The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))a...The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.展开更多
Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition...Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods.展开更多
As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the clas...As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the classic instantaneous traffic emission model and the limited deceleration capacity microscopic traffic flow model with slow-to-start rules, this paper has investigated the impact of speed humps on traffic flow and the instantaneous emissions of vehicle pollutants in a single lane situation. The numerical simulation results have shown that speed humps have significant effects on traffic flow and traffic emissions. In a free-flow region, the increase of speed humps leads to the continuous rise of CO_(2), NO_(X) and PM emissions. Within some density ranges, one finds that these pollutant emissions can evolve into some higher values under some random seeds. Under other random seeds, they can evolve into some lower values. In a wide moving jam region, the emission values of these pollutants sometimes appear as continuous or intermittent phenomenon. Compared to the refined Na Sch model, the present model has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher volatile organic components(VOC) emissions. Compared to the limited deceleration capacity model without slow-to-start rules, the present model also has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher VOC emissions in a wide moving jam region. These results can also be confirmed or explained by the statistical values of vehicle velocity and acceleration.展开更多
Fano resonance is a ubiquitous phenomenon, and it is commonly interpreted as a two-channel interference of the discrete and continuous channels. The present work investigates the Fano profile from a perspective of the...Fano resonance is a ubiquitous phenomenon, and it is commonly interpreted as a two-channel interference of the discrete and continuous channels. The present work investigates the Fano profile from a perspective of the temporal evolution of the wave function. By exciting the atom with a δ pulse and calculating the evolution of the wave function, the Fano formula is deduced. The results clearly show that the Fano resonance is of a three-channel interference, which is different from the traditional understanding. The three channels are revealed as the groundcontinuum, ground-discrete-continuum, and a previously unmentioned third channel, i.e., ground-continuumdiscrete-continuum. The present three-channel interpretation can be easily generalized to other physical systems,contributing to a deeper understanding of the Fano profile.展开更多
The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effe...The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effect.It is found that the vibronic effect converts the dipole-forbidden excitation of the ^(1)A_(2) into a dipole-allowed one,which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region.The present investigation shows that the vibronic effect of H_(2)O is slightly stronger than that of D_(2)O,which exhibits a clear isotopic effect.展开更多
The coherent muon-to-electron transition(COMET)experiment is a leading experiment for the coherent conversion of μ^(-)N→e^(-)N using a high-intensity pulsed muon beamline,produced using innovative slow-extraction te...The coherent muon-to-electron transition(COMET)experiment is a leading experiment for the coherent conversion of μ^(-)N→e^(-)N using a high-intensity pulsed muon beamline,produced using innovative slow-extraction techniques.Therefore,it is critical to measure the muon beam characteristics.We set up a muon beam monitor(MBM),where scintillating fibers woven in a cross shape were coupled to silicon photomultipliers to measure the spatial profile and timing structure of the extracted muon beam for the COMET.The MBM detector was tested successfully with a proton beamline at the China Spallation Neutron Source and took data with good performance in the commissioning run.The development of the MBM,including its mechanical structure,electronic readout,and beam measurement results,are discussed.展开更多
Relativistic isobar^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zrcollisions have revealed intricate differences in their nuclear size and shape,inspiring unconventional studies of nuclear structure using relat...Relativistic isobar^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zrcollisions have revealed intricate differences in their nuclear size and shape,inspiring unconventional studies of nuclear structure using relativistic heavy ion collisions.In this study,we investigate the relative differences in the mean multiplicityR_(<Nch>)and the secondR_(ε2)and third-order eccentricityR_(ε3)between isobar collisions using initial state Glauber models.It is found that initial fluctuations and nuclear deformations have negligible effects on R_(<Nch>)in most central collisions,while both are important for the R_(ε2)and R_(ε3),the degree of which is sensitive to the underlying nucleonic or sub-nucleonic degree of freedom.These features,compared to real data,may probe the particle production mechanism and the physics underlying nuclear structure.展开更多
