In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and rene...In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy.展开更多
Context: Advanced heart failure (AHF) poses a global challenge, where heart transplantation is a treatment option but limited by donor scarcity. Proposal: This study aims to enhance the performance of ventricular assi...Context: Advanced heart failure (AHF) poses a global challenge, where heart transplantation is a treatment option but limited by donor scarcity. Proposal: This study aims to enhance the performance of ventricular assist devices (VADs) in the face of adverse events (AEs) using a resilience-based approach. The objective is to develop a method for integrating resilience attributes into VAD control systems, employing dynamic risk analysis and control strategies. Results: The outcomes include a resilient control architecture enabling anticipatory, regenerative, and degenerative actions in response to AEs. A method of applied resilience (MAR) based on dynamic risk management and resilience attribute analysis was proposed. Conclusion: Dynamic integration between medical and technical teams allows continuous adaptation of control systems to meet patient needs over time, improving reliability, safety, and effectiveness of VADs, with potential positive impact on the health of heart failure patients.展开更多
Adaptable design aims to extend the utilities of design and product. The specific methods are developed for practical applications of adaptable design in the design of mechanical structures, including adaptable platfo...Adaptable design aims to extend the utilities of design and product. The specific methods are developed for practical applications of adaptable design in the design of mechanical structures, including adaptable platform, interface and module designs. Adaptable redesign problems are formulated as adaptable platform design under adaptability bound constraints. Analysis tools are then suggested for the implementation of the redesign of machine tool structures, including variation techniques based sensitivity analysis, similarity-based commonality analysis, performance improvement, and adaptability measures. The specific measure of adaptability for machine tool structures is measured through the quantification of the structural similarity and performance improvement gained from adaptable design. The method provides designers with an approach that brings adaptability into the design process, with considering the cost and benefits of such adaptability. The redesign of CNC spiral bevel gear cutting machine structures has been included to illustrate these concepts and methods.展开更多
Lanthanum dialkyldithiophosphate (LaDDP) was synthesized. Its tribological behavior was evaluated with a four-ball machine. The results show that LaDDP possesses very good antiwear and friction reduction capacities. T...Lanthanum dialkyldithiophosphate (LaDDP) was synthesized. Its tribological behavior was evaluated with a four-ball machine. The results show that LaDDP possesses very good antiwear and friction reduction capacities. The boundary film composition, characterized by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), reveals that the antiwear and friction reduction layer containing metallic La, La_2O_3, phosphate, sulphate, tribopolmer and lanthanum tribodiffusion layer prevent the rubbing pairs from contacting directly and result in better extreme pressure and antiwear behavior. The microhardness of frictional surface increases by 25%. It indicates that the frictional surface is strengthened by La tribodiffusion layer. The tribological decomposition reactions of LaDDP are simulated through mass spectroscopy. Its tribological mechanism was suggested.展开更多
In order to explore the unexploded ordnance problem of cluster munitions and find the so- lutions, an M85 sub-munitions reliability model was established by applying the Monte Carlo method. Simulation and experimental...In order to explore the unexploded ordnance problem of cluster munitions and find the so- lutions, an M85 sub-munitions reliability model was established by applying the Monte Carlo method. Simulation and experimental statistics matched the proportion of unexploded ordnance, so the hy- pothesis was feasible. The causes of failure and influencing factors of the dual-purpose improved conventional munitions M85 were analyzed according to experimental data. The sensitivity of each device in fuze was also analyzed. The sorting of weight of each device influence in M85 sub-muni- tions fuze was determined. Stabilization device with the maximum weight is the key components of sub-munitions fuze, so these results provide a reference to the analysis and redesign of other sub- munitions fuzes.展开更多
The effects of rare earth ferrosilicon on the microstructure and anti-wear properties of laser-clad Fe-based alloy coating were investigated. The composition of Fe, B_4C and rare earth ferrosilicon powders with differ...The effects of rare earth ferrosilicon on the microstructure and anti-wear properties of laser-clad Fe-based alloy coating were investigated. The composition of Fe, B_4C and rare earth ferrosilicon powders with different contents of lanthanum were clad onto a 45~# carbon steel substrate. Microstructural features, chemical compositions, phase structure, hardness, friction and wear properties by scanning electron microscopy (SEM), X-ray photoelectron microscopy (XPS), hardness tester, block-on-ring friction and wear tester of the clad coating were determined. Experimental results show that the friction coefficient of the clad coating doped with rare earth ferrosilicon is reduced while the wear resistance of clad coating doped with rare earth ferrosilicon is enhanced. When the content of lanthanum increases to 1.92%, the clad coating shows the best anti-wear ability, and as the content of lanthanum exceeds 1.92%, the wear weight loss increases quickly. The rare earth ferrosilicon to be doped in the clad coatings helps to disperse the boride phase (Fe_2B, FeB, B_4C) particles and refine the grain of boride phase. The enhancement of clad coating′s wear resistance is due to the existence of dispersed boride phases.展开更多
