In this editorial,we discuss the article in the World Journal of Gastroenterology.The article conducts a meta-analysis of the diagnostic accuracy of the urea breath test(UBT),a non-invasive method for detecting Helico...In this editorial,we discuss the article in the World Journal of Gastroenterology.The article conducts a meta-analysis of the diagnostic accuracy of the urea breath test(UBT),a non-invasive method for detecting Helicobacter pylori(H.pylori)infection in humans.It is based on radionuclide-labeled urea.Various methods,both invasive and non-invasive,are available for diagnosing H.pylori infection,inclu-ding endoscopy with biopsy,serology for immunoglobulin titers,stool antigen analysis,and UBT.Several guidelines recommend UBTs as the primary choice for diagnosing H.pylori infection and for reexamining after eradication therapy.It is used to be the first choice non-invasive test due to their high accuracy,specificity,rapid results,and simplicity.Moreover,its performance remains unaffected by the distribution of H.pylori in the stomach,allowing a high flow of patients to be tested.Despite its widespread use,the performance characteristics of UBT have been inconsistently described and remain incompletely defined.There are two UBTs available with Food and Drug Administration approval:The 13C and 14C tests.Both tests are affordable and can provide real-time results.Physicians may prefer the 13C test because it is non-radioactive,compared to 14C which uses a radioactive isotope,especially in young children and pregnant women.Although there was heterogeneity among the studies regarding the diagnostic accuracy of both UBTs,13C-UBT consistently outperforms the 14C-UBT.This makes the 13C-UBT the preferred diagnostic approach.Furthermore,the provided findings of the meta-analysis emphasize the significance of precise considerations when choosing urea dosage,assessment timing,and measurement techniques for both the 13C-UBT and 14C-UBT,to enhance diagnostic precision.展开更多
This study focused on the encapsulation of vancomycin(VAN) into liposomes coated with a red blood cell membrane with a targeting ligand, daptomycin–polyethylene glycol–1,2-distearoyl-sn-glycero-3-phosphoethanolamine...This study focused on the encapsulation of vancomycin(VAN) into liposomes coated with a red blood cell membrane with a targeting ligand, daptomycin–polyethylene glycol–1,2-distearoyl-sn-glycero-3-phosphoethanolamine, formed by conjugation of DAPT and Nhydroxysuccinimidyl-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphoethanolamine.This formulation is capable of providing controlled and targeted drug delivery to the bacterial cytoplasm. We performed MALDI-TOF, NMR and FTIR analyses to confirm the conjugation of the targeting ligand via the formation of amide bonds. Approximately 45% of VAN could be loaded into the aqueous cores, whereas 90% DAPT was detected using UV–vis spectrophotometry. In comparison to free drugs, the formulations controlled the release of drugs for > 72 h. Additionally, as demonstrated using CLSM and flow cytometry, the resulting formulation was capable of evading detection by macrophage cells. In comparison to free drugs, red blood cell membrane–DAPT–VAN liposomes, DAPT liposomes, and VAN liposomes reduced the MIC and significantly increased bacterial permeability, resulting in > 80% bacterial death within 4 h. Cytotoxicity tests were performed in vitro and in vivo on mammalian cells,in addition to hemolytic activity tests in human erythrocytes, wherein drugs loaded into the liposomes and RBCDVL exhibited low toxicity. Thus, the findings of this study provide insight about a dual antibiotic targeting strategy that utilizes liposomes and red blood cell membranes to deliver targeted drugs against MRSA.展开更多
Consumption of processed foods—which are generally composed of nutritionally starved refined ingredients—has increased exponentially worldwide.A rise in public health awareness that low fiber intake is strongly link...Consumption of processed foods—which are generally composed of nutritionally starved refined ingredients—has increased exponentially worldwide.A rise in public health awareness that low fiber intake is strongly linked to new-age disorders has spurred food manufacturers to fortify processed foods with refined dietary fibers(RDFs).Consumption of whole foods rich in natural fibers undoubtedly confers an array of health benefits.However,it is not clear whether RDFs extracted from the whole plant,kernel,and fruit peels exert similar physiological effects to their naturally occurring counterparts.Recent studies caution that RDFs are not universally beneficial and that inappropriate consumption of RDFs may risk both gastrointestinal and liver health.Herein,we briefly summarize the beneficial and detrimental effects of RDFs on digestive health and discuss the contribution of metabolites derived from microbial fermentation of RDFs in driving such positive or negative health outcomes.展开更多