Neutron-sensitive microchannel plates(nMCPs)have applications in neutron detection,including energy spectrum measurements,neutron-induced cross sections,and neutron imaging.10B-doped MCPs(B-MCPs)have attracted signifi...Neutron-sensitive microchannel plates(nMCPs)have applications in neutron detection,including energy spectrum measurements,neutron-induced cross sections,and neutron imaging.10B-doped MCPs(B-MCPs)have attracted significant attention owing to their potential for exhibiting a high neutron detection efficiency over a large neutron energy range.Good spatial and temporal resolutions are useful for neutron energy-resolved imaging.However,their practical applications still face many technical challenges.In this study,a B-MCP with 10 mol%10B was tested for its response to wide-energy neutrons from eV to MeV at the Back-n white neutron source at the China Spallation Neutron Source.The neutron detection efficiency was calibrated at 1 eV,which is approximately 300 times that of an ordinary MCP and indicates the success of 10 B doping.The factors that caused the reduction in the detection efficiency were simulated and discussed.The neutron energy spectrum obtained using B-MCP was compared with that obtained by other measurement methods,and showed very good consistency for neutron energies below tens of keV.The response is more complicated at higher neutron energy,at which point the elastic and nonelastic reactions of all nuclides of B-MCP gradually become dominant.This is beneficial for the detection of neutrons,as it compensates for the detection efficiency of B-MCP for high-energy neutrons.展开更多
The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types ...The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types of cross-sectional neutron-reaction measurements have been performed at Back-n since early 2018.These measurements have shown that a significant number of gamma rays can be transmitted to the experimental stations of Back-n along with the neutron beam.These gamma rays,commonly referred to as in-beam gamma rays,can induce a non-negligible experimental background in neutron-reaction measurements.Studying the characteristics of in-beam gamma rays is important for understanding the experimental background.However,measuring in-beam gamma rays is challenging because most gamma-ray detectors are sensitive to neutrons;thus,discriminating between neutron-induced signals and those from in-beam gamma rays is difficult.In this study,we propose the use of the black resonance filter method and a CeBr_(3) scintillation detector to measure the characteristics of the in-beam gamma rays of Back-n.Four types of black resonance filters,^(181)Ta,^(59)Co,^(nat)Ag,and^(nat)Cd,were used in this measurement.The time-of-flight(TOF)technique was used to select the detector signals remaining in the absorption region of the TOF spectra,which were mainly induced by in-beam gamma rays.The energy distribution and flux of the in-beam gamma rays of Back-n were determined by analyzing the deposited energy spectra of the CeBr_(3) scintillation detector and using Monte Carlo simulations.Based on the results of this study,the background contributions from in-beam gamma rays in neutron-reaction measurements at Back-n can be reasonably evaluated,which is beneficial for enhancing both the experimental methodology and data analysis.展开更多
The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurem...The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurement of the^(232)Th(n,f)cross sec-tion relative to^(235)U in the 1–200 MeV range was performed at the China Spallation Neutron Source Back-n white neutron source(Back-n).The fission event-neutron energy spectra of^(232)Th and^(235)U fission cells were measured in the single-bunch mode.Corrected 232Th/235U fission cross-sectional ratios were obtained,and the measurement uncertainties were 2.5–3.7%for energies in the 2–20 MeV range and 3.6–6.2%for energies in the 20–200 MeV range.The^(232)Th(n,f)cross section was obtained by introducing the standard cross section of^(235)U(n,f).The results were compared with those of previous theoreti-cal calculations,measurements,and evaluations.The measured 232Th fission cross section agreed with the main evaluation results in terms of the experimental uncertainty,and 232Th fission resonances were observed in the 1–3 MeV range.The present results provide^(232)Th(n,f)cross-sectional data for the evaluation and design of Th/U cycle nuclear systems.展开更多
Quantum computation provides a great speedup over its classical counterpart in solving some hard problems. The advantages of quantum computation come from the coherent superposition principle of quantum mechanics. Spi...Quantum computation provides a great speedup over its classical counterpart in solving some hard problems. The advantages of quantum computation come from the coherent superposition principle of quantum mechanics. Spin system is one of the most significant candidates to realize quantum computation. In this review, we focus on the recent experimental progress related to quantum coherence and some fundamental concepts such as the uncertainty principle in the spin systems.We shall first briefly introduce the quantum description of qubit, coherence, and decoherence. Based on this picture,preserving quantum coherence and detection of weak magnetic fields are presented. We also discuss the realization of precise quantum coherent control, adiabatic quantum factorization algorithm, and two aspects of uncertainty relations.展开更多