An offshore wind-wave hybrid platform could consistently and cost-effectively supply renewable power.A multi-objective optimization process is proposed for a hybrid platform with hydrodynamic coupling interaction.The ...An offshore wind-wave hybrid platform could consistently and cost-effectively supply renewable power.A multi-objective optimization process is proposed for a hybrid platform with hydrodynamic coupling interaction.The effects of various critical structural parameters,spacing values,and wave directions are studied for higher energy capture and offshore platform stability.Approximation models of various key parameters are established to optimize the hybrid system,with the objects of the power capture width ratio and the stability index of the platform.The optimization results are affected by the hydrodynamic coupling interaction,with a tendency to affect the higher frequency of hydrodynamic performance in the hybrid system.After the optimization,an appropriate spacing value effectively improves energy capture performance.The optimal array distance D_(Ff),D_(Fp),the optimal structural parameters R_(p),r_(p),d_(f),r_(f),and B_(PTO)are 11.57,12.75,5.1,3.3,1.5,6.5 m,and 80436 Nm s^(-1),respectively.The peak value of the wave energy converter capture width ratio in the hybrid system increases by almost 50%,with a 54%decrease in the stability index.展开更多
A non-specific symptom of one or more physical, or psychological processes in which screaming, shouting, complaining, moaning, cursing, pacing, fidgeting or wandering pose risk or discomfort, become disruptive or unsa...A non-specific symptom of one or more physical, or psychological processes in which screaming, shouting, complaining, moaning, cursing, pacing, fidgeting or wandering pose risk or discomfort, become disruptive or unsafe or interfere with the delivery of care are called agitation. Individuals in agitation manifest their condition through "pain behavior", which includes facial expressions. Clinicians regard the patient's facial expression as a valid indicator for pain and pain intensity. Hence, correct interpretation of the facial agitation of the patient and its correlation with pain is a fundamental step in designing an automated pain assessment system. Computer vision techniques can be used to quantify agitation in sedated patients in Intensive Care Unit (ICU). In particular, such techniques can be used to develop objective agitation measurements from patient motion. In the case of paraplegic patients, whole body movement is not available, and hence, monitoring the whole body motion is not a viable solution. Hence in this case, the author measured head motion and facial grimacing for quantifying facial patient agitation in critical care based on Fuzzy k-NN.展开更多
A general method called time-shifting correcting method of phase difference on discrete spectrum is presented. That is, the second discrete-time sequence lags behind the first one with L points, then performing N-poin...A general method called time-shifting correcting method of phase difference on discrete spectrum is presented. That is, the second discrete-time sequence lags behind the first one with L points, then performing N-point FFT analysis on both sequences, and finally correcting spectrum by making use of the phase difference of two corresponding peak lines. The method proposed by XIE Ming et al. is just the particular case of this method in the case that L is equal to N. Simulation result shows that this method is easily carried out with high precision, applicable for all kinds of symmetrical window functions and having high ability of anti-noise.展开更多
Over the years, there has been increased research interest in the application of Nitinol as an actuator, due to its shape memory behaviour, simplicity, high power-to-weight ratio, compactness, and extreme high fatigue...Over the years, there has been increased research interest in the application of Nitinol as an actuator, due to its shape memory behaviour, simplicity, high power-to-weight ratio, compactness, and extreme high fatigue resistance to cyclic motion, and noiseless operation. Nitinol has found application in tactile displays which reproduce tactile parameters such as texture and shape, depending on the application. This paper presents the effects of thermal interference between adjacent Nitinol spring actuators in a tactile display. The tactile display is made of a 3 by 3 pin array whose spatial resolution was varied from 4 mm to 6 mm in steps of 1 mm while a current of 1.5 A was used to actuate 8 of the springs, and the centre spring was left unactivated to observe the thermal effects on it due to the heat gradient formed. A Finite Element (FE) model was developed using COMSOL Multiphysics and the results were further verified through experimentation. In both cases, there was visible thermal interference between actuators. The increase in spatial resolution saw a decrease in thermal interference by 12.7%. Using a fan to introduce forced convection, reduced the thermal interference in the simulation by 20% and during experimentation by 11%. The results of this research indicate a spatial resolution of 6 mm reduced the thermal inference to a negligible rate. However, thermal interference could not be eliminated with these two methods.展开更多
