The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables...The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.展开更多
We report on an experiment performed at the FLASH2 free-electron laser(FEL)aimed at producing warm dense matter via soft x-ray isochoric heating.In the experiment,we focus on study of the ions emitted during the soft ...We report on an experiment performed at the FLASH2 free-electron laser(FEL)aimed at producing warm dense matter via soft x-ray isochoric heating.In the experiment,we focus on study of the ions emitted during the soft x-ray ablation process using time-of-flight electron multipliers and a shifted Maxwell–Boltzmann velocity distribution model.We find that most emitted ions are thermal,but that some impurities chemisorbed on the target surface,such as protons,are accelerated by the electrostatic field created in the plasma by escaped electrons.The morphology of the complex crater structure indicates the presence of several ion groups with varying temperatures.We find that the ion sound velocity is controlled by the ion temperature and show how the ion yield depends on the FEL radiation attenuation length in different materials.展开更多
A near-diffraction-limited green source is generated at 1 kHz repetition rate by frequency doubling of a diode stack end-pumped electro-optically Q-switched Nd:YAG slab laser. We obtain 9. 7mJ green light with pulse ...A near-diffraction-limited green source is generated at 1 kHz repetition rate by frequency doubling of a diode stack end-pumped electro-optically Q-switched Nd:YAG slab laser. We obtain 9. 7mJ green light with pulse width of 12.2ns at a repetition rates of i kHz. The pump to green optical conversion efficiency is 12.9%. The energy pulse stability at 532nm is about 0.8%.展开更多
By employing a certain proportion of hydrogen peroxide, ammonia, ammonium fluoride, and ethylene diamine tetraacetic acid (EDTA) as precipitator, well-crystallized LaOF:Eu3+ and LaOF:Yba+, Era+ nanocrystals are...By employing a certain proportion of hydrogen peroxide, ammonia, ammonium fluoride, and ethylene diamine tetraacetic acid (EDTA) as precipitator, well-crystallized LaOF:Eu3+ and LaOF:Yba+, Era+ nanocrystals are synthe- sized by using the chemical co-precipitation method. The structural properties of these samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) spectra. The results show that all the samples have an average size below 70 nm, which decreases gradually with the increase of the EDTA content, and a certain number of EDTA molecules are coupled with doped ions on the surfaces of nanocrystals. Most of the doped ions are proved to be enriched on the surfaces of nanocrystals and surrounded by the high energy vibration groups and bonds in EDTA molecules. The observed differences in upconversion emission spectrum among the different LaOF:Yba+, Er3+ nanocrystals are explained by the different two-photon upconversion mechanisms. Especially, in the LaOF:Yba+, Era+ nanocrystals with EDTA, the two-photon processes that contain several special cross-relaxation processes are introduced to analyse the corresponding upconversion mechanisms.展开更多
The electronic structure and optical properties of A1 and Mg co-doped GaN are calculated from first principles using density function theory with the plane-wave ultrasoft pseudopotentiai method. The results show that ...The electronic structure and optical properties of A1 and Mg co-doped GaN are calculated from first principles using density function theory with the plane-wave ultrasoft pseudopotentiai method. The results show that the optimal form of p-type GaN is obtained with an appropriate AI:Mg co-doping ratio rather than with only Mg doping. A1 doping weakens the interaction between Ga and N, resulting in the Ga 4s states moving to a high energy region and the system band gap widening. The optical properties of the co-doped system are calculated and compared with those of undoped GaN. The dielectric function of the co-doped system is anisotropic in the low energy region. The static refractive index and reflectivity increase, and absorption coefficient decreases. This provides the theoretical foundation for the design and application of A1-Mg co-doped GaN photoelectric materials.展开更多
This paper presents the results of aluminum surface treatment by diffuse coplanar surface barrier discharge. The goals are to study the effectiveness of the plasma treatment and the dependence of its efficiency on ope...This paper presents the results of aluminum surface treatment by diffuse coplanar surface barrier discharge. The goals are to study the effectiveness of the plasma treatment and the dependence of its efficiency on operation parameters, such as sample-to-electrode distance, treatment time or gas atmosphere. Three types of aluminum materials (bricks, sheets and thin films) were tested to ensure the reliability of the treatment. The changes in the surface properties were characterized by the surface free energy, atomic force microscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR) and X-ray photoelectron spec- troscopy (XPS). The influence of aging effect on the treatment was also measured and discussed.展开更多
