials. Based on the respective collapse behavior of aluminum and CFRP member, the collapse behavior of hybrid thin-walled member was evaluated. The hybrid members were manufactured by wrapping CFRP prepreg sheets outside the aluminum hollow members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties, such as strength and elasticity, change with its stacking condition, the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member were tested. The collapse mode and energy absorption capability of the hybrid thin-walled member were analyzed with the change of the fiber orientation angle and interface number.展开更多
A finite element model was established for analyzing the geometric errors in turning operations and a two-step analyzing process was proposed. In the first analyzing step, the cutting force and the cutting heat for th...A finite element model was established for analyzing the geometric errors in turning operations and a two-step analyzing process was proposed. In the first analyzing step, the cutting force and the cutting heat for the cutting conditions were obtained using the AdvantEdge. Also, the deformation of a workpiece was estimated in the second step using the ANSYS. The deformation was analyzed for a 150 mm-long workpiece at three different measuring points, such as 10, 70 and 130 mm from a reference point, and the amounts of the deformation were compared through experiments. /n the results of the comparison and analysis, the values obtained from these comparison and analysis represent similar tendencies. Also, it is verified that their geometric errors increase with the increase in temperature. In addition, regarding the factors that affect the deformation of a workpiecc, it can be seen that the geometric error in the lathe is about 15%, the error caused by the cutting force is about 10%, and the deformation caused by the heat is about 75%.展开更多
基金Project(RTI04-01-03) supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE) of Korea
文摘Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which satisfy the stiffimss and rotational speed required to the spindle. A general full factorial design method was used to verify some factors that affect the natural frequency of a spindle. It is verified that the shorter shaft length and bearing span length represent the higher natural frequency, and there are some effects according to the change in the levels of factors. The detailed spindle dimension is determined by applying an EVD method, which can define the optimal bearing position through considering the limiting condition. Based on the estimated regression model, the optimal spindle size and bearing distance that can improve the primary natural frequency are obtained, and the influence of design factors on the natural frequency is also analyzed.
文摘Highly porous 316L stainless steel parts were produced by using a powder metallurgy process, which includes the selective laser sintering(SLS) and traditional sintering. Porous 316L stainless steel suitable for medical applications was successfully fabricated in the porosity range of 40%-50% (volume fraction) by controlling the SLS parameters and sintering behaviour. The porosity of the sintered compacts was investigated as a function of the SLS parameters and the furnace cycle. Compressive stress and elastic modulus of the 316L stainless steel material were determined. The compressive strength was found to be ranging from 21 to 32 MPa and corresponding elastic modulus ranging from 26 to 43 GPa. The present parts are promising for biomedical applications since the optimal porosity of implant materials for ingrowths of new-bone tissues is in the range of 20%-59% (volume fraction) and mechanical properties are matching with human bone.
文摘The effect of iron addition on the microstructure, mechanical and magnetic properties of Al-matrix composite was studied. Mechanical mixing was used for the preparation of 0, 5%, 10% and 15% Fe-Al composites(mass fraction). Mixtures of Al-Fe were compacted and sintered in a vacuum furnace at 600 °C for 1 h. X-ray diffraction(XRD) of the samples containing 5% and 10% Fe indicates the presence of Al and Fe peaks, while sample containing 15% Fe reveals Al and Al13Fe4 peaks. The results show that both densification and thermal conductivity of the composites decrease by increasing the iron content. The presence of iron in the composite improves the compressive strength and the hardness. The strengthening mechanism is associated with the grain refinement of the matrix and uniform distribution of the Fe particles, as well as the formation of Al13Fe4 intermetallic. The measured magnetization values are equal to 0.3816×10-3 A·m2/g for 5% Fe sample and increases up to 0.6597×10-3 A·m2/g for 10% Fe sample, then decreases to 0.0702×10-3 A·m2/g for 15% Fe sample. This can be explained by the formation of the diamagnetic Al13Fe4 intermetallic compound in the higher Fe content sample detected by XRD analysis.
基金Work supported by the Second Stage of Brain Korea 21 Projects
文摘The design solutions for breadth cam mechanism was presented. The main topics of the shape design for breadth cam was to calculate the coordinate at each contact point to determine the cam profile. The proposed method according to velocity and geometric relationships of instant velocity centers can easily determine each contact point at any instant moment. The cam profile was defined by contouring of the contact points. And also a program was developed by using Microsoft Visual C++ program,which can quickly and easily draw a 2D cam profile through the displacement diagram. Finally,the program was used to confirm the accuracy on the breadth cam profile design by computer animation graphically.