Wind turbines undergo degradation due to various factors which induce stress, thereby leading to fatigue damage to various wind turbine components. In addition, the current increase in demand for electrical power has ...Wind turbines undergo degradation due to various factors which induce stress, thereby leading to fatigue damage to various wind turbine components. In addition, the current increase in demand for electrical power has led to the development of large wind turbines, which result in increased structural loads, therefore, increasing the possibility of early failure due to fatigue load. This paper proposes a proportional integral observer (PI-Observer) based disturbance accommodation controller (DAC) with individual pitch control (IPC) for load mitigation to reduce components’ damage and ensure the wind turbine is operational for the expected lifetime. The results indicate a reduction in blades’ bending moments with a standard deviation of 15.9%, which positively impacts several other wind turbine subsystems. Therefore, the lifetime control strategy demonstrates effective structural load mitigation without compromise on power generation, thus, achieving a nominal lifetime control to inhibit premature failure.展开更多
Welded mild steel is used in different applications in engineering. To strengthen the joint, the weld can be reinforced by adding titanium alloy powder to the joint. This results in the formation of incomplete martens...Welded mild steel is used in different applications in engineering. To strengthen the joint, the weld can be reinforced by adding titanium alloy powder to the joint. This results in the formation of incomplete martensite in a welded joint. The incomplete martensite affects mechanical properties. Therefore, this study aims to predict the volume fraction of martensite in reinforced butt welded joints to understand complex phenomena during microstructure formation. To do so, a combination of the finite element method to predict temperature history, and the Koistinen and Marburger equation, were used to predict the volume fraction of martensite. The martensite start temperature was calculated using chemical elements obtained from the dilution-based mixture rule. The curve shape of martensite evolution was observed to be relatively linear due to the small quantity of martensite volume fraction. The simulated result correlated with experimental work documented in the literature. The model can be used in other powder addition techniques where the martensite can be observed in the final microstructure.展开更多
Approximately 450 million tons of plastic and agricultural waste are produced each year in the world. Only a small portion of this plastic waste is recycled, and a small portion of this agricultural waste is used as f...Approximately 450 million tons of plastic and agricultural waste are produced each year in the world. Only a small portion of this plastic waste is recycled, and a small portion of this agricultural waste is used as fuel or fertilizer, and the rest of this waste is left in the environment or is burned, resulting in environmental and air pollution. For proper disposal, plastic and agricultural waste can be used in the manufacture of composites as raw materials. In this study, we had evaluated the use of bean pod powder (BPp) was used as natural reinforcing filler in recycled polypropylene (rPP) based composites. BPp/rPP composite filaments were developed using the extrusion method and the samples were printed by Fused Filament Fabrication (FFF). Composites with rPP matrix containing different weight fractions of BPp (5%, 10% and 15%) were fabricated to observe and compare the mechanical properties (tensile, flexural, and compressive strength) of the filament composites. In addition, the filament surface was analyzed for roughness and particle size of bean pod powder. The results established that BPp/rPP composites exhibited better tensile, flexural, and compressive strength than rPP and pure PP. By adding 5 wt% BPp, the tensile strength of rPP increased from 20.4 MPa to 22.8 MPa. The highest flexural strength (15.05 MPa) was obtained at 5 wt% BPp among all composites and the highest compressive strength (24.5 MPa), was obtained at 10 wt% BPp. Therefore, it can be concluded that by carefully selecting the ratio of BPp to bean pod powder, it is therefore possible to positively influence the mechanical properties of the resulting composite.展开更多
The advancements in the wind turbine technology specially associated with Vertical Axis Wind Turbines (VAWT), has been improved for last couple of years. This is due to extensive use of computational techniques. This ...The advancements in the wind turbine technology specially associated with Vertical Axis Wind Turbines (VAWT), has been improved for last couple of years. This is due to extensive use of computational techniques. This paper investigates dependency of torque on aerofoil geometry by performing numerical simulation on Darrieustype VAWT with fix pitch blades. Coordinate points for aerofoil was generated using Java Foil software. Reynolds-Averaged Navier Stokes (RANS) turbulence modelling was used for predicting the flow and efficiency of the three blades VAWT. The unsteady flow condition was considered to make simulation as realistic as possible. In order to visualize high strain flow and separation, we used two equation models i.e. k-ε with RNG. NACA 0012 aerofoil was used and camber variations were carried out for developing samples of aerofoil to check the enhancement in performance of VAWT. Results demonstrate the torque and power along with its coefficients. It has been investigated that the performance efficiency was significantly improved by changing the aerofoil camber, demonstrating highest torque with camber (C3) aerofoil and the least performance was observed using camber (C0).展开更多
High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in lan...High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF.展开更多