We investigate the impact of different numbers of positive and negative examples on machine learning for sapphire crystals defects prediction. We obtain the models of crystal growth parameters influence on the sapphir...We investigate the impact of different numbers of positive and negative examples on machine learning for sapphire crystals defects prediction. We obtain the models of crystal growth parameters influence on the sapphire crystal growth. For example, these models allow predicting the defects that occur due to local overcooling of crucible walls in the thermal node leading to the accelerated crystal growth. We also develop the prediction models for obtaining the crystal weight, blocks, cracks, bubbles formation, and total defect characteristics. The models were trained on all data sets and later tested for generalization on testing sets, which did not overlap the training set.During training and testing, we find the recall and precision of prediction, and analyze the correlation among the features. The results have shown that the precision of the neural network method for predicting defects formed by local overcooling of the crucible reached 0.94.展开更多
The electromagnetic shift of energy levels of H-atom electrons is determined by calculating an electron coupling to the Gibbons-Hawking ectromagnetic field thermal bath. Energy shift of electrons in H-atom is determin...The electromagnetic shift of energy levels of H-atom electrons is determined by calculating an electron coupling to the Gibbons-Hawking ectromagnetic field thermal bath. Energy shift of electrons in H-atom is determined in the framework of non-relativistic quantum mechanics.展开更多
The results of atmospheric pressure plasma treatments using diffuse coplanar surface barrier discharge (type of surface dielectric barrier discharge) on chromium surfaces are reported. A significant increase of surfac...The results of atmospheric pressure plasma treatments using diffuse coplanar surface barrier discharge (type of surface dielectric barrier discharge) on chromium surfaces are reported. A significant increase of surface wettability was observed after short plasma exposition. A quantitative value of surface wettability, i.e. the surface free energy, changed from 29 mJ/m2 to over 80 mJ/m2. In time, a hydrophobic recovery of the plasma treated surfaces was observed. Careful study by surface free energy measurements and x-ray photoelectron spectroscopy was performed to be able explaining the effects of plasma treatment. Studied samples were treated in air, oxygen and nitrogen plasma and aged in air and vacuum. Main reasons for increased wettability and aging effect are surface cleaning and transformations in chromium oxide. Additionally, generation of surface nitrate groups was found on the chromium surface as a result of plasma treatment in humid air.展开更多
Influence of pulsed power transmission on radio wave environment is investigated.The power pulses are transmitted intermittently in pulsed power network that is already proposed for an alternative of upcoming smart gr...Influence of pulsed power transmission on radio wave environment is investigated.The power pulses are transmitted intermittently in pulsed power network that is already proposed for an alternative of upcoming smart grids.In contrast to conventional power transmission with continuous electric current of low frequency sine wave,pulsed power transmission may affect surrounding field with high frequency radio noises.In this paper,based on the analysis of electric field strength around a power line,the radio noises generated by various forms of pulsed power transmission are evaluated.As a result,two points are derived.First,though the total of generated radio noise power obviously exceeds that of conventional power transmissions,peak strength of electric field rather falls behind the conventional one.Second,concerning the influence on the radio wave of the lowest frequency 40 kHz that is actually used for standard time and frequency signal,the noise intensity possibly exceeds the weak radio signal tolerance according to the shape of each power pulse transmitted.展开更多
Phased antenna array synthesis procedures based on the amplitude-phase and only-phase distributions providing the side lobe cancellation in a required direction are presented. A receiving antenna array was considered....Phased antenna array synthesis procedures based on the amplitude-phase and only-phase distributions providing the side lobe cancellation in a required direction are presented. A receiving antenna array was considered. It is characterized by the direction of the main beam for receiving the useful signal and the additional nulling direction. The required amplitude—phase distribution along the array is provided by the phase shifters and controllable attenuators/amplifiers. Moreover the modified synthesis procedure that takes into account the mutual coupling influence in the antenna array was proposed. Finally the radiation pattern transformation under the influence of the current distribution errors connected with a quality of phase shifters and attenuators/amplifiers was investigated.展开更多
A general theory of optical parametric generation that accounts for pump depletion, loss, phase mismatch, group-velocity mismatch among the pump, signal and idler pulses, and intrapulse group-velocity dispersion is pr...A general theory of optical parametric generation that accounts for pump depletion, loss, phase mismatch, group-velocity mismatch among the pump, signal and idler pulses, and intrapulse group-velocity dispersion is proposed for coherent ultrashort pulses with arbitrary shapes and carrier chirps. The coupled differential equations are numerically solved using a symmetric split step beam-propagation method. The general solutions of these equations are obtained and the optical parametric generation process is theoretically investigated. Results show that the major factors, which remarkably affect the optical parametric conversion efficiency and durations of the pulses in phase-matched structure, are the group velocity mismatch and the intrapulse group velocity dispersion.展开更多
Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between co-propagating solitons with small temporal and wavelengths separation. The mechanism of g...Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between co-propagating solitons with small temporal and wavelengths separation. The mechanism of graduate acceleration of trailing soliton by dispersive waves radiated from the preceding one provides necessary conditions for soliton fusion at the advanced stage of supercontinuum generation in photonic crystal fibers. As a result large intensity robust light structures can propagate over significant distances. In the spectral domain fusion-like processes result in development of a new significant band at the long wavelength side of the spectrum.展开更多
A novel reverse-conducting insulated-gate bipolar transistor (RC-IGBT) featuring a floating P-plug is proposed. The P-plug is embedded in the n-buffer layer to obstruct the electron current from flowing directly to ...A novel reverse-conducting insulated-gate bipolar transistor (RC-IGBT) featuring a floating P-plug is proposed. The P-plug is embedded in the n-buffer layer to obstruct the electron current from flowing directly to the n-collector, which achieves the hole emission from the p-collector at a small collector size and suppresses the snapback effectively. More- over, the current is uniformly distributed in the whole wafer at both IGBT mode and diode mode, which ensures the high temperature reliability of the RC-IGBT. Additionally, the P-plug acts as the base of the N-buffer/P-float/N-buffer transistor, which can be activated to extract the excessive carriers at the turn-off process. As the the simulation results show, for the proposed RC-IGBT, it achieves almost snapback-free output characteristics with a uniform current density and a uniform temperature distribution, which can greatly increase the reliability of the device.展开更多
A solid-state thermoelectric refrigerator with a cylindrical InP/InAs/InP double-barrier heterostructure is proposed. Based on the ballistic electron transport and the asymmetrical transmission, we derive the expressi...A solid-state thermoelectric refrigerator with a cylindrical InP/InAs/InP double-barrier heterostructure is proposed. Based on the ballistic electron transport and the asymmetrical transmission, we derive the expressions of the performance parameters of this refrigerator. The cooling rate rather than the coefficient of performance is affected by the area of the inner cylinder. Then through the numerical simulation, a triangular cooling rate region is found with respect to the chemical potential and bias voltage; further, that it is because of the small full width at half maximum of the transmission resonance and the linear relationship between the energy position of resonance and the bias voltage. These tunable results might supply some guide to the cooling in tiny components or devices.展开更多
The paper presents the results of a comprehensive study of the thermophysical properties(thermal conductivity,thermal diffusivity,heat capacity)of high-temperature multiferroic BiFeO_(3) modified with rare-earth eleme...The paper presents the results of a comprehensive study of the thermophysical properties(thermal conductivity,thermal diffusivity,heat capacity)of high-temperature multiferroic BiFeO_(3) modified with rare-earth elements(REEs)(La,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Lu).The regularities of the formation of the mentioned characteristics were established.The assumptions about the nature of the observed phenomena were suggested.展开更多
We determine nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analog...We determine nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cerenkov effect and transition radiation angle on acceleration as an analogue phenomenon in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration and equivalent gravity with the possible role in modern physics and cosmology.展开更多
According to the Fowler theory and numerous experiments the quantum efficiency for photoemission from conductors increases with temperature. Here we show that an opposite temperature dependence is also possible, when ...According to the Fowler theory and numerous experiments the quantum efficiency for photoemission from conductors increases with temperature. Here we show that an opposite temperature dependence is also possible, when the photoemission is from quasi-metallic surface accumulation layers of n-type semiconductors. This is due to the temperature dependence of the Fermi level energy in semiconductors. The Fermi level energy increases with decreasing temperature;this leads to a decrease of the semiconductor work function and consequently an increase of the quantum efficiency photoemission at constant value of absorbed light quanta of energy. We have calculated this effect for electron accumulation layer in n-GaN, induced by adsorption of positively charged cesium or barium ions. It is found that at low temperatures near liquid nitrogen, the quantum efficiency for photoemission increases to near 55%, which is comparable to the largest values, reported for any known photo-ca-thodes. This phenomenon may prove useful for efficient photo-cathodes operating at low temperatures.展开更多
基金the National Natural Science Foundation of China for Excellent Young Scholar(Grant No.52322313)National Key R&D Project from Minister of Science and Technology(2021YFA1201601)+6 种基金National Science Fund of China(62174014)Beijing Nova program(Z201100006820063)Youth Innovation Promotion Association CAS(2021165)Innovation Project of Ocean Science and Technology(22-3-3-hygg-18-hy)State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KFZD202202)Fundamental Research Funds for the Central Universities(292022000337)Young Top-Notch Talents Program of Beijing Excellent Talents Funding(2017000021223ZK03).