文摘An integrated optimization design was described using multilevel decomposition technique on the base of the parametric distribution and independent axiom at the stages of lower level. Based on Pareto optimum solution, the detailed parameters at lower level can be defined into the independent axiom. The suspension design was used as the simulation example. In an axiomatic design for the optimization design, the uncoupled and decoupled designs between functional requirements and design parameters are generally needed. But using the design sensitivity(or screening) of design parameters, the approximate uncoupled design is developed on behalf of the decoupled and coupled designs. Successive design parameters were applied to the suspension of torsion beam axle. The structural performance increases by 18%. The kinematic and compliance performance increases by 6% within the feasible ranges.
文摘In this paper, a Web-based Mechanical Design and A na lysis Framework (WMDAF) is proposed. This WMADF allows designers to develop web -based computer aided programs in a systematic way during the collaborative mec hanical system design and analysis process. This system is based on an emerg ing web-based Content Management System (CMS) called eXtended Object Oriented P ortal System (XOOPS). Due to the Open Source Status of the XOOPS CMS, programs d eveloped with this framework can be further customized to satisfy the demands of the user. To introduce the use of this framework, this paper exams three differ ent types of mechanical design and analysis problems. First, a repetitive design consideration and calculation process is transferred into WMADF programs to gai n efficiency for wired collaborative team. Second, the considered product solid model is created directly through the use of XOOPS program and Microsoft Compone nt Object Model (COM) instances. To the end of the paper, an example linked with ANSYS is used to indicate the possible application of this framework.
文摘Cylindrical Cam Mechanism which is one of the best eq uipments to accomplish an accurate motion transmission is widely used in the fie lds of industries, such as machine tool exchangers, textile machinery and automa tic transfer equipments. This paper proposes a new approach for the shape design and manufacturing of the cylindrical cam. The design approach uses the relative velocity concept and the manufacturing approach uses the inverse kinematics concept. For the shape desig n, the contact points between the cam and the follower roller are calculated bas ed on relative velocity of which the direction is on the common tangential line, and then the whole shape of cam is determined from transformation of the coordi nate system. For the manufacturing procedures, the location and the orientation of cutter path can be allocated corresponding to the designed shape data. The in tegral NC code for multi-axis CNC machining center is created using the inverse kinematics concept from the data of the location and the orientation of cutter path. As the advantages of the proposed approach, the machine tool is designed t o having an alternative size in fabricating the general cam, while the tool must be fitted to diameter size of the follower in the conventional approach. Finally, CAD/CAM program, "Cylindrical DAM", is developed on C++ lan guage. This program can perform shape design, manufacturing and kinematics simul ation, which can make integral NC code for multi-axis CNC machining center. The proposed method can be applied easily on fields of industries.
文摘In order to improve the wear resistance of Ti-6Al-4V, different amounts of Si3N4 powder were added into the alloy powder and sintered at 1250℃. Porous titanium alloy with higher wear resistance was successfully fabricated. At sintering temperature, reaction took place and a new hard phase of Ti5Si3 formed. The mechanical properties of the fabricated alloys with different amounts of Si3N4 addition were investigated. The hardness of Ti-6Al-4V, which is the index of wear resistance, was increased by the addition of Si3N4. Amounts of Si3N4 addition have very significant influences on hardness and compressive strength. In present study,titanium alloy with 5 wt pct Si3N4 addition has 62% microhardness and 45% overall bulk hardness increase,respectively. In contrast, it has a 16.4% strength reduction. Wear resistance was evaluated by the weight loss during wear test. A new phase of Ti5Si3 was detected by electron probe microanalyzer (EPMA) and X-ray diffraction (XRD) method. The original Si3N4 decomposed during sintering and transformed into titanium silicide. Porous structure was achieved due to the sintering reaction.
