The medical convergence industry has gradually adopted ICT devices,which has led to legacy security problems related to ICT devices.However,it has been difficult to solve these problems due to data resource issues.Suc...The medical convergence industry has gradually adopted ICT devices,which has led to legacy security problems related to ICT devices.However,it has been difficult to solve these problems due to data resource issues.Such problems can cause a lack of reliability in medical artificial intelligence services that utilize medical information.Therefore,to provide reliable services focused on security internalization,it is necessary to establish a medical convergence environment-oriented security management system.This study proposes the use of system identification and countermeasures to secure systemreliabilitywhen using medical convergence environment information in medical artificial intelligence.We checked the life cycle of medical information and the flow and location of information,analyzed the security threats that may arise during the life cycle,and proposed technical countermeasures to overcome such threats.We verified the proposed countermeasures through a survey of experts.Security requirements were defined based on the information life cycle in the medical convergence environment.We also designed technical countermeasures for use in the security management systems of hospitals of diverse sizes.展开更多
In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)da...In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)datasets?This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things(IoT)devices,which can significantly improve the reliability and safety of these systems.In this paper,we propose a hybrid autoencoder model,called ConvBiLSTMAE,which combines convolutional neural network(CNN)and bidirectional long short-term memory(BiLSTM)to more effectively train complex temporal data patterns in anomaly detection.On the hardware-in-the-loopbased extended industrial control system dataset,the ConvBiLSTM-AE model demonstrated remarkable anomaly detection performance,achieving F1 scores of 0.78 and 0.41 for the first and second datasets,respectively.The results suggest that hybrid autoencoder models are not only viable,but potentially superior alternatives for unsupervised anomaly detection in complex industrial systems,offering a promising approach to improving their reliability and safety.展开更多
Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechani...Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios.展开更多
Hyper-connectivity in Industry 4.0 has resulted in not only a rapid increase in the amount of information,but also the expansion of areas and assets to be protected.In terms of information security,it has led to an en...Hyper-connectivity in Industry 4.0 has resulted in not only a rapid increase in the amount of information,but also the expansion of areas and assets to be protected.In terms of information security,it has led to an enormous economic cost due to the various and numerous security solutions used in protecting the increased assets.Also,it has caused difficulties in managing those issues due to reasons such as mutual interference,countless security events and logs’data,etc.Within this security environment,an organization should identify and classify assets based on the value of data and their security perspective,and then apply appropriate protection measures according to the assets’security classification for effective security management.But there are still difficulties stemming from the need to manage numerous security solutions in order to protect the classified assets.In this paper,we propose an information classification management service based on blockchain,which presents and uses a model of the value of data and the security perspective.It records transactions of classifying assets and managing assets by each class in a distributed ledger of blockchain.The proposed service reduces assets to be protected and security solutions to be applied,and provides security measures at the platform level rather than individual security solutions,by using blockchain.In the rapidly changing security environment of Industry 4.0,this proposed service enables economic security,provides a new integrated security platform,and demonstrates service value.展开更多
基金This paper was supported by a Korea Institute for the Advancement of Technology(KIAT)grant funded by the Korean government(MOTIE,No.P0008703)by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT,No.2018R1C1B5046760).
文摘The medical convergence industry has gradually adopted ICT devices,which has led to legacy security problems related to ICT devices.However,it has been difficult to solve these problems due to data resource issues.Such problems can cause a lack of reliability in medical artificial intelligence services that utilize medical information.Therefore,to provide reliable services focused on security internalization,it is necessary to establish a medical convergence environment-oriented security management system.This study proposes the use of system identification and countermeasures to secure systemreliabilitywhen using medical convergence environment information in medical artificial intelligence.We checked the life cycle of medical information and the flow and location of information,analyzed the security threats that may arise during the life cycle,and proposed technical countermeasures to overcome such threats.We verified the proposed countermeasures through a survey of experts.Security requirements were defined based on the information life cycle in the medical convergence environment.We also designed technical countermeasures for use in the security management systems of hospitals of diverse sizes.
基金supported by the Culture,Sports,and Tourism R&D Program through the Korea Creative Content Agency grant funded by the Ministry of Culture,Sports,and Tourism in 2024(Project Name:Development of Distribution and Management Platform Technology and Human Resource Development for Blockchain-Based SW Copyright Protection,Project Number:RS-2023-00228867,Contribution Rate:100%)and also supported by the Soonchunhyang University Research Fund.
文摘In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)datasets?This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things(IoT)devices,which can significantly improve the reliability and safety of these systems.In this paper,we propose a hybrid autoencoder model,called ConvBiLSTMAE,which combines convolutional neural network(CNN)and bidirectional long short-term memory(BiLSTM)to more effectively train complex temporal data patterns in anomaly detection.On the hardware-in-the-loopbased extended industrial control system dataset,the ConvBiLSTM-AE model demonstrated remarkable anomaly detection performance,achieving F1 scores of 0.78 and 0.41 for the first and second datasets,respectively.The results suggest that hybrid autoencoder models are not only viable,but potentially superior alternatives for unsupervised anomaly detection in complex industrial systems,offering a promising approach to improving their reliability and safety.
基金supported by Korea Institute for Advancement of Technology(KIAT)grant funded by theKoreaGovernment(MOTIE)(P0008703,The CompetencyDevelopment Program for Industry Specialist).
文摘Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2020-2018-0-01799)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation).
文摘Hyper-connectivity in Industry 4.0 has resulted in not only a rapid increase in the amount of information,but also the expansion of areas and assets to be protected.In terms of information security,it has led to an enormous economic cost due to the various and numerous security solutions used in protecting the increased assets.Also,it has caused difficulties in managing those issues due to reasons such as mutual interference,countless security events and logs’data,etc.Within this security environment,an organization should identify and classify assets based on the value of data and their security perspective,and then apply appropriate protection measures according to the assets’security classification for effective security management.But there are still difficulties stemming from the need to manage numerous security solutions in order to protect the classified assets.In this paper,we propose an information classification management service based on blockchain,which presents and uses a model of the value of data and the security perspective.It records transactions of classifying assets and managing assets by each class in a distributed ledger of blockchain.The proposed service reduces assets to be protected and security solutions to be applied,and provides security measures at the platform level rather than individual security solutions,by using blockchain.In the rapidly changing security environment of Industry 4.0,this proposed service enables economic security,provides a new integrated security platform,and demonstrates service value.