文摘The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG.
文摘We report on an experiment performed at the FLASH2 free-electron laser(FEL)aimed at producing warm dense matter via soft x-ray isochoric heating.In the experiment,we focus on study of the ions emitted during the soft x-ray ablation process using time-of-flight electron multipliers and a shifted Maxwell–Boltzmann velocity distribution model.We find that most emitted ions are thermal,but that some impurities chemisorbed on the target surface,such as protons,are accelerated by the electrostatic field created in the plasma by escaped electrons.The morphology of the complex crater structure indicates the presence of several ion groups with varying temperatures.We find that the ion sound velocity is controlled by the ion temperature and show how the ion yield depends on the FEL radiation attenuation length in different materials.
文摘A near-diffraction-limited green source is generated at 1 kHz repetition rate by frequency doubling of a diode stack end-pumped electro-optically Q-switched Nd:YAG slab laser. We obtain 9. 7mJ green light with pulse width of 12.2ns at a repetition rates of i kHz. The pump to green optical conversion efficiency is 12.9%. The energy pulse stability at 532nm is about 0.8%.
基金Project supported by the Outstanding Youth Talent Fund for University in Anhui Province, China (Grant No. 2011SQRL116)the Natural Science Foundation of Universtiy in Anhui Province, China (Grant No. KJ2011Z082)+1 种基金the Youth Science Foundation of Anhui Science and Technology University, China (Grant No. ZRC2011268)the Materials Key Construction Subject Foundation of Anhui Science and Technology University, China (Grant No. AKXK20102-2)
文摘By employing a certain proportion of hydrogen peroxide, ammonia, ammonium fluoride, and ethylene diamine tetraacetic acid (EDTA) as precipitator, well-crystallized LaOF:Eu3+ and LaOF:Yba+, Era+ nanocrystals are synthe- sized by using the chemical co-precipitation method. The structural properties of these samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) spectra. The results show that all the samples have an average size below 70 nm, which decreases gradually with the increase of the EDTA content, and a certain number of EDTA molecules are coupled with doped ions on the surfaces of nanocrystals. Most of the doped ions are proved to be enriched on the surfaces of nanocrystals and surrounded by the high energy vibration groups and bonds in EDTA molecules. The observed differences in upconversion emission spectrum among the different LaOF:Yba+, Er3+ nanocrystals are explained by the different two-photon upconversion mechanisms. Especially, in the LaOF:Yba+, Era+ nanocrystals with EDTA, the two-photon processes that contain several special cross-relaxation processes are introduced to analyse the corresponding upconversion mechanisms.
基金Project supported by the National Natural Science Foundation of China(Grant No.61171042)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2010FL018)the Doctoral Foundation of Binzhou University,China(Grant No.2012Y01)
文摘The electronic structure and optical properties of A1 and Mg co-doped GaN are calculated from first principles using density function theory with the plane-wave ultrasoft pseudopotentiai method. The results show that the optimal form of p-type GaN is obtained with an appropriate AI:Mg co-doping ratio rather than with only Mg doping. A1 doping weakens the interaction between Ga and N, resulting in the Ga 4s states moving to a high energy region and the system band gap widening. The optical properties of the co-doped system are calculated and compared with those of undoped GaN. The dielectric function of the co-doped system is anisotropic in the low energy region. The static refractive index and reflectivity increase, and absorption coefficient decreases. This provides the theoretical foundation for the design and application of A1-Mg co-doped GaN photoelectric materials.