文摘A stress analysis of the Sarafix external fixator design was performed using finite element analysis (FEA) and experimental tensometric measurements. The study was conducted at one of the Sarafix fixator configurations that have a clinical application in the treatment of tibia fractures. The intensity of principal and yon Mises stresses generated at two measuring points (MP) on the fixator connecting rod were monitored and analyzed during the testing on axial compression on the fixator design and its finite element model (FEM). The 3D geometrical and FEM model of the fixator was formed using the computer aided design/computer aided engineering (CAD/CAE) software system CATIA. Verification of the results for the dominant principal stresses obtained from FEA was carried out through tensometric measurements. The measuring chain consisted of strain gauges connected into two Wheatstone half-bridges, digital measuring amplifier system and a computer with software for acquisition and monitoring of measurement results. A quite good agreement was observed between the results obtained on the basis of FEA and results of experimental tensometric analysis,
文摘Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase of accidents caused by earthquake. Severe earthquake can bring serious problems in the wind turbines and eventually lead to an interruption to their electric power supply. To overcome and prevent these undesirable problems, structural design optimization of a small vertical axis wind turbine has performed, in this study, for seismic qualification and lightweight by using a Genetic Algorithm (GA) subject to some design constraints such as the maximum stress limit, maximum deformation limit, and seismic acceleration gain limit. Also, the structural design optimizations were conducted for the four different initial design variable sets to confirm robustness of the optimization algorithm used. As a result, all the optimization results for the 4 different initial designs showed good agreement with each other properly. Thus the structural design optimization of a small vertical-axis wind turbine could be successfully accomplished.
文摘Small-scaled wind turbine is converted to mechanical power of windmill to electric power by generator. However almost all studies seems to have overlooked converting relation of mechanical & electric power. It the reason for was very difficult establishing wind turbine system. In this paper, it is define equation of converting relation of mechanical & electric power. And it is verified by experimental methods. Defined equation will be used in developing electric devices such as inverter and controller in wind turbines. In addition this method can be used in the fields that utilize the rotational power into electrical power through generator.
基金the financial support provided by the Natural Science Foundations in Hebei Province(No.E2018201235)Baoding Science and Technology Planning Project(No.2074P019)+2 种基金Higher Education in Hebei Province School Science and Technology Research Project(No.QN2019209)Horizontal project(horizontal 20230048)2022 Hebei Province and Hebei University College Students Innovation and Entrepreneurship Training Program(Nos.2022265 and 2022266)。
文摘The composites of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)as-quenched alloy and 3 wt.%M(M=CoS,CoS_(2),MoS_(2))catalyst were prepared by high-speed vibration ball mill.The effects of metal sulfides on the hydrogenation and dehydrogenation dynamics of alloys were compared.The results show that the as-milled composites contain a large number of amorphous embedded by a small amount of nanocrystals,and there are many point defects.After ball milling,the crystal grain size in the composites containing CoS is relatively larger,followed by CoS_(2)and MoS_(2)again.After hydrogenation,the amorphous phase is crystallized to form Mg_(2)NiH_(4),YH_(3),Pr_(8)H_(18.96),Sm_(3)H_7,Mg,Co or Mo phases,however,Mg_(2)Ni,YH_(2),PrH_(2)and Ni_(3)Y phases appeared after dehydrogenation.The maximum hydrogenation capacity of the composites containing CoS,CoS_(2)and MoS_(2)are 3.939,4.265 and 4.507 wt.%,respectively.The hydrogenation saturation ratio of composite containing MoS_(2)is higher than that of the composites containing CoS and CoS_(2).The dehydrogenation activation energy of the composites containing CoS,CoS_(2)and MoS_(2)is 107.76,68.43 and 63.28 kJ.mol^(-1).H_(2).On the improvement of hydrogen storage performance of Mg_(20)Pr_(1)Sm_(3)Y_(1)Ni_(10)alloy,the catalytic effect of MoS_(2)sulfide is better than that of CoS_(2)sulfide,and which is better than CoS sulfide.
基金supported by the Learning & Academic Research Institution for Master’s and Ph.D. Students and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00285353)supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054, and 2021R1A2C1091301)+3 种基金the support from Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Foundation for Innovation (CFI)Atlantic Canada Opportunities Agency (ACOA)the New Brunswick Innovation Foundation (NBIF)
文摘The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.
基金supported by the Industrial Infrastructure Program through The Korea Institute for Advancement of Technology(KIAT) Grant funded by the Korea government Ministry of Trade,Industry and Energy(Grant N0000502)
文摘The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied in many industries.The flow of a liquid containing air is a representative example of a multiphase flow and exhibits complex flow characteristics.In particular,the greater the gas volume fraction(GVF),the more inhomogeneous the flow becomes.As a result,using a venturi meter to measure the rate of a flow that has a high GVF generates an error.In this study,the cause of the error occurred in measuring the flow rate for the multiphase flow when using the venturi meter for analysis by CFD.To ensure the reliability of this study,the accuracy of the multiphase flow models for numerical analysis was verified through comparison between the calculated results of numerical analysis and the experimental data.As a result,the Grace model,which is a multiphase flow model established by an experiment with water and air,was confirmed to have the highest reliability.Finally,the characteristics of the internal flow Held about the multiphase flow analysis result generated by applying the Grace model were analyzed to find the cause of the uncertainty occurring when measuring the flow rate of the multiphase flow using the venturi meter.A phase separation phenomenon occurred due to a density difference of water and air inside the venturi,and flow inhomogeneity happened according to the flow velocity difference of each phase.It was confirmed that this flow inhomogeneity increased as the GVF increased due to the uncertainty of the flow measurement.
