Cellular mobile technology has witnessed tremendous growth in recent times.One of the challenges facing the operators to extend the coverage of the networks to meet the rising demand for cellular mobile services is th...Cellular mobile technology has witnessed tremendous growth in recent times.One of the challenges facing the operators to extend the coverage of the networks to meet the rising demand for cellular mobile services is the power sources used to supply cellular towers with energy,especially in remote.Thus,switch from the conventional sources of energy to a greener and sustainable power model became a target of the academic and industrial sectors in many fields;one of these important fields is the telecommunication sector.Accordingly,this study aims to find the optimum sizing and technoeconomic investigation of a solar photovoltaic scheme to deploy cellular mobile technology infrastructure cleanly and sustainably.The optimal solarpowered system is designed by employing the energy-balance procedures of the HOMER software tool.The problem objective is considered in terms of cost,but the energy system is constrained to meet the power demand reliably.Process simulations were performed to determine the optimum sizing,performance and monetary cost of the power system,using long-term meteorological datasets for a case study site with defined longitude(31◦25E)and latitude(30◦06N).From the observed results,the total net present cost(NPC)of the proposed system is$28,187.Indeed,these outcomes can provide profound economic,technical,and ecological benefits to cellular operators.It also ensures a sizeable reduction in greenhouse gas that supports sustainable green wireless network(WN)deployment in remote areas.展开更多
The paper presents results from a study of a series-connected single-phase APF (active power filter) with a control system based on hysteresis control, both with and without limitation of the maximum switching frequ...The paper presents results from a study of a series-connected single-phase APF (active power filter) with a control system based on hysteresis control, both with and without limitation of the maximum switching frequency. The general purpose of the series APF is to eliminate the low order harmonics of the source (grid) voltage. The filter operation at limited and unlimited maximum switching frequency is explained and it is described using building blocks and time diagrams illustrating the tracking down of the reference curve. Waveforms from the computer simulation and waveforms from the experimental tests of the filter are presented also for the two situations. Operations at limited and unlimited maximum switching frequency are compared regarding the quality of the voltage across the load, the complexity of the implementation of the control system, and the electromagnetic compatibility. The investigation proved capability of the series APF to achieve its general purpose using the hysteresis control methods studied (limited and unlimited switching frequency).展开更多
ZnO,NiO and ZnO@NiO nanocrystals were successfully synthesized and characterized by FTIR,XRD and SEM methods.The average particles sizes of ZnO,NiO and ZnO@NiO were32,50and48nm,respectively.The nanocrystals were exami...ZnO,NiO and ZnO@NiO nanocrystals were successfully synthesized and characterized by FTIR,XRD and SEM methods.The average particles sizes of ZnO,NiO and ZnO@NiO were32,50and48nm,respectively.The nanocrystals were examined assensors for cyanide removal.The cyanide sensing test revealed that,compared with the pure ZnO,NiO,the ZnO@NiO nanocrystalsexhibited highly improved sensing performances.The ZnO@NiO nano crystals were found to have better capacity for iron cyanidethan sodium cyanide.The effects of significant parameters such as contact time,pH(2-12),nanocrystal dose(0.02-0.4g)andcyanide concentration(5-50mg/L)on the removal of cyanide by nanocrystals were explored.At an optimum pH<5,over90%removal of20mg/L cyanide was obtained for nanocrystal dose of0.2g after30min contact time for iron cyanide by ZnO@NiOnano crystals.Cyanide removal was followed by pseudo second order kinetic model for ZnO@NiO nano crystals(k2=4.66×10-2andR2=0.999).The values of standard entralpy change of7.87kJ/mol and standard free energy change of-18.62kJ/mol at298K suggestthe adsorption of cyanide on nanocrystals is an endothermic and spontaneous process.ZnO@NiO nanocrystal is an efficient sensorfor removal of cyanide from water and wastewater.展开更多
In many electrical grids worldwide, the rising amount of installed PV (photovoltaic) power entails a considerable influence of PV systems on grid quality and stability. Consequently, in the wake of the revised Germa...In many electrical grids worldwide, the rising amount of installed PV (photovoltaic) power entails a considerable influence of PV systems on grid quality and stability. Consequently, in the wake of the revised German medium voltage directives issued in 2009, new requirements for PV inverters have been established internationally. At Fraunhofer ISE's Inverter Laboratory, approximately 25 large PV inverters with a nominal power of up to 880 kVA have been characterized in the past three years. In this period, the focus of many inverter manufacturers has begun to shift from traditional European markets towards an international perspective. Therefore, experiences with numerous different grid codes have been gained by our team. This work summarizes the similarities and differences between these grid codes. Additionally, several requirements that have proved to be critical will be examined. Finally, the adequacy of these grid codes to guarantee the safe and reliable operation of electrical grids is discussed.展开更多