A new approach is introduced to enhance supercontinuum (SC) spectrum in a dispersion-flattened/decreasing fibre with a convex dispersion profile. A flat SC spectrum nearly extending from 1200hm to 2100hm can be gene...A new approach is introduced to enhance supercontinuum (SC) spectrum in a dispersion-flattened/decreasing fibre with a convex dispersion profile. A flat SC spectrum nearly extending from 1200hm to 2100hm can be generated based on this scheme. It is found that group-velocity dispersions (GVD) and self-phase modulation (SPM) effects are the primary factors for pump Raman scattering (SRS) effect plays an essential self-steepening effect can be ignored. pulse compression and SC spectrum generation, stimulated role on the final SC-spectrum bandwidth and flatness, but展开更多
The article proves several inequalities derived from nodal multiplication on T3 tree. The proved inequalities are helpful to estimate certain quantities related with the T3 tree as well as examples of proving an inequ...The article proves several inequalities derived from nodal multiplication on T3 tree. The proved inequalities are helpful to estimate certain quantities related with the T3 tree as well as examples of proving an inequality embedded with the floor functions.展开更多
A series of Au/CuOx-TiO2 with various Cu/Ti ratios were prepared. CuOx/TiO2 was prepared by incipient-wetness im- pregnation with aqueous solution of copper nitrate. Au catalysts were prepared by deposition-precipitat...A series of Au/CuOx-TiO2 with various Cu/Ti ratios were prepared. CuOx/TiO2 was prepared by incipient-wetness im- pregnation with aqueous solution of copper nitrate. Au catalysts were prepared by deposition-precipitation method at pH 7 and 338 K. The catalysts were characterized by inductively-coupled plasma-mass spectrometry, temperature pro- gramming reduction, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron mi- croscopy and X-ray photoelectron spectroscopy. The reaction was carried out in a fixed bed reactor with a feed con- taining 1% CO in air at WHSV of 120,000 mL/h·g. High gold dispersion and narrow size distribution was obtained. The addition of CuOx in Au/TiO2 enhanced the activity on CO oxidation significantly. CuOx was in amorphous state which could stabilize the Au nanoparticles. Cu was in Cu1+ state. Cu donated partial electrons to Au. The interactions among Au, Cu1+ and TiO2 account for the high catalytic activity for CO oxidation. The significant promotional effect of CuOx on CO oxidation at low temperature was demonstrated.展开更多
The present study attempts to investigate the role of rigid claws and smooth adhesive pads in the locust Locusta migratoria manilensis,when attaching to various substrates.We measured the attachment forces on sandpape...The present study attempts to investigate the role of rigid claws and smooth adhesive pads in the locust Locusta migratoria manilensis,when attaching to various substrates.We measured the attachment forces on sandpaper and silicate glass plate of locusts with intact attachment system,and those with either the pretarsal claws or the tarsal pads having been entirely destroyed,to explore the role of pads and claws when a locust is walking on various substrates.To obtain information about morphological characteristics and material properties of the claws,we examined the intact and fractured claws by scanning electron microscopy,and tested the fractural force in a fracture experiment.We proposed a mechanical model for locust climbing on a slanting surface to analyze the conduction and final result of the attachment forces generated by the attachment organs on the fore-,mid-and hindlegs.Attachment forces generated by locusts with destroyed pads were similar to those generated by locusts with intact attachment system on both substrates,which presumably indicated that the claws have a significantly important role when attaching to various substrates.The result of the fracture experiment demonstrated that the claws are made of relatively stiff material,and their shear strength ranged between 39-45 MPa.Mechanical analysis of locust climbing on slanting surface showed that the force generated by the hindlegs suspended the whole body of locust up from the surface and pushed the body forward,while the midlegs steadily suspended the centre of gravity and the forelegs pulled the suspended body forward.The results obtained contribute to the further interpretation of the interaction mechanisms between insect attachment system and substrates,and supply information for designing and manufacturing slippery plates for trapping plague locusts.展开更多
The slippery trapping plate in swarm locust control is a method of realizing resource utilization of locust and avoiding pesticide residues in the entironment. Some slippery plates with different material composition ...The slippery trapping plate in swarm locust control is a method of realizing resource utilization of locust and avoiding pesticide residues in the entironment. Some slippery plates with different material composition or surface characteristic were investigated through the sliding tests of locust on slippery plates, and sliding rubbing behaviors of locusts on the plate were observed by means of CCD video monitoring system. Poor sliding character of silicate glass to locust was verified, which is in accordance with the adhesive effect generated by secretion of locust feet pads on the smooth surface. And also, PVC plastic plate presents a poor sliding character to locusts, because the soft surface of PVC can permit claws of locust feet to engender mechanical interlock on the surface. The zinc plate shows a considerable slippery ratio for locusts because of the appropriate surface characteristic and material property. Photoelectric stimulation for resting locust can promote the movement of locust. Accordingly, the contact form of locust feet and abdomen on slippery plates is changed and contact area is reduced severely, so the sliding effect of locust on slippery plates is strengthened effectively. These results supply a suitable theoretical foundation for manufacturing locust slippery trapping plates and trapping units, and indicate the important role of photoelectric stimulating factors in biotribology.展开更多
文摘In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy.