Oscillator strengths and cross sections of the valence-shell excitations in NO_(2)are of great significance in testing the theoretical calculations and monitoring the state of the ozone layer in the earth’s atmospher...Oscillator strengths and cross sections of the valence-shell excitations in NO_(2)are of great significance in testing the theoretical calculations and monitoring the state of the ozone layer in the earth’s atmosphere. In the present work, the generalized oscillator strengths of the valence-shell excitations in NO_(2)were obtained based on the fast electron scattering technique at an incident electron energy of 1.5 ke V and an energy resolution of about 70 me V. By extrapolating the generalized oscillator strengths to the limit of a zero squared momentum transfer, the optical oscillator strengths for the dipole-allowed transitions have been obtained, which provide an independent cross check to the previous experimental results. Based on the BE-scaling method, the corresponding integral cross sections have also been derived systematically from the excitation threshold to 5000 eV. The present dynamic parameters can provide the fundamental spectroscopic data of NO_(2)and have important applications in the studies of atmospheric science. The datasets presented in this paper, including the GOSs, OOSs and ICSs, are openly available at https://doi.org/10.57760/sciencedb.j00113.00156.展开更多
The control of complex networks is affected by their structural characteristic. As a type of key nodes in a network structure, cut vertexes are essential for network connectivity because their removal will disconnect ...The control of complex networks is affected by their structural characteristic. As a type of key nodes in a network structure, cut vertexes are essential for network connectivity because their removal will disconnect the network. Despite their fundamental importance, the influence of the cut vertexes on network control is still uncertain. Here, we reveal the relationship between the cut vertexes and the driver nodes, and find that the driver nodes tend to avoid the cut vertexes.However, driving cut vertexes reduce the energy required for controlling complex networks, since cut vertexes are located near the middle of the control chains. By employing three different node failure strategies, we investigate the impact of cut vertexes failure on the energy required. The results show that cut vertex failures markedly increase the control energy because the cut vertexes are larger-degree nodes. Our results deepen the understanding of the structural characteristic in network control.展开更多
One could tune a topological double-Weyl semimetal or a topological triple-Weyl semimetal to become a topologically trivial insulator by opening a band gap.This kind of quantum phase transition is characterized by the...One could tune a topological double-Weyl semimetal or a topological triple-Weyl semimetal to become a topologically trivial insulator by opening a band gap.This kind of quantum phase transition is characterized by the change of certain topological invariant.A new gapless semimetallic state emerges at each topological quantum critical point.Here we perform a renormalization group analysis to investigate the stability of such critical points against perturbations induced by random scalar potential and random vector potential.We find that the quantum critical point between double-Weyl semimetal and band insulator is unstable and can be easily turned into a compressible diffusive metal by any type of weak disorder.The quantum critical point between triple-Weyl semimetal and band insulator flows to a stable strong-coupling fixed point if the system contains a random vector potential merely along the z-axis,but becomes a compressible diffusive metal when other types of disorders exist.展开更多
The vibrational motions are usually neglected when calculating(e,2e) triple differential cross sections(TDCSs) of molecules. Here, multi-center distorted-wave method(MCDW) has been modified by including molecular vibr...The vibrational motions are usually neglected when calculating(e,2e) triple differential cross sections(TDCSs) of molecules. Here, multi-center distorted-wave method(MCDW) has been modified by including molecular vibrations. This vibrational MCDW method is employed to calculate the TDCSs of 1b3gorbital of ethylene at low(100 eV) and medium(250 eV) incident electron energies in coplanar asymmetric kinematic condition. The results show that molecular vibrations significantly influence the angular distributions of the TDCSs, especially in the binary region along momentum transfer near the Bethe ridge.展开更多