It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems(EMSs), is vulnerable to false data injection attacks due to the undetectability...It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems(EMSs), is vulnerable to false data injection attacks due to the undetectability of those attacks using standard bad data detection techniques,which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter(UKF) in conjunction with a weighted least square(WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software.展开更多
This paper presents a novel power supply system based on the use of fuzzy inference logic to improve the power control of renewable energy sources.The system comprises renewable solar and wind sources,and an accumulat...This paper presents a novel power supply system based on the use of fuzzy inference logic to improve the power control of renewable energy sources.The system comprises renewable solar and wind sources,and an accumulator battery is used as an additional power source.The procedure for the parallel connection of multiple energy sources provides a stable power supply and optimal charging of the accumulative element.Renewable energy sources are connected in parallel using two serial converters and controlled by the controller based on the fuzzy logic.The reference voltage control of the serial converter enables an optimal use of available energy sources.The accumulative element is connected in parallel to compensate for the shortage of solar and wind energies,whereas if the available renewable energy exceeds the needs of the consumers,the surplus energy is accumulated in the battery.All measurements are conducted on the prototype of the hybrid power system under real conditions and compared with the applied systems of this type.This novel system is mainly used in remote telecom locations where there is no power distribution network.展开更多
The modular multilevel converter(MMC)has been a highly promising topology in the high-voltage direct-current(HVDC)transmission area,where each arm of the MMC may consist of hundreds of series-connected submodules and ...The modular multilevel converter(MMC)has been a highly promising topology in the high-voltage direct-current(HVDC)transmission area,where each arm of the MMC may consist of hundreds of series-connected submodules and an inductor.Due to its parameter inaccuracy,component aging,and so on,the component parameter in different arms of the MMC may be different,which may cause circulating current in the MMC-HVDC transmission system,and result in current deterioration,power losses,and electromagnetic interference,etc.In this paper,the circulating current suppressing(CCS)in the MMC-HVDC system,due to asymmetric arm impedance,is analyzed.Based on the mathematical analysis,a method of using an auxiliary circuit is proposed for the MMC to realize the CCS and improve the performance of the MMC-HVDC system.Simulation studies are conducted with PSCAD/EMTDC in the HVDC system,which confirms the feasibility of the proposed method.展开更多
基金This research was supported by the Korea Electric Power Corporation(Grant number:R19XO01-37)This research was also supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2020R1A2C1004743).
文摘Cellular mobile technology has witnessed tremendous growth in recent times.One of the challenges facing the operators to extend the coverage of the networks to meet the rising demand for cellular mobile services is the power sources used to supply cellular towers with energy,especially in remote.Thus,switch from the conventional sources of energy to a greener and sustainable power model became a target of the academic and industrial sectors in many fields;one of these important fields is the telecommunication sector.Accordingly,this study aims to find the optimum sizing and technoeconomic investigation of a solar photovoltaic scheme to deploy cellular mobile technology infrastructure cleanly and sustainably.The optimal solarpowered system is designed by employing the energy-balance procedures of the HOMER software tool.The problem objective is considered in terms of cost,but the energy system is constrained to meet the power demand reliably.Process simulations were performed to determine the optimum sizing,performance and monetary cost of the power system,using long-term meteorological datasets for a case study site with defined longitude(31◦25E)and latitude(30◦06N).From the observed results,the total net present cost(NPC)of the proposed system is$28,187.Indeed,these outcomes can provide profound economic,technical,and ecological benefits to cellular operators.It also ensures a sizeable reduction in greenhouse gas that supports sustainable green wireless network(WN)deployment in remote areas.
文摘The paper presents results from a study of a series-connected single-phase APF (active power filter) with a control system based on hysteresis control, both with and without limitation of the maximum switching frequency. The general purpose of the series APF is to eliminate the low order harmonics of the source (grid) voltage. The filter operation at limited and unlimited maximum switching frequency is explained and it is described using building blocks and time diagrams illustrating the tracking down of the reference curve. Waveforms from the computer simulation and waveforms from the experimental tests of the filter are presented also for the two situations. Operations at limited and unlimited maximum switching frequency are compared regarding the quality of the voltage across the load, the complexity of the implementation of the control system, and the electromagnetic compatibility. The investigation proved capability of the series APF to achieve its general purpose using the hysteresis control methods studied (limited and unlimited switching frequency).