文摘Context: Advanced heart failure (AHF) poses a global challenge, where heart transplantation is a treatment option but limited by donor scarcity. Proposal: This study aims to enhance the performance of ventricular assist devices (VADs) in the face of adverse events (AEs) using a resilience-based approach. The objective is to develop a method for integrating resilience attributes into VAD control systems, employing dynamic risk analysis and control strategies. Results: The outcomes include a resilient control architecture enabling anticipatory, regenerative, and degenerative actions in response to AEs. A method of applied resilience (MAR) based on dynamic risk management and resilience attribute analysis was proposed. Conclusion: Dynamic integration between medical and technical teams allows continuous adaptation of control systems to meet patient needs over time, improving reliability, safety, and effectiveness of VADs, with potential positive impact on the health of heart failure patients.
基金National Natural Science Foundation of China(No.50575084,No.50675126)Tianjin Municipal Science Technology Development Key Project,China(No.06YFGZGX00200)National Hi-tech Research Development Program of China(863 Program,No.2006AA04Z107)
文摘Adaptable design aims to extend the utilities of design and product. The specific methods are developed for practical applications of adaptable design in the design of mechanical structures, including adaptable platform, interface and module designs. Adaptable redesign problems are formulated as adaptable platform design under adaptability bound constraints. Analysis tools are then suggested for the implementation of the redesign of machine tool structures, including variation techniques based sensitivity analysis, similarity-based commonality analysis, performance improvement, and adaptability measures. The specific measure of adaptability for machine tool structures is measured through the quantification of the structural similarity and performance improvement gained from adaptable design. The method provides designers with an approach that brings adaptability into the design process, with considering the cost and benefits of such adaptability. The redesign of CNC spiral bevel gear cutting machine structures has been included to illustrate these concepts and methods.
基金Project supported by the National Natural Science Foundation of China (59875083)
文摘Lanthanum dialkyldithiophosphate (LaDDP) was synthesized. Its tribological behavior was evaluated with a four-ball machine. The results show that LaDDP possesses very good antiwear and friction reduction capacities. The boundary film composition, characterized by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), reveals that the antiwear and friction reduction layer containing metallic La, La_2O_3, phosphate, sulphate, tribopolmer and lanthanum tribodiffusion layer prevent the rubbing pairs from contacting directly and result in better extreme pressure and antiwear behavior. The microhardness of frictional surface increases by 25%. It indicates that the frictional surface is strengthened by La tribodiffusion layer. The tribological decomposition reactions of LaDDP are simulated through mass spectroscopy. Its tribological mechanism was suggested.
基金Supported by Defence Science and Technology Laboratory( 3020012251002)
文摘In order to explore the unexploded ordnance problem of cluster munitions and find the so- lutions, an M85 sub-munitions reliability model was established by applying the Monte Carlo method. Simulation and experimental statistics matched the proportion of unexploded ordnance, so the hy- pothesis was feasible. The causes of failure and influencing factors of the dual-purpose improved conventional munitions M85 were analyzed according to experimental data. The sensitivity of each device in fuze was also analyzed. The sorting of weight of each device influence in M85 sub-muni- tions fuze was determined. Stabilization device with the maximum weight is the key components of sub-munitions fuze, so these results provide a reference to the analysis and redesign of other sub- munitions fuzes.