Dielectronic recombination(DR)is one of the dominant electron-ion recombination mechanisms for most highly charged ions(HCIs)in cosmic plasmas,and thus,it determines the charge state distribution and ionization balanc...Dielectronic recombination(DR)is one of the dominant electron-ion recombination mechanisms for most highly charged ions(HCIs)in cosmic plasmas,and thus,it determines the charge state distribution and ionization balance therein.To reliably interpret spectra from cosmic sources and model the astrophysical plasmas,precise DR rate coefficients are required to build up an accurate understanding of the ionization balance of the sources.The main cooler storage ring(CSRm)and the experimental cooler storage ring(CSRe)at the Heavy-Ion Research Facility in Lanzhou(HIRFL)are both equipped with electron cooling devices,which provide an excellent experimental platform for electron-ion collision studies for HCIs.Here,the status of the DR experiments at the HIRFL-CSR is outlined,and the DR measurements with Na-like Kr25^(+)ions at the CSRm and CSRe are taken as examples.In addition,the plasma recombination rate coefficients for Ar12^(+),14^(+),Ca14^(+),16^(+),17^(+),Ni19^(+),and Kr25^(+)ions obtained at the HIRFL-CSR are provided.All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00092.展开更多
Recently,a study reported on the use of in situ electron paramagnetic resonance(EPR)spectroscopy to investigate two consecutive single-electron processes in polyimide and directly diagnose typical electrochemical reac...Recently,a study reported on the use of in situ electron paramagnetic resonance(EPR)spectroscopy to investigate two consecutive single-electron processes in polyimide and directly diagnose typical electrochemical reactions of carbonyl-based organic electrode in Li-ion batteries(LIBs).This research offers the important experimental clue for studying specific electron conversion routes of multi-electron transfer reactions in LIB materials[1].展开更多
A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long process...A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long processing times in traditional offline position reconstruction methods,this paper proposes a field programmable gate array based online position reconstruction method utilizing the micro-time projection chamber principle.This method encapsulates key technical aspects:a self-adaptive serial link technique built upon the dynamical adjustment of the delay chain length,fast sorting,a coordinate-matching technique based on the mapping between signal timestamps and random access memory(RAM)addresses,and a precise start point-merging technique utilizing a circular combined RAM.The performance test of the selfadaptive serial link shows that the bit error rate of the link is better than 10-12 at a confidence level of 99%,ensuring reliable data transmission.The experiment utilizing the readout electronics and Micromegas detector shows a spatial resolution of approximately 1.4 mm,surpassing the current method’s resolution level of 5 mm.The beam experiment confirms that the readout electronics system can obtain the flux spatial distribution of neutron beams online,thus validating the feasibility of the position reconstruction method.The online position reconstruction method avoids traditional methods,such as bubble sorting and traversal searching,simplifies the design of the logic firmware,and reduces the time complexity from O(n2)to O(n).This study contributes to the advancement in measuring neutron beam flux for BNCT.展开更多
The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure ...The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure the accuracy of our calculated cross sections,a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile,respectively.The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu.The present calculations are also compared with the results from other theoretical methods.These cross section data are useful for the investigation of astrophysics and laboratory plasma.展开更多
The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictio...The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictions[Phys.Rev.A 72053604(2005)]and[arXiv:0706.1609]indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering.However,due to ergodic difficulties faced by Monte Carlo methods at low temperatures,this topological phase has not been numerically explored.We propose a linear cluster updating Monte Carlo method,which flips spins without rejection in the anisotropy limit but does not change the energy.Using this scheme and conventional Monte Carlo methods,we succeed in revealing the nature of topological phases with half-vortices and domain walls.In the constructed global phase diagram,Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier.We also propose and explore a wide range of quantities,including magnetism,superfluidity,specific heat,susceptibility,and even percolation susceptibility,and obtain consistent and reliable results.Furthermore,we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes,as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections.The critical exponents of different types of phase transitions are reasonably fitted.The results are useful to help cold atom experiments explore the half-vortex topological phase.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1602502)the National Natural Science Foundation of China (Grant No.12127804)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB34000000)。
文摘The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.
基金supported by the National Natural Science Foundation of China(Grant Nos.52035009 and 51761135106)the State Key Laboratory of Precision Measuring Technology and Instruments(Pilt1705)+1 种基金the Henan Key Laboratory of Intelligent Manufacturing Equipment Integration for Superhard Materials(JDKJ2022-01)the“111”project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods.