基金financial support from the Research Council of Islamic Azad University of Yazd
文摘ZnO,NiO and ZnO@NiO nanocrystals were successfully synthesized and characterized by FTIR,XRD and SEM methods.The average particles sizes of ZnO,NiO and ZnO@NiO were32,50and48nm,respectively.The nanocrystals were examined assensors for cyanide removal.The cyanide sensing test revealed that,compared with the pure ZnO,NiO,the ZnO@NiO nanocrystalsexhibited highly improved sensing performances.The ZnO@NiO nano crystals were found to have better capacity for iron cyanidethan sodium cyanide.The effects of significant parameters such as contact time,pH(2-12),nanocrystal dose(0.02-0.4g)andcyanide concentration(5-50mg/L)on the removal of cyanide by nanocrystals were explored.At an optimum pH<5,over90%removal of20mg/L cyanide was obtained for nanocrystal dose of0.2g after30min contact time for iron cyanide by ZnO@NiOnano crystals.Cyanide removal was followed by pseudo second order kinetic model for ZnO@NiO nano crystals(k2=4.66×10-2andR2=0.999).The values of standard entralpy change of7.87kJ/mol and standard free energy change of-18.62kJ/mol at298K suggestthe adsorption of cyanide on nanocrystals is an endothermic and spontaneous process.ZnO@NiO nanocrystal is an efficient sensorfor removal of cyanide from water and wastewater.
文摘In many electrical grids worldwide, the rising amount of installed PV (photovoltaic) power entails a considerable influence of PV systems on grid quality and stability. Consequently, in the wake of the revised German medium voltage directives issued in 2009, new requirements for PV inverters have been established internationally. At Fraunhofer ISE's Inverter Laboratory, approximately 25 large PV inverters with a nominal power of up to 880 kVA have been characterized in the past three years. In this period, the focus of many inverter manufacturers has begun to shift from traditional European markets towards an international perspective. Therefore, experiences with numerous different grid codes have been gained by our team. This work summarizes the similarities and differences between these grid codes. Additionally, several requirements that have proved to be critical will be examined. Finally, the adequacy of these grid codes to guarantee the safe and reliable operation of electrical grids is discussed.
基金supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia and Schneider Electric DMS NS,Serbia(No.Ⅲ-42004)
文摘It has recently been shown that state estimation (SE), which is the most important real-time function in modern energy management systems(EMSs), is vulnerable to false data injection attacks due to the undetectability of those attacks using standard bad data detection techniques,which are typically based on normalized measurement residuals. Therefore, it is of the utmost importance to develop novel and efficient methods that are capable of detecting such malicious attacks. In this paper, we propose using the unscented Kalman filter(UKF) in conjunction with a weighted least square(WLS) based SE algorithm in real-time, to detect discrepancies between SV estimates and, as a consequence, to identify false data attacks. After an attack is detected and an appropriate alarm is raised, an operator can take actions to prevent or minimize the potential consequences. The proposed algorithm was successfully tested on benchmark IEEE 14-bus and 300-bus test systems, making it suitable for implementation in commercial EMS software.
基金This work was supported by the Ministry of Education,Science and Technological Development of the Republic of Serbia(No.451-03-68/2020-14/200053).
文摘This paper presents a novel power supply system based on the use of fuzzy inference logic to improve the power control of renewable energy sources.The system comprises renewable solar and wind sources,and an accumulator battery is used as an additional power source.The procedure for the parallel connection of multiple energy sources provides a stable power supply and optimal charging of the accumulative element.Renewable energy sources are connected in parallel using two serial converters and controlled by the controller based on the fuzzy logic.The reference voltage control of the serial converter enables an optimal use of available energy sources.The accumulative element is connected in parallel to compensate for the shortage of solar and wind energies,whereas if the available renewable energy exceeds the needs of the consumers,the surplus energy is accumulated in the battery.All measurements are conducted on the prototype of the hybrid power system under real conditions and compared with the applied systems of this type.This novel system is mainly used in remote telecom locations where there is no power distribution network.
基金This work was supported by the Science and Technology Program of the State Grid Corporation of China(Grant No.5100-201999330A-0-0-00).
文摘The modular multilevel converter(MMC)has been a highly promising topology in the high-voltage direct-current(HVDC)transmission area,where each arm of the MMC may consist of hundreds of series-connected submodules and an inductor.Due to its parameter inaccuracy,component aging,and so on,the component parameter in different arms of the MMC may be different,which may cause circulating current in the MMC-HVDC transmission system,and result in current deterioration,power losses,and electromagnetic interference,etc.In this paper,the circulating current suppressing(CCS)in the MMC-HVDC system,due to asymmetric arm impedance,is analyzed.Based on the mathematical analysis,a method of using an auxiliary circuit is proposed for the MMC to realize the CCS and improve the performance of the MMC-HVDC system.Simulation studies are conducted with PSCAD/EMTDC in the HVDC system,which confirms the feasibility of the proposed method.