文摘The effects of rare earth ferrosilicon on the microstructure and anti-wear properties of laser-clad Fe-based alloy coating were investigated. The composition of Fe, B_4C and rare earth ferrosilicon powders with different contents of lanthanum were clad onto a 45~# carbon steel substrate. Microstructural features, chemical compositions, phase structure, hardness, friction and wear properties by scanning electron microscopy (SEM), X-ray photoelectron microscopy (XPS), hardness tester, block-on-ring friction and wear tester of the clad coating were determined. Experimental results show that the friction coefficient of the clad coating doped with rare earth ferrosilicon is reduced while the wear resistance of clad coating doped with rare earth ferrosilicon is enhanced. When the content of lanthanum increases to 1.92%, the clad coating shows the best anti-wear ability, and as the content of lanthanum exceeds 1.92%, the wear weight loss increases quickly. The rare earth ferrosilicon to be doped in the clad coatings helps to disperse the boride phase (Fe_2B, FeB, B_4C) particles and refine the grain of boride phase. The enhancement of clad coating′s wear resistance is due to the existence of dispersed boride phases.
基金the National Natural Science Foundation of China(No.U2006229)the Research on the Qingdao Science and Technology Development Projects(No.18-1-2-20-zhc)supported by the Innovation Program approved by the Ministry of Industry and Information Technology of PR China([2016]24)。
文摘An offshore wind-wave hybrid platform could consistently and cost-effectively supply renewable power.A multi-objective optimization process is proposed for a hybrid platform with hydrodynamic coupling interaction.The effects of various critical structural parameters,spacing values,and wave directions are studied for higher energy capture and offshore platform stability.Approximation models of various key parameters are established to optimize the hybrid system,with the objects of the power capture width ratio and the stability index of the platform.The optimization results are affected by the hydrodynamic coupling interaction,with a tendency to affect the higher frequency of hydrodynamic performance in the hybrid system.After the optimization,an appropriate spacing value effectively improves energy capture performance.The optimal array distance D_(Ff),D_(Fp),the optimal structural parameters R_(p),r_(p),d_(f),r_(f),and B_(PTO)are 11.57,12.75,5.1,3.3,1.5,6.5 m,and 80436 Nm s^(-1),respectively.The peak value of the wave energy converter capture width ratio in the hybrid system increases by almost 50%,with a 54%decrease in the stability index.
文摘A non-specific symptom of one or more physical, or psychological processes in which screaming, shouting, complaining, moaning, cursing, pacing, fidgeting or wandering pose risk or discomfort, become disruptive or unsafe or interfere with the delivery of care are called agitation. Individuals in agitation manifest their condition through "pain behavior", which includes facial expressions. Clinicians regard the patient's facial expression as a valid indicator for pain and pain intensity. Hence, correct interpretation of the facial agitation of the patient and its correlation with pain is a fundamental step in designing an automated pain assessment system. Computer vision techniques can be used to quantify agitation in sedated patients in Intensive Care Unit (ICU). In particular, such techniques can be used to develop objective agitation measurements from patient motion. In the case of paraplegic patients, whole body movement is not available, and hence, monitoring the whole body motion is not a viable solution. Hence in this case, the author measured head motion and facial grimacing for quantifying facial patient agitation in critical care based on Fuzzy k-NN.
文摘A general method called time-shifting correcting method of phase difference on discrete spectrum is presented. That is, the second discrete-time sequence lags behind the first one with L points, then performing N-point FFT analysis on both sequences, and finally correcting spectrum by making use of the phase difference of two corresponding peak lines. The method proposed by XIE Ming et al. is just the particular case of this method in the case that L is equal to N. Simulation result shows that this method is easily carried out with high precision, applicable for all kinds of symmetrical window functions and having high ability of anti-noise.
文摘Over the years, there has been increased research interest in the application of Nitinol as an actuator, due to its shape memory behaviour, simplicity, high power-to-weight ratio, compactness, and extreme high fatigue resistance to cyclic motion, and noiseless operation. Nitinol has found application in tactile displays which reproduce tactile parameters such as texture and shape, depending on the application. This paper presents the effects of thermal interference between adjacent Nitinol spring actuators in a tactile display. The tactile display is made of a 3 by 3 pin array whose spatial resolution was varied from 4 mm to 6 mm in steps of 1 mm while a current of 1.5 A was used to actuate 8 of the springs, and the centre spring was left unactivated to observe the thermal effects on it due to the heat gradient formed. A Finite Element (FE) model was developed using COMSOL Multiphysics and the results were further verified through experimentation. In both cases, there was visible thermal interference between actuators. The increase in spatial resolution saw a decrease in thermal interference by 12.7%. Using a fan to introduce forced convection, reduced the thermal interference in the simulation by 20% and during experimentation by 11%. The results of this research indicate a spatial resolution of 6 mm reduced the thermal inference to a negligible rate. However, thermal interference could not be eliminated with these two methods.