基金funded by the National Natural Science Foundation of China (Grant No. 11875031)the key research projects of Natural Science of Anhui Provincial Colleges and Universities (Grant No. 2022AH050252)。
文摘As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the classic instantaneous traffic emission model and the limited deceleration capacity microscopic traffic flow model with slow-to-start rules, this paper has investigated the impact of speed humps on traffic flow and the instantaneous emissions of vehicle pollutants in a single lane situation. The numerical simulation results have shown that speed humps have significant effects on traffic flow and traffic emissions. In a free-flow region, the increase of speed humps leads to the continuous rise of CO_(2), NO_(X) and PM emissions. Within some density ranges, one finds that these pollutant emissions can evolve into some higher values under some random seeds. Under other random seeds, they can evolve into some lower values. In a wide moving jam region, the emission values of these pollutants sometimes appear as continuous or intermittent phenomenon. Compared to the refined Na Sch model, the present model has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher volatile organic components(VOC) emissions. Compared to the limited deceleration capacity model without slow-to-start rules, the present model also has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher VOC emissions in a wide moving jam region. These results can also be confirmed or explained by the statistical values of vehicle velocity and acceleration.
基金supported by the National Natural Science Foundation of China (Grant No. 12334010)。
文摘Fano resonance is a ubiquitous phenomenon, and it is commonly interpreted as a two-channel interference of the discrete and continuous channels. The present work investigates the Fano profile from a perspective of the temporal evolution of the wave function. By exciting the atom with a δ pulse and calculating the evolution of the wave function, the Fano formula is deduced. The results clearly show that the Fano resonance is of a three-channel interference, which is different from the traditional understanding. The three channels are revealed as the groundcontinuum, ground-discrete-continuum, and a previously unmentioned third channel, i.e., ground-continuumdiscrete-continuum. The present three-channel interpretation can be easily generalized to other physical systems,contributing to a deeper understanding of the Fano profile.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12334010,12174259,and 11604003)。
文摘The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effect.It is found that the vibronic effect converts the dipole-forbidden excitation of the ^(1)A_(2) into a dipole-allowed one,which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region.The present investigation shows that the vibronic effect of H_(2)O is slightly stronger than that of D_(2)O,which exhibits a clear isotopic effect.
基金supported in part by Fundamental Research Funds for the Central Universities(23xkjc017)at Sun Yat-sen Universitythe National Natural Science Foundation of China(No.12075326)JSPS KAKENHI(No.22H00139)。
文摘The coherent muon-to-electron transition(COMET)experiment is a leading experiment for the coherent conversion of μ^(-)N→e^(-)N using a high-intensity pulsed muon beamline,produced using innovative slow-extraction techniques.Therefore,it is critical to measure the muon beam characteristics.We set up a muon beam monitor(MBM),where scintillating fibers woven in a cross shape were coupled to silicon photomultipliers to measure the spatial profile and timing structure of the extracted muon beam for the COMET.The MBM detector was tested successfully with a proton beamline at the China Spallation Neutron Source and took data with good performance in the commissioning run.The development of the MBM,including its mechanical structure,electronic readout,and beam measurement results,are discussed.
基金the National Natural Science Foundation of China(Nos.12275082,12035006,12075085(HX))the Zhejiang Provincial Natural Science Foundation of China(No.LY21A050001(HX))the U.S.Department of Energy(No.DE-SC0012910(FW)).
文摘Relativistic isobar^(96)_(44)Ru+^(96)_(44)Ru and^(96)_(40)Zr+^(96)_(40)Zrcollisions have revealed intricate differences in their nuclear size and shape,inspiring unconventional studies of nuclear structure using relativistic heavy ion collisions.In this study,we investigate the relative differences in the mean multiplicityR_(<Nch>)and the secondR_(ε2)and third-order eccentricityR_(ε3)between isobar collisions using initial state Glauber models.It is found that initial fluctuations and nuclear deformations have negligible effects on R_(<Nch>)in most central collisions,while both are important for the R_(ε2)and R_(ε3),the degree of which is sensitive to the underlying nucleonic or sub-nucleonic degree of freedom.These features,compared to real data,may probe the particle production mechanism and the physics underlying nuclear structure.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030074)the National Natural Science Foundation of China(No.12035017)。
文摘Neutron-sensitive microchannel plates(nMCPs)have applications in neutron detection,including energy spectrum measurements,neutron-induced cross sections,and neutron imaging.10B-doped MCPs(B-MCPs)have attracted significant attention owing to their potential for exhibiting a high neutron detection efficiency over a large neutron energy range.Good spatial and temporal resolutions are useful for neutron energy-resolved imaging.However,their practical applications still face many technical challenges.In this study,a B-MCP with 10 mol%10B was tested for its response to wide-energy neutrons from eV to MeV at the Back-n white neutron source at the China Spallation Neutron Source.The neutron detection efficiency was calibrated at 1 eV,which is approximately 300 times that of an ordinary MCP and indicates the success of 10 B doping.The factors that caused the reduction in the detection efficiency were simulated and discussed.The neutron energy spectrum obtained using B-MCP was compared with that obtained by other measurement methods,and showed very good consistency for neutron energies below tens of keV.The response is more complicated at higher neutron energy,at which point the elastic and nonelastic reactions of all nuclides of B-MCP gradually become dominant.This is beneficial for the detection of neutrons,as it compensates for the detection efficiency of B-MCP for high-energy neutrons.