基金supported by the Czech Science Foundation(Project No.104/08/02290)
文摘This paper presents the results of aluminum surface treatment by diffuse coplanar surface barrier discharge. The goals are to study the effectiveness of the plasma treatment and the dependence of its efficiency on operation parameters, such as sample-to-electrode distance, treatment time or gas atmosphere. Three types of aluminum materials (bricks, sheets and thin films) were tested to ensure the reliability of the treatment. The changes in the surface properties were characterized by the surface free energy, atomic force microscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR) and X-ray photoelectron spec- troscopy (XPS). The influence of aging effect on the treatment was also measured and discussed.
基金supported by the Russian Foundation for Basic Research Projects under Grant No.16-52-48016ИНД_оми(R.Kumar and A.V.Filimonov)。
文摘We investigate the impact of different numbers of positive and negative examples on machine learning for sapphire crystals defects prediction. We obtain the models of crystal growth parameters influence on the sapphire crystal growth. For example, these models allow predicting the defects that occur due to local overcooling of crucible walls in the thermal node leading to the accelerated crystal growth. We also develop the prediction models for obtaining the crystal weight, blocks, cracks, bubbles formation, and total defect characteristics. The models were trained on all data sets and later tested for generalization on testing sets, which did not overlap the training set.During training and testing, we find the recall and precision of prediction, and analyze the correlation among the features. The results have shown that the precision of the neural network method for predicting defects formed by local overcooling of the crucible reached 0.94.
文摘The electromagnetic shift of energy levels of H-atom electrons is determined by calculating an electron coupling to the Gibbons-Hawking ectromagnetic field thermal bath. Energy shift of electrons in H-atom is determined in the framework of non-relativistic quantum mechanics.
文摘The results of atmospheric pressure plasma treatments using diffuse coplanar surface barrier discharge (type of surface dielectric barrier discharge) on chromium surfaces are reported. A significant increase of surface wettability was observed after short plasma exposition. A quantitative value of surface wettability, i.e. the surface free energy, changed from 29 mJ/m2 to over 80 mJ/m2. In time, a hydrophobic recovery of the plasma treated surfaces was observed. Careful study by surface free energy measurements and x-ray photoelectron spectroscopy was performed to be able explaining the effects of plasma treatment. Studied samples were treated in air, oxygen and nitrogen plasma and aged in air and vacuum. Main reasons for increased wettability and aging effect are surface cleaning and transformations in chromium oxide. Additionally, generation of surface nitrate groups was found on the chromium surface as a result of plasma treatment in humid air.
文摘Influence of pulsed power transmission on radio wave environment is investigated.The power pulses are transmitted intermittently in pulsed power network that is already proposed for an alternative of upcoming smart grids.In contrast to conventional power transmission with continuous electric current of low frequency sine wave,pulsed power transmission may affect surrounding field with high frequency radio noises.In this paper,based on the analysis of electric field strength around a power line,the radio noises generated by various forms of pulsed power transmission are evaluated.As a result,two points are derived.First,though the total of generated radio noise power obviously exceeds that of conventional power transmissions,peak strength of electric field rather falls behind the conventional one.Second,concerning the influence on the radio wave of the lowest frequency 40 kHz that is actually used for standard time and frequency signal,the noise intensity possibly exceeds the weak radio signal tolerance according to the shape of each power pulse transmitted.
文摘Phased antenna array synthesis procedures based on the amplitude-phase and only-phase distributions providing the side lobe cancellation in a required direction are presented. A receiving antenna array was considered. It is characterized by the direction of the main beam for receiving the useful signal and the additional nulling direction. The required amplitude—phase distribution along the array is provided by the phase shifters and controllable attenuators/amplifiers. Moreover the modified synthesis procedure that takes into account the mutual coupling influence in the antenna array was proposed. Finally the radiation pattern transformation under the influence of the current distribution errors connected with a quality of phase shifters and attenuators/amplifiers was investigated.