文摘Wind turbines undergo degradation due to various factors which induce stress, thereby leading to fatigue damage to various wind turbine components. In addition, the current increase in demand for electrical power has led to the development of large wind turbines, which result in increased structural loads, therefore, increasing the possibility of early failure due to fatigue load. This paper proposes a proportional integral observer (PI-Observer) based disturbance accommodation controller (DAC) with individual pitch control (IPC) for load mitigation to reduce components’ damage and ensure the wind turbine is operational for the expected lifetime. The results indicate a reduction in blades’ bending moments with a standard deviation of 15.9%, which positively impacts several other wind turbine subsystems. Therefore, the lifetime control strategy demonstrates effective structural load mitigation without compromise on power generation, thus, achieving a nominal lifetime control to inhibit premature failure.
文摘Welded mild steel is used in different applications in engineering. To strengthen the joint, the weld can be reinforced by adding titanium alloy powder to the joint. This results in the formation of incomplete martensite in a welded joint. The incomplete martensite affects mechanical properties. Therefore, this study aims to predict the volume fraction of martensite in reinforced butt welded joints to understand complex phenomena during microstructure formation. To do so, a combination of the finite element method to predict temperature history, and the Koistinen and Marburger equation, were used to predict the volume fraction of martensite. The martensite start temperature was calculated using chemical elements obtained from the dilution-based mixture rule. The curve shape of martensite evolution was observed to be relatively linear due to the small quantity of martensite volume fraction. The simulated result correlated with experimental work documented in the literature. The model can be used in other powder addition techniques where the martensite can be observed in the final microstructure.
文摘Approximately 450 million tons of plastic and agricultural waste are produced each year in the world. Only a small portion of this plastic waste is recycled, and a small portion of this agricultural waste is used as fuel or fertilizer, and the rest of this waste is left in the environment or is burned, resulting in environmental and air pollution. For proper disposal, plastic and agricultural waste can be used in the manufacture of composites as raw materials. In this study, we had evaluated the use of bean pod powder (BPp) was used as natural reinforcing filler in recycled polypropylene (rPP) based composites. BPp/rPP composite filaments were developed using the extrusion method and the samples were printed by Fused Filament Fabrication (FFF). Composites with rPP matrix containing different weight fractions of BPp (5%, 10% and 15%) were fabricated to observe and compare the mechanical properties (tensile, flexural, and compressive strength) of the filament composites. In addition, the filament surface was analyzed for roughness and particle size of bean pod powder. The results established that BPp/rPP composites exhibited better tensile, flexural, and compressive strength than rPP and pure PP. By adding 5 wt% BPp, the tensile strength of rPP increased from 20.4 MPa to 22.8 MPa. The highest flexural strength (15.05 MPa) was obtained at 5 wt% BPp among all composites and the highest compressive strength (24.5 MPa), was obtained at 10 wt% BPp. Therefore, it can be concluded that by carefully selecting the ratio of BPp to bean pod powder, it is therefore possible to positively influence the mechanical properties of the resulting composite.
文摘The advancements in the wind turbine technology specially associated with Vertical Axis Wind Turbines (VAWT), has been improved for last couple of years. This is due to extensive use of computational techniques. This paper investigates dependency of torque on aerofoil geometry by performing numerical simulation on Darrieustype VAWT with fix pitch blades. Coordinate points for aerofoil was generated using Java Foil software. Reynolds-Averaged Navier Stokes (RANS) turbulence modelling was used for predicting the flow and efficiency of the three blades VAWT. The unsteady flow condition was considered to make simulation as realistic as possible. In order to visualize high strain flow and separation, we used two equation models i.e. k-ε with RNG. NACA 0012 aerofoil was used and camber variations were carried out for developing samples of aerofoil to check the enhancement in performance of VAWT. Results demonstrate the torque and power along with its coefficients. It has been investigated that the performance efficiency was significantly improved by changing the aerofoil camber, demonstrating highest torque with camber (C3) aerofoil and the least performance was observed using camber (C0).
文摘High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF.
基金Supported by the Natural Science Foundation of Education Department of Guangdong Province under Grant No 0159, and the Natural Science Foundation of Guangdong Polytechnic Normal University under Grant No 109212.