基金supported by Changwon National University in 2010,Korea
文摘The wear rate between the rotors of a hypotrochoidal gear pump is characterized.Using the knowledge of shape design on the rotors,the contact stresses without hydrodynamic effect between the rotor teeth were evaluated through the calculation of the Hertzian contact stress.Based on the above results and the sliding velocity between the rotors,a genetic algorithm (GA) was used as an optimization technique forminimizing the wear rate proportional factor (WRPF).The result shows that the wear rate or the WRPF can be reduced considerably,e.g.approximately 12.8%,throughout the optimization using GA.
文摘This paper presents the design and prototype of a small quadruped robot whose walking motion is realized by two piezocomposite actuators. In the design, biomimetic ideas are employed to obtain the agility of motions and sustainability of a heavy load. The design of the robot legs is inspired by the leg configuration of insects, two joints (hip and knee) of the leg enable two basic motions, lifting and stepping. The robot frame is designed to have a slope relative to the horizontal plane, which makes the robot move forward. In addition, the bounding locomotion of quadruped animals is implemented in the robot. Experiments show that the robot can carry an additional load of about 100 g and run with a fairly high velocity. The quadruped prototype can be an important step towards the goal of building an autonomous mobile robot actuated by piezocomposite actuators.
基金Project(70004782)supported by the Regional Strategic Technology Development Program of the Ministry of Knowledge Economy(MKE),KoreaProject(2011-0017407)supported by National Research Foundation(NRF)of KoreaWork financially supported by the Second Stage of Brain Korea 21 Projects
文摘Laser assisted machining (LAM) has difficulties in estimating temperature after applying a LAM process due to its very small heat input area, large energy and movement. In particular, in the case of laser assisted turning (LAT) process, it is more difficult to estimate the temperature after preheating because it has a shape of ellipse when a laser heat source is rotated. A prediction method and thermal analysis method for heat source shapes were proposed as a square shaped member was preheated. The temperature distribution was calculated according to the rotation of the member. Compared with the results of the former study, the maximum temperature of the calculation results, 1 407.1 ℃, is 8.5 ℃ higher than that of the square member, which is 1 398.6 ℃. In a LAT process for a square member, the maximum temperature is 1 850.8 ℃. It is recognized that a laser power control process is required because square members show a maximum temperature that exceeds a melting temperature at around a vertex of the member according to the rotation.
基金Project financially supported by the Second Stage of Brain Korea 21 Projects and Changwon National University,Korea
文摘Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.
文摘The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, the energy absorbing members should absorb collision energy sufficiently but for the environmentally-friendly aspect, the vehicle structure must be light weight in order to improve the fuel efficiency and reduce the tail gas emission. Therefore, the light weight of vehicle must be achieved in a securing safety status of crash. An aluminum or carbon fiber reinforced plastics (CFRP) is representative one of the light-weight materials. Based on the respective collapse behavior of aluminum and CFRP member, the collapse behavior of hybrid thin-walled member was evaluated. The hybrid members were manufactured by wrapping CFRP prepreg sheets outside the aluminum hollow members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties, such as strength and elasticity, change with its stacking condition, the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member were tested. The collapse mode and energy absorption capability of the hybrid thin-walled member were analyzed with the change of the fiber orientation angle and interface number.
基金Project(RTI04-01-03) supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE),Korea
文摘A finite element model was established for analyzing the geometric errors in turning operations and a two-step analyzing process was proposed. In the first analyzing step, the cutting force and the cutting heat for the cutting conditions were obtained using the AdvantEdge. Also, the deformation of a workpiece was estimated in the second step using the ANSYS. The deformation was analyzed for a 150 mm-long workpiece at three different measuring points, such as 10, 70 and 130 mm from a reference point, and the amounts of the deformation were compared through experiments. /n the results of the comparison and analysis, the values obtained from these comparison and analysis represent similar tendencies. Also, it is verified that their geometric errors increase with the increase in temperature. In addition, regarding the factors that affect the deformation of a workpiecc, it can be seen that the geometric error in the lathe is about 15%, the error caused by the cutting force is about 10%, and the deformation caused by the heat is about 75%.