文摘A general theory of optical parametric generation that accounts for pump depletion, loss, phase mismatch, group-velocity mismatch among the pump, signal and idler pulses, and intrapulse group-velocity dispersion is proposed for coherent ultrashort pulses with arbitrary shapes and carrier chirps. The coupled differential equations are numerically solved using a symmetric split step beam-propagation method. The general solutions of these equations are obtained and the optical parametric generation process is theoretically investigated. Results show that the major factors, which remarkably affect the optical parametric conversion efficiency and durations of the pulses in phase-matched structure, are the group velocity mismatch and the intrapulse group velocity dispersion.
文摘Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between co-propagating solitons with small temporal and wavelengths separation. The mechanism of graduate acceleration of trailing soliton by dispersive waves radiated from the preceding one provides necessary conditions for soliton fusion at the advanced stage of supercontinuum generation in photonic crystal fibers. As a result large intensity robust light structures can propagate over significant distances. In the spectral domain fusion-like processes result in development of a new significant band at the long wavelength side of the spectrum.
基金Project supported by the National Science and Technology Major Project, China (Grant No. 2011ZX02504-003), the National Natural Science Foundation of China (Grant No. 61076082), and the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2011 J024).
文摘A novel reverse-conducting insulated-gate bipolar transistor (RC-IGBT) featuring a floating P-plug is proposed. The P-plug is embedded in the n-buffer layer to obstruct the electron current from flowing directly to the n-collector, which achieves the hole emission from the p-collector at a small collector size and suppresses the snapback effectively. More- over, the current is uniformly distributed in the whole wafer at both IGBT mode and diode mode, which ensures the high temperature reliability of the RC-IGBT. Additionally, the P-plug acts as the base of the N-buffer/P-float/N-buffer transistor, which can be activated to extract the excessive carriers at the turn-off process. As the the simulation results show, for the proposed RC-IGBT, it achieves almost snapback-free output characteristics with a uniform current density and a uniform temperature distribution, which can greatly increase the reliability of the device.
基金Project supported by the Fundamental Research Funds for the Central Universities and the Research and Innovation Project for College Graduates of Jiangsu Province,China(Grant No.CXZZ13 0081)
文摘A solid-state thermoelectric refrigerator with a cylindrical InP/InAs/InP double-barrier heterostructure is proposed. Based on the ballistic electron transport and the asymmetrical transmission, we derive the expressions of the performance parameters of this refrigerator. The cooling rate rather than the coefficient of performance is affected by the area of the inner cylinder. Then through the numerical simulation, a triangular cooling rate region is found with respect to the chemical potential and bias voltage; further, that it is because of the small full width at half maximum of the transmission resonance and the linear relationship between the energy position of resonance and the bias voltage. These tunable results might supply some guide to the cooling in tiny components or devices.
基金This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation(State assignment in the field of scientific activity,Southern Federal University,2020).
文摘The paper presents the results of a comprehensive study of the thermophysical properties(thermal conductivity,thermal diffusivity,heat capacity)of high-temperature multiferroic BiFeO_(3) modified with rare-earth elements(REEs)(La,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Lu).The regularities of the formation of the mentioned characteristics were established.The assumptions about the nature of the observed phenomena were suggested.
文摘We determine nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cerenkov effect and transition radiation angle on acceleration as an analogue phenomenon in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration and equivalent gravity with the possible role in modern physics and cosmology.
文摘According to the Fowler theory and numerous experiments the quantum efficiency for photoemission from conductors increases with temperature. Here we show that an opposite temperature dependence is also possible, when the photoemission is from quasi-metallic surface accumulation layers of n-type semiconductors. This is due to the temperature dependence of the Fermi level energy in semiconductors. The Fermi level energy increases with decreasing temperature;this leads to a decrease of the semiconductor work function and consequently an increase of the quantum efficiency photoemission at constant value of absorbed light quanta of energy. We have calculated this effect for electron accumulation layer in n-GaN, induced by adsorption of positively charged cesium or barium ions. It is found that at low temperatures near liquid nitrogen, the quantum efficiency for photoemission increases to near 55%, which is comparable to the largest values, reported for any known photo-ca-thodes. This phenomenon may prove useful for efficient photo-cathodes operating at low temperatures.