文摘A new approach is introduced to enhance supercontinuum (SC) spectrum in a dispersion-flattened/decreasing fibre with a convex dispersion profile. A flat SC spectrum nearly extending from 1200hm to 2100hm can be generated based on this scheme. It is found that group-velocity dispersions (GVD) and self-phase modulation (SPM) effects are the primary factors for pump Raman scattering (SRS) effect plays an essential self-steepening effect can be ignored. pulse compression and SC spectrum generation, stimulated role on the final SC-spectrum bandwidth and flatness, but
文摘The article proves several inequalities derived from nodal multiplication on T3 tree. The proved inequalities are helpful to estimate certain quantities related with the T3 tree as well as examples of proving an inequality embedded with the floor functions.
文摘A series of Au/CuOx-TiO2 with various Cu/Ti ratios were prepared. CuOx/TiO2 was prepared by incipient-wetness im- pregnation with aqueous solution of copper nitrate. Au catalysts were prepared by deposition-precipitation method at pH 7 and 338 K. The catalysts were characterized by inductively-coupled plasma-mass spectrometry, temperature pro- gramming reduction, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron mi- croscopy and X-ray photoelectron spectroscopy. The reaction was carried out in a fixed bed reactor with a feed con- taining 1% CO in air at WHSV of 120,000 mL/h·g. High gold dispersion and narrow size distribution was obtained. The addition of CuOx in Au/TiO2 enhanced the activity on CO oxidation significantly. CuOx was in amorphous state which could stabilize the Au nanoparticles. Cu was in Cu1+ state. Cu donated partial electrons to Au. The interactions among Au, Cu1+ and TiO2 account for the high catalytic activity for CO oxidation. The significant promotional effect of CuOx on CO oxidation at low temperature was demonstrated.
基金supported by the National Natural Science Foundation of China (50775214)the Fundamental Research Funds of China Agricul-tural University for Special Post-graduate Research and Innovation Funding (kycx09099)
文摘The present study attempts to investigate the role of rigid claws and smooth adhesive pads in the locust Locusta migratoria manilensis,when attaching to various substrates.We measured the attachment forces on sandpaper and silicate glass plate of locusts with intact attachment system,and those with either the pretarsal claws or the tarsal pads having been entirely destroyed,to explore the role of pads and claws when a locust is walking on various substrates.To obtain information about morphological characteristics and material properties of the claws,we examined the intact and fractured claws by scanning electron microscopy,and tested the fractural force in a fracture experiment.We proposed a mechanical model for locust climbing on a slanting surface to analyze the conduction and final result of the attachment forces generated by the attachment organs on the fore-,mid-and hindlegs.Attachment forces generated by locusts with destroyed pads were similar to those generated by locusts with intact attachment system on both substrates,which presumably indicated that the claws have a significantly important role when attaching to various substrates.The result of the fracture experiment demonstrated that the claws are made of relatively stiff material,and their shear strength ranged between 39-45 MPa.Mechanical analysis of locust climbing on slanting surface showed that the force generated by the hindlegs suspended the whole body of locust up from the surface and pushed the body forward,while the midlegs steadily suspended the centre of gravity and the forelegs pulled the suspended body forward.The results obtained contribute to the further interpretation of the interaction mechanisms between insect attachment system and substrates,and supply information for designing and manufacturing slippery plates for trapping plague locusts.
基金Supported by the Doctoral Fund of Ministry of Education of China (Grant Nos. 200600 and 19012)National Natural Science Foundation of China (Grant No. 50775412)
文摘The slippery trapping plate in swarm locust control is a method of realizing resource utilization of locust and avoiding pesticide residues in the entironment. Some slippery plates with different material composition or surface characteristic were investigated through the sliding tests of locust on slippery plates, and sliding rubbing behaviors of locusts on the plate were observed by means of CCD video monitoring system. Poor sliding character of silicate glass to locust was verified, which is in accordance with the adhesive effect generated by secretion of locust feet pads on the smooth surface. And also, PVC plastic plate presents a poor sliding character to locusts, because the soft surface of PVC can permit claws of locust feet to engender mechanical interlock on the surface. The zinc plate shows a considerable slippery ratio for locusts because of the appropriate surface characteristic and material property. Photoelectric stimulation for resting locust can promote the movement of locust. Accordingly, the contact form of locust feet and abdomen on slippery plates is changed and contact area is reduced severely, so the sliding effect of locust on slippery plates is strengthened effectively. These results supply a suitable theoretical foundation for manufacturing locust slippery trapping plates and trapping units, and indicate the important role of photoelectric stimulating factors in biotribology.