基金supported by the Youth Talent Program of China National Nuclear Corporationthe Continuous-Support Basic Scientific Research Project(BJ010261223282)+1 种基金the National Natural Science Foundation of China(No.11790321)the Research and development project of China National Nuclear Corporation。
文摘The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types of cross-sectional neutron-reaction measurements have been performed at Back-n since early 2018.These measurements have shown that a significant number of gamma rays can be transmitted to the experimental stations of Back-n along with the neutron beam.These gamma rays,commonly referred to as in-beam gamma rays,can induce a non-negligible experimental background in neutron-reaction measurements.Studying the characteristics of in-beam gamma rays is important for understanding the experimental background.However,measuring in-beam gamma rays is challenging because most gamma-ray detectors are sensitive to neutrons;thus,discriminating between neutron-induced signals and those from in-beam gamma rays is difficult.In this study,we propose the use of the black resonance filter method and a CeBr_(3) scintillation detector to measure the characteristics of the in-beam gamma rays of Back-n.Four types of black resonance filters,^(181)Ta,^(59)Co,^(nat)Ag,and^(nat)Cd,were used in this measurement.The time-of-flight(TOF)technique was used to select the detector signals remaining in the absorption region of the TOF spectra,which were mainly induced by in-beam gamma rays.The energy distribution and flux of the in-beam gamma rays of Back-n were determined by analyzing the deposited energy spectra of the CeBr_(3) scintillation detector and using Monte Carlo simulations.Based on the results of this study,the background contributions from in-beam gamma rays in neutron-reaction measurements at Back-n can be reasonably evaluated,which is beneficial for enhancing both the experimental methodology and data analysis.
基金supported by the National Natural Science Foundation of China(Nos.11675155,11790321,and 12075216)the National Key Research and Development Plan(No.2016YFA0401603).
文摘The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurement of the^(232)Th(n,f)cross sec-tion relative to^(235)U in the 1–200 MeV range was performed at the China Spallation Neutron Source Back-n white neutron source(Back-n).The fission event-neutron energy spectra of^(232)Th and^(235)U fission cells were measured in the single-bunch mode.Corrected 232Th/235U fission cross-sectional ratios were obtained,and the measurement uncertainties were 2.5–3.7%for energies in the 2–20 MeV range and 3.6–6.2%for energies in the 20–200 MeV range.The^(232)Th(n,f)cross section was obtained by introducing the standard cross section of^(235)U(n,f).The results were compared with those of previous theoreti-cal calculations,measurements,and evaluations.The measured 232Th fission cross section agreed with the main evaluation results in terms of the experimental uncertainty,and 232Th fission resonances were observed in the 1–3 MeV range.The present results provide^(232)Th(n,f)cross-sectional data for the evaluation and design of Th/U cycle nuclear systems.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFA0306600 and 2016YFB0501603)the Fund from the Chinese Academy of Sciences(Grant Nos.GJJSTD20170001,QYZDY-SSW-SLH004,and QYZDB-SSW-SLH005)the Program from Anhui Initiative in Quantum Information Technologies,China(Grant No.AHY050000)
文摘Quantum computation provides a great speedup over its classical counterpart in solving some hard problems. The advantages of quantum computation come from the coherent superposition principle of quantum mechanics. Spin system is one of the most significant candidates to realize quantum computation. In this review, we focus on the recent experimental progress related to quantum coherence and some fundamental concepts such as the uncertainty principle in the spin systems.We shall first briefly introduce the quantum description of qubit, coherence, and decoherence. Based on this picture,preserving quantum coherence and detection of weak magnetic fields are presented. We also discuss the realization of precise quantum coherent control, adiabatic quantum factorization algorithm, and two aspects of uncertainty relations.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500)the National Natural Science Foundation of China (Grant Nos. 12334010 and U1932207)。
文摘Oscillator strengths and cross sections of the valence-shell excitations in NO_(2)are of great significance in testing the theoretical calculations and monitoring the state of the ozone layer in the earth’s atmosphere. In the present work, the generalized oscillator strengths of the valence-shell excitations in NO_(2)were obtained based on the fast electron scattering technique at an incident electron energy of 1.5 ke V and an energy resolution of about 70 me V. By extrapolating the generalized oscillator strengths to the limit of a zero squared momentum transfer, the optical oscillator strengths for the dipole-allowed transitions have been obtained, which provide an independent cross check to the previous experimental results. Based on the BE-scaling method, the corresponding integral cross sections have also been derived systematically from the excitation threshold to 5000 eV. The present dynamic parameters can provide the fundamental spectroscopic data of NO_(2)and have important applications in the studies of atmospheric science. The datasets presented in this paper, including the GOSs, OOSs and ICSs, are openly available at https://doi.org/10.57760/sciencedb.j00113.00156.