文摘In this editorial,we discuss the article in the World Journal of Gastroenterology.The article conducts a meta-analysis of the diagnostic accuracy of the urea breath test(UBT),a non-invasive method for detecting Helicobacter pylori(H.pylori)infection in humans.It is based on radionuclide-labeled urea.Various methods,both invasive and non-invasive,are available for diagnosing H.pylori infection,inclu-ding endoscopy with biopsy,serology for immunoglobulin titers,stool antigen analysis,and UBT.Several guidelines recommend UBTs as the primary choice for diagnosing H.pylori infection and for reexamining after eradication therapy.It is used to be the first choice non-invasive test due to their high accuracy,specificity,rapid results,and simplicity.Moreover,its performance remains unaffected by the distribution of H.pylori in the stomach,allowing a high flow of patients to be tested.Despite its widespread use,the performance characteristics of UBT have been inconsistently described and remain incompletely defined.There are two UBTs available with Food and Drug Administration approval:The 13C and 14C tests.Both tests are affordable and can provide real-time results.Physicians may prefer the 13C test because it is non-radioactive,compared to 14C which uses a radioactive isotope,especially in young children and pregnant women.Although there was heterogeneity among the studies regarding the diagnostic accuracy of both UBTs,13C-UBT consistently outperforms the 14C-UBT.This makes the 13C-UBT the preferred diagnostic approach.Furthermore,the provided findings of the meta-analysis emphasize the significance of precise considerations when choosing urea dosage,assessment timing,and measurement techniques for both the 13C-UBT and 14C-UBT,to enhance diagnostic precision.
基金Universiti Kebangsaan Malaysia’s research university grant scheme (DCP-2017- 003/4)。
文摘This study focused on the encapsulation of vancomycin(VAN) into liposomes coated with a red blood cell membrane with a targeting ligand, daptomycin–polyethylene glycol–1,2-distearoyl-sn-glycero-3-phosphoethanolamine, formed by conjugation of DAPT and Nhydroxysuccinimidyl-polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphoethanolamine.This formulation is capable of providing controlled and targeted drug delivery to the bacterial cytoplasm. We performed MALDI-TOF, NMR and FTIR analyses to confirm the conjugation of the targeting ligand via the formation of amide bonds. Approximately 45% of VAN could be loaded into the aqueous cores, whereas 90% DAPT was detected using UV–vis spectrophotometry. In comparison to free drugs, the formulations controlled the release of drugs for > 72 h. Additionally, as demonstrated using CLSM and flow cytometry, the resulting formulation was capable of evading detection by macrophage cells. In comparison to free drugs, red blood cell membrane–DAPT–VAN liposomes, DAPT liposomes, and VAN liposomes reduced the MIC and significantly increased bacterial permeability, resulting in > 80% bacterial death within 4 h. Cytotoxicity tests were performed in vitro and in vivo on mammalian cells,in addition to hemolytic activity tests in human erythrocytes, wherein drugs loaded into the liposomes and RBCDVL exhibited low toxicity. Thus, the findings of this study provide insight about a dual antibiotic targeting strategy that utilizes liposomes and red blood cell membranes to deliver targeted drugs against MRSA.
基金supported by grants from the National Institutes of Health[R01CA219144]M.V.-K.V.S.is supported by a Career Development Award[ID#597229]from the Crohn’s&Colitis Foundation(CCF).
文摘Consumption of processed foods—which are generally composed of nutritionally starved refined ingredients—has increased exponentially worldwide.A rise in public health awareness that low fiber intake is strongly linked to new-age disorders has spurred food manufacturers to fortify processed foods with refined dietary fibers(RDFs).Consumption of whole foods rich in natural fibers undoubtedly confers an array of health benefits.However,it is not clear whether RDFs extracted from the whole plant,kernel,and fruit peels exert similar physiological effects to their naturally occurring counterparts.Recent studies caution that RDFs are not universally beneficial and that inappropriate consumption of RDFs may risk both gastrointestinal and liver health.Herein,we briefly summarize the beneficial and detrimental effects of RDFs on digestive health and discuss the contribution of metabolites derived from microbial fermentation of RDFs in driving such positive or negative health outcomes.