基金supported by the National Natural Science Foundation of China (Grant No. 61763013)the Natural Science Foundation of Jiangxi Province of China (Grant No. 20202BABL212008)+1 种基金the Jiangxi Provincial Postdoctoral Preferred Project of China (Grant No. 2017KY37)the Key Research and Development Project of Jiangxi Province of China (Grant No. 20202BBEL53018)。
文摘The control of complex networks is affected by their structural characteristic. As a type of key nodes in a network structure, cut vertexes are essential for network connectivity because their removal will disconnect the network. Despite their fundamental importance, the influence of the cut vertexes on network control is still uncertain. Here, we reveal the relationship between the cut vertexes and the driver nodes, and find that the driver nodes tend to avoid the cut vertexes.However, driving cut vertexes reduce the energy required for controlling complex networks, since cut vertexes are located near the middle of the control chains. By employing three different node failure strategies, we investigate the impact of cut vertexes failure on the energy required. The results show that cut vertex failures markedly increase the control energy because the cut vertexes are larger-degree nodes. Our results deepen the understanding of the structural characteristic in network control.
基金the Natural Science Foundation of Anhui Province,China(Grant No.2208085MA11)the National Natural Science Foundation of China(Grants Nos.11974356,12274414,and U1832209)。
文摘One could tune a topological double-Weyl semimetal or a topological triple-Weyl semimetal to become a topologically trivial insulator by opening a band gap.This kind of quantum phase transition is characterized by the change of certain topological invariant.A new gapless semimetallic state emerges at each topological quantum critical point.Here we perform a renormalization group analysis to investigate the stability of such critical points against perturbations induced by random scalar potential and random vector potential.We find that the quantum critical point between double-Weyl semimetal and band insulator is unstable and can be easily turned into a compressible diffusive metal by any type of weak disorder.The quantum critical point between triple-Weyl semimetal and band insulator flows to a stable strong-coupling fixed point if the system contains a random vector potential merely along the z-axis,but becomes a compressible diffusive metal when other types of disorders exist.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12004370 and 12127804)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB34020000)。
文摘The vibrational motions are usually neglected when calculating(e,2e) triple differential cross sections(TDCSs) of molecules. Here, multi-center distorted-wave method(MCDW) has been modified by including molecular vibrations. This vibrational MCDW method is employed to calculate the TDCSs of 1b3gorbital of ethylene at low(100 eV) and medium(250 eV) incident electron energies in coplanar asymmetric kinematic condition. The results show that molecular vibrations significantly influence the angular distributions of the TDCSs, especially in the binary region along momentum transfer near the Bethe ridge.
基金supported by the National Natural Science Foundation of China (Grant Nos. U1932207, 11904371, and 12104437)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB34020000)
文摘Dielectronic recombination(DR)is one of the dominant electron-ion recombination mechanisms for most highly charged ions(HCIs)in cosmic plasmas,and thus,it determines the charge state distribution and ionization balance therein.To reliably interpret spectra from cosmic sources and model the astrophysical plasmas,precise DR rate coefficients are required to build up an accurate understanding of the ionization balance of the sources.The main cooler storage ring(CSRm)and the experimental cooler storage ring(CSRe)at the Heavy-Ion Research Facility in Lanzhou(HIRFL)are both equipped with electron cooling devices,which provide an excellent experimental platform for electron-ion collision studies for HCIs.Here,the status of the DR experiments at the HIRFL-CSR is outlined,and the DR measurements with Na-like Kr25^(+)ions at the CSRm and CSRe are taken as examples.In addition,the plasma recombination rate coefficients for Ar12^(+),14^(+),Ca14^(+),16^(+),17^(+),Ni19^(+),and Kr25^(+)ions obtained at the HIRFL-CSR are provided.All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00092.
文摘Recently,a study reported on the use of in situ electron paramagnetic resonance(EPR)spectroscopy to investigate two consecutive single-electron processes in polyimide and directly diagnose typical electrochemical reactions of carbonyl-based organic electrode in Li-ion batteries(LIBs).This research offers the important experimental clue for studying specific electron conversion routes of multi-electron transfer reactions in LIB materials[1].
基金supported by the National Natural Science Foundation of China(No.12075237)。
文摘A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long processing times in traditional offline position reconstruction methods,this paper proposes a field programmable gate array based online position reconstruction method utilizing the micro-time projection chamber principle.This method encapsulates key technical aspects:a self-adaptive serial link technique built upon the dynamical adjustment of the delay chain length,fast sorting,a coordinate-matching technique based on the mapping between signal timestamps and random access memory(RAM)addresses,and a precise start point-merging technique utilizing a circular combined RAM.The performance test of the selfadaptive serial link shows that the bit error rate of the link is better than 10-12 at a confidence level of 99%,ensuring reliable data transmission.The experiment utilizing the readout electronics and Micromegas detector shows a spatial resolution of approximately 1.4 mm,surpassing the current method’s resolution level of 5 mm.The beam experiment confirms that the readout electronics system can obtain the flux spatial distribution of neutron beams online,thus validating the feasibility of the position reconstruction method.The online position reconstruction method avoids traditional methods,such as bubble sorting and traversal searching,simplifies the design of the logic firmware,and reduces the time complexity from O(n2)to O(n).This study contributes to the advancement in measuring neutron beam flux for BNCT.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFA 1602500)the National Natural Science Foundation of China (Grant Nos.11934004 and 12241410).
文摘The semiclassical non-perturbative atomic orbital close-coupling approach has been employed to study the electron capture and excitation processes in He^(2+)-H(1s)and He^(2+)-H(2s)collision systems.In order to ensure the accuracy of our calculated cross sections,a large number of high excited states and pseudostates are included in the expansion basis sets which are centered on the target and projectile,respectively.The total and partial charge transfer and excitation cross sections are obtained for a wide-energy domain ranging from 1 keV/amu to 200 keV/amu.The present calculations are also compared with the results from other theoretical methods.These cross section data are useful for the investigation of astrophysics and laboratory plasma.
基金Project supported by the Hefei National Research Center for Physical Sciences at the Microscale (Grant No.KF2021002)the Natural Science Foundation of Shanxi Province,China (Grant Nos.202303021221029 and 202103021224051)+2 种基金the National Natural Science Foundation of China (Grant Nos.11975024,12047503,and 12275263)the Anhui Provincial Supporting Program for Excellent Young Talents in Colleges and Universities (Grant No.gxyq ZD2019023)the National Key Research and Development Program of China (Grant No.2018YFA0306501)。
文摘The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictions[Phys.Rev.A 72053604(2005)]and[arXiv:0706.1609]indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering.However,due to ergodic difficulties faced by Monte Carlo methods at low temperatures,this topological phase has not been numerically explored.We propose a linear cluster updating Monte Carlo method,which flips spins without rejection in the anisotropy limit but does not change the energy.Using this scheme and conventional Monte Carlo methods,we succeed in revealing the nature of topological phases with half-vortices and domain walls.In the constructed global phase diagram,Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier.We also propose and explore a wide range of quantities,including magnetism,superfluidity,specific heat,susceptibility,and even percolation susceptibility,and obtain consistent and reliable results.Furthermore,we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes,as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections.The critical exponents of different types of phase transitions are reasonably fitted.The results are useful to help cold atom experiments explore the half-vortex topological phase.